-
20世纪90年代中期,德国放弃人工林经营方式,运用近自然林业理论制定相关方针[1]。如今,德国已经进入近自然林业的时代,主张择伐、自然更新,实行人工林向近自然林的转化。德国政府也鼓励尽可能多的森林实现近自然森林经营。中国近些年来也在对近自然经营进行实践。陆元昌等[2]指出:人工林近自然化改造在中国逐步从理论研究和学术讨论到部分地区开展试点研究和试验,中国应该针对不同地区和具体森林特征来实施具体改造的方法。王六平等[3]在贵州省推进近自然森林经营,提升森林质量的探讨中指出,贵州各地的森林类型千差万别,如果贸然采用近自然森林经营或许达不到预期的效果。因此,近自然森林经营在中国实施必须要考虑到中国的国情和林情。近自然经营在中国起步较晚,当前开展的试点也不多。对近自然森林经营理论与方法不断实践,积累足够经验,才能切实广泛推进近自然森林经营的应用,从而提升森林质量,达到可持续经营的目的,为中国林业可持续发展做出贡献。2009年,中德财政合作贵州省可持续森林经营项目在贵阳试点林区开展。该项目通过引进国内外先进的森林经营技术,建立了一套森林经营技术体系,开展近自然经营。马尾松Pinus massoniana作为贵州省常见的造林用材树种之一,分布于全省各地,特别是黔中地区,但黔中地区生态位比较脆弱,部分面积存在石漠化,现实生产力还达不到期望值[4-6]。为了进一步了解近自然经营间伐活动对林分生长的影响,检验近自然经营在贵州地区的适应性,本研究拟在已开展近自然经营的黔中地区马尾松天然次生纯林进行固定样地和临时样地调查,评价近自然经营间伐4 a的实施效果,为今后建立适合贵州省的森林可持续经营措施和评价技术体系提供参考依据。
-
研究区位于贵州省中部地区的开阳县与息烽县。开阳县实验地坐标为26°57′N,107°07′E,海拔为1 112 m;息烽县实验地坐标为27°06′N,106°44′E,海拔为1 013 m,为低中山丘陵地。年平均气温为10.6~15.3 ℃,年降水量为1 000.0 mm左右,属于北亚热带和南温带季风气候。用材树种以马尾松和杉木Cunninghamia lanceolata为主。马尾松是本地区数量最多、分布最广的树种之一。
-
样地设置对象为2个龄级的马尾松天然次生纯林,样地平均海拔约1 000 m,坡度约20°,土壤为砂页岩发育形成的黄壤。实验地初始林分郁闭度均达到0.8以上。中龄林样地设置在息烽县,马尾松平均年龄为18年生,初始年经营林分密度为2 340株·hm-2,对照林分密度为2 200株·hm-2,经营与对照林分初始年密度无显著差异。近熟林样地设置在开阳县,马尾松平均年龄为22年生,初始年经营林分密度为1 700株·hm-2,对照林分密度为1 750株·hm-2,经营与对照林分初始年密度无显著差异。中林龄经营林分的株数间伐强度39.18%,近熟林经营林分的株数间伐强度为37.64%。固定样地设置与调查:2013年分别设置马尾松2个龄级共8个样地(包括4个经营样地和4个对照样地)。经营样地为半径8.92 m的样圆,对样圆采取相应的近自然经营间伐措施。对照样地为半径5.64 m的样圆,不采取任何经营措施。每个样圆周围(含样圆)设置约667 m2左右的保护区,其中经营样圆保护区与样圆采用同一标准的经营措施,对照样圆保护区不采取任何经营措施,样圆设置见图 1。调查时用油漆对样木编号和标注胸径测量位置,对目标树做好标记。胸径采用胸径尺测量,测量位置位于胸径测量环中央,树高小于7 m用塔尺测量,大于7 m采用激光树木测高仪DZH-30测量。固定样地调查从2013年开始,间隔期为1 a,调查5次(4次复查)。临时样地设置与调查:由于固定样地调查期间未对林下植被进行过调查,只能在2017年通过设置临时样地作对比。在马尾松经营林分与相应的对照林分中设置20 m×20 m的临时样方,2个龄级共设置8个样方(包括经营样地和对照样地)。调查时对林下灌木层和草本层做好物种和株数记录,并测量地径、树高、灌幅、覆盖度等因子。临时样地2017年调查1次。
-
是否要开展间伐活动判断:判定是否需要间伐的林分主要因子有郁闭度、林分平均胸径和林分密度等。通过现场观察和初步调查,结合自然整枝高度、主层林木林冠重叠程度综合判断。间伐强度的定性判断:主要考虑2个方面,一是要有效改善林木生长空间,避免过度竞争,二是要维护林木机械稳定性。一般过密或者间伐时间过晚的林分一次间伐强度不宜过大,避免风折雪折等自然灾害的发生。目标树选取:根据林分的实际生长情况,按照GB/T 15781-2015《森林抚育规程》[7],确定目标树、一般树和干扰树并做好标记。为了比较经营林分与对照林分目标树生长的差异,在对照样地也做好目标树选取与标记。间伐木现场确定:①密度控制性的间伐木。在局部过密地段,通过间伐具有一定竞争能力的林木,改善保留木空间结构。②促进目标树生长的间伐木。在现阶段或者未来5 a内与目标树存在较大竞争的林木,竞争木需要立即间伐。③其他间伐木。包括2类:一是具有收获价值的下层木,二是干扰其他树木正常生长的树木,如倒靠在其他树木上的林木等。对处于主层林下层没有明显竞争优势的林木,如无特殊需要,可不必间伐,任其自然衰亡。
-
根据固定样地每年的调查数据,用Excel软件统计林木算术平均胸径、树高、材积、蓄积等因子,用SPSS 18.0软件做方差分析比较经营与对照样地各生长因子的差异,对本研究中导致林木生长差异的主要因素做相关性分析。本研究参考的计算模型,采用贵州省正式颁布的单株林木二元材积式计算马尾松材积。V=0.000 094 147×D(1.938 96-0.004 267 6×(D+H))×H(0.709 98+0.005 925 6×(D+H))。其中:V为单株材积(m3),D为胸径(cm),H为树高(m)。生物量计算公式:灌木W=0.065 0×D01.380 9×H0.927 1,草本W=653.117 8×P 0.911 2[8-9]。其中:W为生物量(kg·hm-2),D0为地径(cm),H为树高(m),P为覆盖度(%)。林木优势度=胸径/样地平均胸径×树高/样地平均树高。
-
间伐影响了马尾松林分的直径分布(图 2)。中龄林初始年本底林分(未实施间伐前的经营林分与对照林分总称)和4 a后的对照林分在胸径为6~14 cm的林木株数比例较大,趋于右偏态分布。采取间伐措施4 a后的林分在胸径为12~18 cm的林木株数比例较大,趋于正态分布。近熟林初始年本底林分和4 a后的对照林分在胸径为10~14 cm的林木株数比例较大,趋于右偏态分布。采取间伐措施4 a后的林分在胸径为22~26 cm的林木株数比例较大,趋于左偏态分布。间伐使得较小径阶的林木株数比例减少,而较大径阶的林木株数比例增大,说明近自然经营间伐措施有助于大径级木材的生产。
-
间伐对马尾松林分平均胸径和单株材积生长起到了促进作用,经营林分年生长量和生长率均大于对照林分(表 1)。中龄林中,经营林分胸径年生长量和生长率均为对照林分的1.47倍,其中第4年生长量和生长率分别达到了对照林分的2.47倍和2.48倍,平均单株材积的年生长量和生长率分别为(0.016 4±0.012 0)m3·a-1和20.08%,大于对照林分的(0.012 7±0.008 7)m3·a-1和15.95%。近熟林中,经营林分胸径年生长量和生长率分别是对照林分的1.38和1.23倍,其中第3年生长量和生长率分别最高达到了对照林分的2.64倍和2.41倍,平均单株材积年生长量和生长率分别为(0.022 7±0.016 3)m3·a-1和8.56%,大于对照林分的(0.016 2±0.017 4)m3·a-1和7.53%。间伐没有有效促进林分平均树高生长,中龄林经营林分平均树高年生长量和生长率在前3 a大于对照林分,但在第4年小于对照林分。近熟林树高生长量在第1年和第3年表现出经营林分大于对照林分,而在第2年和第4年则表现出经营林分小于对照林分。
表 1 各处理方式下马尾松林分胸径!树高及单株材积年生长指标分析
Table 1. Analysis of DBH, tree height and annual growth index of Pinus massoniana forest under different treatments
处理方式 胸径 树高 材积 初值/
cm年均生长量/
(cm·a-1)年均生长率/% 初值/
cm年均生长量/
(cm·a-1)年均生长率/% 初值/
cm年均生长量/
(cm·a-1)年均生长率/% 中龄林 对照 12.10 0.38±0.23 3.14 11.12 0.94±0.32 8.42 0.079 4 0.012 7±0.008 7 15.95 经营 12.13 0.56±0.34 4.62 11.48 0.85±0.30 7.39 0.081 7 0.016 4±0.012 0 20.08 近熟林 对照 16.67 0.32±0.26 1.91 16.72 0.47±0.36 2.81 0.214 9 0.016 2±0.017 4 7.53 经营 18.75 0.44±0.23 2.34 16.72 0.55±0.29 3.28 0.264 8 0.022 7±0.016 3 8.56 -
据统计可知(表 2):间伐对林分目标树胸径、材积及树高生长有不同程度的影响,中龄林经营林分目标树的胸径年生长量是对照林分的1.65倍,树高年生长量是对照林分的1.10倍,材积年生长量是对照林分的1.33倍。近熟林经营林分的目标树胸径年生长量是对照林分的1.15倍,目标树材积年生长量是对照林分的1.19倍,树高年生长量不及对照林分。差异性检验结果表明:目标树的胸径和材积年生长量与非目标树有显著差异(P<0.05),目标树的树高年生长量与非目标树无显著性差异(P>0.05)。中龄林经营林分与对照林分目标树的胸径和材积年生长量有显著差异,非目标树的胸径年生长量也有显著差异。近熟林经营林分与对照林分目标树年生长量无显著差异。
表 2 近自然经营间伐马尾松林分目标树与非目标树胸径、树高和单株材积年生长量
Table 2. Annual growth of DBH, tree height and annual growth index of target and non-target trees in the Pinus massoniana forest
处理方式 胸径 树高 材积 中龄林 近熟林 中龄林 近熟林 中龄林 近熟林 初值/cm 年生长量/(cm·a-1) 初值/cm 年生长量/(cm·a-1) 初值/cm 年生长量/(cm·a-1) 初值/cm 年生长量/(cm·a-1) 初值/cm 年生长量/(cm·a-1) 初值/cm 年生长量/(cm·a-1) 目标树 对照 17.90 0.540±0.069 b 23.59 0.557±0.097 a 12.06 0.898±0.083 a 19.13 0.484±0.193 a 0.161 0.024±0.002 b 0.425 0.032±0.009 a 经营 16.76 0.893±0.052 a 24.71 0.639±0.063 a 12.77 0.986±0.063 a 19.94 0.404±0.073 a 0.149 0.032±0.002 a 0.485 0.038±0.006 a 非目标树 对照 10.23 0.328±0.028 c 14.25 0.234±0.047 b 10.81 0.949±0.062 a 15.87 0.464±0.072 a 0.053 0.009±0.001 c 0.142 0.011±0.002 b 经营 10.62 0.451±0.041 b 16.76 0.371±0.035 b 11.05 0.803±0.040 a 15.65 0.598±0.051 a 0.060 0.011±0.001 c 0.191 0.018±0.002 b 说明:同列不同字母表示差异显著(P<0.05) -
由表 3可知:由于间伐,初始年蓄积量小于对照林分,后续4 a生长过程中经营林分蓄积量也小于对照林分。中龄林中经营林分初始年蓄积量为119.35 m3·hm-2,小于对照林分的162.84 m3·hm-2,近熟林中经营林分初始年蓄积量为233.01 m3·hm-2,小于对照林分的290.15 m3·hm-2。间伐林分蓄积生长量在小于对照林分的情况下,生长率却在中龄林中比对照林分高出4.13%,在近熟林中比对照林分高出1.03%。总之,近自然经营间伐不能提高马尾松林分蓄积生长量,但可以提高生长率。
表 3 近自然经营间伐马尾松林分蓄积的年均生长量和生长率
Table 3. Annual average growth and growth rate of pinus massoniana forest accumulation in natural management
林分 处理方式 初值
(m3·hm-2)年均生长量/
(m3·hm-2·a-1)年均生长率/% 中龄林 对照 162.84 25.97±0.45 15.95 经营 119.35 23.96±8.59 20.08 近熟林 对照 290.15 21.85±2.46 7.53 经营 233.01 19.95±2.58 8.56 -
将初始年林木优势度分为3个等级,即优势度≥1.3为优势木,0.7≤优势度<1.3为一般木,优势度<0.7为被压木。按照林木优势等级统计平均单木材积的年生长量(表 4)。结果显示:各林分中林木材积的连年生长量由大到小的排序依次是优势木、一般木、被压木。
表 4 近自然经营间伐下马尾松林分各优势等级的林木生长量
Table 4. Growth of single woods of different dominant grades of pinus massoniana forest under close-to-nature management thinnin
林分 处理方式 单木材积年生长量/(m3·a-1) 优势木 一般木 被压木 中龄林 对照 0.023 6±0.006 6 0.011 6±0.006 1 0.005 3±0.002 8 经营 0.031 4±0.007 1 0.014 0±0.006 7 0.004 1±0.003 5 近熟林 对照 0.032 4±0.022 9 0.013 8±0.010 9 0.004 3±0.002 6 经营 0.039 5±0.019 0 0.022 9±0.011 3 0.007 0±0.004 3 中龄林中,经营林分优势木的平均材积连年生长量是对照林分的1.33倍,一般木的平均材积连年生长量是对照林分的1.21倍,被压木材积生长量小于对照林分。经营林分优势木、一般木和被压木的平均单株材积连年生长量比例约7.7:3.4:1.0,对照林分优势木、一般木和被压木的平均单株材积连年生长量比例约4.5:2.2:1.0。可见,中龄林间伐对被压木材积的生长没有促进作用,对优势木和一般木材积生长促进效果较好。
近熟林中,经营林分优势木的平均材积连年生长量是对照林分的1.22倍,一般木的平均材积连年生长量是对照林分的1.66倍,被压木的平均材积生长量是对照林分的1.63倍。经营林分优势木、一般木和被压木的平均单株材积连年生长量比例约为5.6:3.3:1.0,对照林分优势木、一般木和被压木的平均单株材积连年生长量比例约为7.5:3.2:1.0。可知,近熟林择伐对各优势等级的林木在材积生长上均有促进作用,对一般木和被压木材积的生长促进效果比优势木更好。
林木优势度与林木平均单株材积年生长量的相关性分析见表 5。马尾松林分的林木优势度与材积年生长量均在0.01水平上呈显著正相关,其中最高相关性系数达0.902。说明在同一林分中林木胸径越大、树高越高,林木材积生长就越快。
表 5 近自然经营间伐马尾松林木优势度与材积年生长量的相关性
Table 5. Correlation between dominance of Pinus massoniana forest and annual growth of volume in close-to-nature management
林分 处理方式 相关性 林木株数 中龄林 对照 0.884** 41 经营 0.902** 73 近熟林 对照 0.587** 27 经营 0.812** 44 说明:**表示相关系数达1%水平 -
由表 6可知:近自然经营间伐林分林下的灌木层植被物种数大于对照林分,草本层植被物种数小于对照林分,中龄林经营林分灌木层共出现27种植物,比对照林分多6种,草本层共出现21种,比对照林分少2种。近熟林经营林分灌木层共出现22种植物,比对照林分多2种,草本层共出现9种,比对照林分少3种。中龄林经营林分灌木层植被的株数密度小于对照林分,灌木层平均地径、平均树高、平均生物量以及草本层的平均高、覆盖度、平均生物量均大于对照林分。近熟林经营林分灌木层植被的平均地径、平均树高和草本层平均高小于对照林分,灌木层株数密度、平均生物量和草本层覆盖度、平均生物量大于对照林分。然而差异性检验结果显示:经营林分的这些观测因子与对照林分均无显著差异性。所以,实施近自然经营间伐4 a对林下植被的生长促进效果不明显。
表 6 近自然经营间伐下马尾松林下植被生长情况
Table 6. Vegetation growth under the forest of Pinus massoniana in the close-to-nature management
处理方式 灌木层 草本层 物种数 株数密度/
(株·hm-2)平均地径/
cm平均树高/m 平均生物量/
(t·株-1)物种数 平均高/m 覆盖度/% 平均生物量/
(t·株-1)中龄林 经营 27 884±183 0.83±0.53 1.71±0.36 0.99±0.41 21 0.53±0.07 64±18 0.43±0.12 对照 21 1156±564 1.73±1.03 1.56±0.62 0.86±0.28 23 0.50±0.20 53±25 0.36±0.16 近熟林 经营 22 1341±954 .1.72±0.49 1.61±0.72 1.19±0.96 9 0.73±0.28 52±21 0.36±0.14 对照 19 1 119±702 2.01±1.04 1.84±0.37 1.10±0.52 12 0.92±0.40 33±22 0.23±0.15 -
分析可知:间伐增加了马尾松林分内大径级林木株数的比例,同时促进了林分平均胸径和单株材积的生长,对目标树胸径和材积的生长也有促进作用,对中龄林林分的影响比近熟林显著。这可能与间伐后林内竞争减小,林木迅速生长有关。已有研究表明:间伐对胸径因子的生长促进效果最明显[10],林分在生长过程中,随着冠幅和密度的增大,林木的个体生长空间减小,胸径生长受到抑制[11],而间伐使林木个体的宽生长空间增大,从而有利于胸径的生长[12]。近自然改造正是通过对大径材的收获来调整经营周期,以增加单木的材积,从而有效地促进林木单株材积的生长[13]。近自然经营间伐不能有效促进树高的生长,这与方萍[11]和何先进[12]对马尾松间伐林的研究结果相似。谌红辉等[14]研究结果显示:密度对树高生长无显著影响。然而也有研究结果得出:近自然经营间伐能够促进树高生长的结论,如马履一等[15]对不同间伐强度的北京山区油松Pinus tabulaeformis林研究表明:间伐后油松平均树高生长明显高于未间伐林分。因此,间伐对树高生长的影响目前还没有一致的结论。
间伐可能会产生2种效应:一种是使保留木生长空间扩大而出现的“增长效应”,另一种是除去的林木对林分蓄积等产生的“失去效应”[16]。本研究中,间伐提高了林分蓄积的生长率,减少了林分起始年的蓄积量,林木个体生长空间扩大,后续几年中林木生长速率提高,但因个体数量的减少使得总生长累积量未表现出优势,这可能与间伐强度和实施时间有关。相关研究表明:需要调控合适的间伐强度,才能使得单株材积和单位面积蓄积达到最佳[17]。马正锐等[18]对马尾松人工林间伐效应3 a的研究结果显示:间伐强度30%为最佳,强度间伐会导致林分蓄积量不增反减。而刘红梅等[19]研究结果则表明:对马尾松实施强度间伐10 a后的蓄积生长量高于未间伐林分。本研究中马尾松林间伐强度平均为38.41%,属强度间伐范围,实施间伐时间为4 a,实施间伐时间相对较短。造成林分总生产力低下的原因还可能是因为近自然经营间伐与传统间伐的间伐方式和经营目的不同。传统的间伐是按“除小留大,除密留稀,除劣留优”的原则进行采伐,为了利于保留木快速生长,以追求林木生产量最大化[20]。近自然经营主要采伐以与目标树竞争的林木,为了利于目标树的生长,利用与森林相关的各种自然力,不断优化森林结构和功能,使生态和经济需求最佳结合,而不单只为了提高林分的生产量[21]。
近自然经营间伐对不同优势等级的马尾松林木生长影响不同。中龄林间伐对被压木生长有抑制作用,可能是因为中龄林生长较为迅速,林木间竞争较为激烈,而被压木的竞争能力相对较弱造成的[22]。近熟林间伐对优势木材积生长的促进效果不如一般木和被压木显著,因为在近熟林阶段,林木激烈分化期已过,优势木及整个林分的发展趋势基本定型,林分密度对优势木生长的影响也相对减弱,择伐后给比较小的林木提供了光照和养分,从而对一般木和被压木的生长促进效果更好。
近自然经营间伐对马尾松林下植被生长的促进效果不明显。这与文献[23-24]对林分间伐效应的研究结果相反。影响林下植被生长的因素很多,其根本原因是上层乔木与林下植被对光照、水分、养分等的竞争[25]。间伐可以促进林下植被的发育,但本研究中林下植被4 a的生长并未表现出明显优势,可能原因是在间伐阶段对采伐木周围灌草植被有一定破坏,使得林下植被在间伐后短期内的生长受到了影响[26]。
总之,近自然经营间伐使得大径阶的林木株数比例增加,对单株林木的胸径和材积生长有促进作用。另外,近自然经营间伐措施对树高的影响不大,4 a的生长过程中林下植被并未表现出明显优势,林分蓄积生长量也不足,还需要对林分的生长进行长期调查。
Initial effects of close-to-nature thinning on a natural secondary Pinus massoniana pure forest in central Guizhou
-
摘要: 以黔中地区2013年实施近自然经营间伐的2个龄级马尾松Pinus massioniana天然次生纯林为研究对象,通过对8个固定样地与8个临时样地(100~400 m2)胸径、树高、材积、蓄积以及林下植被各生长因子的调查,对比近自然经营间伐林分与相应对照林分各生长因子的差异,评价近自然经营间伐实施4 a的初期效果,为建立贵州省森林可持续经营技术体系提供理论参考。结果表明:①间伐增加了马尾松林分大径级林木的株数比例,对照的中龄林和近熟林胸径分别在8~14和10~14 cm的株数比例最大,间伐在12~18和22~26 cm的株数比例最大。②间伐提高了林木胸径与材积的生长量,间伐的平均木、目标树、非目标树胸径与材积生长量均达到对照的1.15倍以上,最高在中龄林目标树中可达对照的1.65倍。③间伐提高了林分蓄积的生长率,间伐林分蓄积的生长量在小于对照林分的情况下,生长率却在中龄林和近熟林中分别比对照林分高出了4.13%和1.03%。④间伐不能有效促进林分树高生长及林下植被生长。树高及林下植被各生长因子在间伐与对照林分中没有表现出显著的差异性(P>0.05)。Abstract: In 2013, close-to-nature thinning was implemented in two, age-grade Pinus massoniana natural secondary pure forests in the middle of Guizhou Province. To evaluate the growth initial effects of the close-to-nature thinned forests for 4 years and to provide references for sustainable forest management of Guizhou Province, through the investigation of the diameter of breast height(DBH), tree height, volume, accumulated and understory vegetation of 8 fixed plots and 8 temporary plots (100-400 m2), compare the difference between the growth of thinned forests and control stands. Results showed that:(1) Thinning was conducive to the production of large-diameter timber. For middle-aged forests and near-mature forests, the ratio of the number of plants with DBH of 8-14 cm and 10-14 cm for the control medium was largest. Whereas, with DBH of 12-18 cm and 22-26 cm, the thinned medium was largest. (2) Thinning promoted growth of DBH and volume of the trees. The annual growth of DBH and volume of the average tree, target tree, and non-target tree in the thinning reached 1.15 times higher of the control, and the highest in the target tree of the middle-aged forest reached 1.65 times of the control. (3) Thinning increased the accumulated growth rate of the stands. In thinned stands, the accumulated growth was less than the control stands, but the accumulated growth rate was higher than the control stands in the middle (by 4.13%) and near mature forests (by 1.03%). (4) The effect of thinning on height growth and the growth of understory vegetation was not obvious, the growth factors of tree height and understory vegetation did not show significant differences in thinning and control stands (P>0.05).
-
生态用地研究是景观生态学重要的研究内容,其理论方法强调土地利用的合理性,目的在于阐明土地生态评价单元与其土地利用方式之间的协调程度和发展趋势[1]。综合考虑景观生态和环境要素的生态用地研究是目前城市规划、土地利用规划以及环境影响评价等研究的热点及难点问题[2-3]。景观生态安全格局是判别和建立生态基础设施的重要途径,并以景观生态学理论和方法为基础,从生态过程与格局的功能关系研究出发,判别对这些生态过程的健康与安全有着关键意义的景观格局[4]。多年来,景观格局研究都是停留在景观格局特征的描述方面[5-6],由于未能深入反映生态过程研究而受到质疑。因此,应用生态敏感性评价方法与景观生态安全理论相结合的途径,必将在未来成为研究区域生态用地格局的发展趋势。本研究以浙江省慈溪市附海镇为研究对象,应用生态敏感性评价方法和景观生态安全理论,借助地理信息空间分析技术,在研究各类生态用地合理配置及区域生态可持续发展的基础上,提出了基于生态用地评价的规划和建设目标,并试图为相关研究提供研究思路和方法。
1. 研究地区与研究方法
1.1 研究区概况
附海镇位于慈溪市东南部,中心位于30°07′N,121°03′E,南与观海卫镇、桥头镇接壤,西与新浦镇交界,北枕杭州湾,距离慈溪市中心15 km,总面积约为22 km2。南北约为11 km,东西在中部宽约6 km,整个区域地势平坦,呈长条状,系海洋沉积平原。母质为海积物,由长江口涌入的海泽泥沙和钱塘江下冲泥沙在潮汐动力作用下堆积而成,南部地势略高于北部。附海镇属亚热带南缘季风气候区,全年以东南风为主。气温受冷暖气团交替控制和杭州湾海水调节,气候温和湿润,平均气温为17.9 ℃。辖区自然条件独具特色,栽有大量的花卉植物,素有“花卉之乡”美誉。随着慈溪市交通干道中横线和杭州湾跨海大桥南岸连接线的开通,附海镇现已融入宁波“半小时”经济圈和上海“两小时”经济圈。
1.2 研究方法
1.2.1 数据来源与预处理
本研究以附海镇2009年高空间分辨率航空影像(1 ∶ 5 000)为主要数据源,结合土地利用现状图、城市绿地系统规划总图及相关部门的现状调查资料作为空间信息提取的基本信息源。首先利用ENVI 4.3图像处理软件对图像进行几何校正,转换成Xian_1980坐标体系,并对图像进行拼接裁剪处理,获得研究区的影像图[7]。利用ArcGIS 9.2进行人工目视解译,结合实地调查对研究区土地利用类型分布进行矢量化,并将矢量文件通过空间分析模块(conversion tools)转换成大小为5 m × 5 m的栅格数据,最后利用ArcGIS 9.2软件的数据管理功能,将属性数据与图层数据相结合进行管理。
景观格局指数分析景观格局指数是景观空间分析的重要方法,使生态过程与空间格局相互关联的度量成为可能,在景观格局分析与功能评价、景观规划、设计与管理等领域都具有重要作用[8-10]。景观分类是景观格局定量分析的基础,目前,有关城镇景观类型分类尚存在着不同的分类体系。本研究的景观分类,主要参照GB 50137-2011《城市用地分类与规划建设用地标准》,结合附海镇的用地特点,将研究区分为建设用地、交通用地、农田、城镇绿地、滩涂湿地、水域6种类型(表 1),以此6种类型作为城镇景观类型的基本单元,研究城镇景观生态安全和可持续发展的生态功能[11-13]。将处理过的航片栅格图导入Fragstats 3.3 软件中进行景观指数计算。根据本研究区域的特点,选择的景观格局指数有斑块数(NP),斑块类型面积(CA),斑块面积比例(PLAND),斑块密度(PD),边缘密度(ED),最大斑块指数(LPI),斑块形状指数(LSI),平均斑块面积(AREA_MN),面积加权平均形状指数(SHAPE_AM),面积加权平均分维数(FRAC_AM),景观聚集度指数(AI)等[14-18]指标对研究区整体景观格局进行初步分析。
表 1 附海镇景观类型分类Table 1. Landscape types of Fuhai Town序号 景观类型 特征 1 建设用地 主要是城镇建设用地,包括居住用地、工业用地、仓储用地、广场用地和一些未利用的裸露地面等 2 交通用地 主要是高速公路和一、二级公路等 3 农田 主要是耕地、农田等 4 城镇绿地 主要是公园绿地、附属绿地、生产绿地、防护绿地等 5 湿地及滩涂 主要是滩涂、湿地 6 水域 主要是江、河等水系 1.2.3 生态敏感性评价
生态敏感性指生态系统对人类活动干扰和自然环境变化的反应程度,可表征区域生态环境遇到干扰时产生生态环境问题的难易程度和可能性大小[19-20]。在生态敏感程度较高的区域,当受到人类不合理活动影响时,更易产生生态环境问题,应划分区域生态环境保护重点。生态敏感性评价中的指标选取是生态用地评价的核心[20],指标体系的选取应反映研究区域最主要的生态问题。通过调查与研究区域生态环境现状、主要生态问题,咨询相关专家以及参考已有类似研究指标权重体系的基础上[21-22],本研究选取对研究区生态敏感性影响较大的生态因素,即土地利用类型、距环境敏感区距离和区域开发强度3大类进行生态敏感性分析(表 2)。①土地利用类型评价因子。不同生态系统类型对区域生态环境的影响程度不同,其生态敏感性也有所差异。土地利用类型是不同生态系统的最直接表征[23]。因此,本研究选择土地利用类型作为生态敏感性评价因子之一,结合航片高清影像解译数据及区域土地利用特征,将附海镇土地利用类型划分为建设用地、交通用地、农田、城镇绿地、滩涂湿地、水域6类,依据不同土地利用类型对生态敏感性的影响大小进行分类并赋值。②区域开发强度评价因子。人类的区域开发活动对当地生态敏感性影响程度较大。工业区、居民点等建设用地,以及道路、交通等建设用地程度,是区域开发强度的主要表现。在空间距离上,越是靠近区域开发强度高的地区,则生态敏感度越低。因此,本研究将距建设用地的距离、距交通用地的距离作为生态敏感性评价因子。划分距建设用地的距离大于200 m为高度敏感区,大于100 m小于200 m为中度敏感区,大于50 m小于100 m为低度敏感区,小于50 m为非敏感区;划分距交通用地距离大于300 m为高度敏感区,大于100 m小于300 m为中度敏感区,大于50 m小于100 m为低度敏感区、小于50 m为非敏感区。③环境敏感区评价因子。环境敏感性指生态系统对人类活动反应的敏感程度,用来反映产生生态失衡与生态环境问题的可能性大小。根据附海镇生态环境特征,其环境敏感区包括主要水域、湿地和滩涂等,上述环境敏感区对附海镇生态环境保护具有重要意义。划分距环境敏感区的距离小于100 m为高度敏感区;大于100 m小于200 m为中度敏感区;大于200 m小于300 m为低度敏感区,大于300 m为非敏感区。④综合评价。通过ArcGIS 9.2 软件的空间分析(spatial analysis)功能,进行生态敏感性各因子评价以及加权综合评价(表 2)。各评价因子赋值、敏感性分级和权重分配反映了各评价因子内部以及总体权重的相对趋势。根据各个评价因子权重及敏感性分级,计算附海镇生态敏感性综合评价值,并将生态敏感区分为高度敏感区、中度敏感区、低度敏感区和非敏感区4种等级。
表 2 生态敏感性评价因子等级及权重Table 2. Grades and weights of ecological sensibility factors评价因子 亚项 生态敏感性 重分类 分值 权重/% 土地利用类型 高度敏感 水域 10 40 滩涂、湿地 8 中度敏感 农田 6 城镇绿地 4 低度敏感 交通用地 2 非敏感 建设用地 1 距环境敏感区距离 高度敏感 <100m 10 20 中度敏感 100~200m 6 低度敏感 200~300m 3 非敏感 >300m 1 区域开发强度 距道路距离 高度敏感 >300m 10 20 中度敏感 100~300m 6 低度敏感 50~100m 3 非敏感 <50m 1 距建筑距离 高度敏感 >200m 10 20 中度敏感 100~200m 6 低度敏感 50~100m 3 非敏感 <50m 1 2. 结果与分析
2.1 景观格局指数分析
2.1.1 城镇景观斑块组成结构
从附海镇景观要素斑块组成可以看出(图 1,表 3),城镇绿地的斑块面积最大,达到767.31 hm2,面积所占比例也最高为35.27%;其次是建设用地和农田,两类斑块面积都处于中等水平,面积分别为591.29 hm2和497.83 hm2,占总面积的27.18%和22.88%;交通用地和滩涂湿地面积较小,分别为128.75 hm2和103.17 hm2,占总面积的5.92%和4.74%;斑块总面积最小的为水域,仅为87.37 hm2,占总面积的4.02%。从附海镇景观格局分类图(图 1)可以看出:附海镇建设用地类型主要分布在中部成片的居住区以及南部工业园区;农田类型主要分布在镇北部、西南以及东南区域;由于苗木产业发达,城镇绿地类型所占比率最大,其生产绿地基本上为大型斑块,连接成片,所占比率最高,主要分布在附海镇北部和东南部的苗木栽植区。景观类型斑块数和平均斑块面积,在一定意义上可揭示城镇景观破碎化程度。从附海镇景观类型斑块组成上来看,滩涂湿地类型的斑块数量最小,是以2个特大型斑块形式存在,平均斑块面积最大,受到人为活动的干扰最小,斑块破碎化程度最低;交通用地与水域类型的斑块数量最多,分别为495个和506个,其平均斑块面积最小,斑块破碎化程度最大;其原因在于附海镇形成了较好的公路交通网,城镇主要道路连通性及完整性较好。同时,乡镇村庄众多,村级道路网络复杂多样,破碎化程度较高;另外,乡镇区域三塘横江、四塘横江、蛟门浦、八塘横江等水系通道显著,河流水系分支较多,并大量被交通道路景观要素分割,城镇景观总体呈现出“树枝”状形态,破碎化程度很高。
表 3 附海镇不同景观类型的斑块组成Table 3. Patch structure of different landscape types in Fuhai Town斑块类型 斑块数/个 面积/hm2 占总数/% 平均斑块面积/hm2 最大斑块指数 建设用地 292 591.29 27.18 2.03 3.34 交通用地 495 128.75 5.92 0.26 3.60 农田 218 497.83 22.88 2.28 2.22 城镇绿地 460 767.31 35.27 1.67 2.63 湿地及滩涂 2 103.17 4.74 51.59 2.98 水域 506 87.37 4.02 0.17 0.49 合计 1973 2175.72 100 2.1.2 城镇景观类型尺度分析
景观类型的斑块密度可揭示某一区域景观被该类型斑块分割的程度,其对境域生物物种保护、物质和能量分布具有重要影响。各个景观组分的斑块密度(PD)则直接地反映了斑块组分的破碎化程度,而斑块形状指数(LSI)则反映斑块聚合和离散程度。从表 4可见:斑块密度指数(PD)排序为水域>交通用地>城镇绿地>建设用地>农田>滩涂及湿地;斑块形状指数的排序为交通用地>水域>城镇绿地>建设用地>农田>滩涂及湿地。上述结果表明:交通用地和水域破碎化最为严重,景观类型复杂,尤其是南部水域支流更为明显;湿地及滩涂类型斑块的形状较规则,斑块成片集中分布在镇域北部,完整性较好。因此,其斑块密度和斑块形状指数都最小。同样从面积加权平均形状指数(SHAPE_AM)和面积加权平均分维数(FRAC_AM)的数值上可见:交通用地和水域均为较高的数值,而农田及生态涵养用地景观类型的面积加权形状指数和面积加权平均分维数都比较低。从景观聚集度指数上则也反映出,滩涂及湿地类型具有最高的景观聚集度指数(AI),其次是城镇绿地和农田,最小的是交通用地。同样也表明湿地及滩涂景观破碎化较低,而交通用地类型破碎化最为严重,受人为活动的影响最大。
表 4 附海镇景观类型特征Table 4. Characteristics of landscape types in Fuhai Town斑块类型 斑块密度
(PD)边缘密度
(ED)斑块形状指数(LSI) 面积加权平均形状指
数(SHAPE_AM)面积加权平均形状指
数(FRAC_AM)景观聚集度指
数(AI)建设用地 13.42 93.15 28.80 4.28 1.22 94.27 交通用地 22.75 105.67 72.04 28.42 1.51 68.55 农田 10.02 63.95 24.87 3.09 1.17 94.64 城镇绿地 21.14 92.40 28.88 2.65 1.15 94.95 湿地及滩涂 0.09 1.80 2.11 1.50 1.06 99.45 水域 23.26 57.73 49.22 4.47 1.30 74.06 2.2 生态敏感性评价
2.2.1 单因子评价
在附海镇生态敏感性评价的4个因子中,土地利用类型因子最为敏感,其高度敏感区和中度敏感区面积比例分别为8.68% 和57.24%,其次为环境敏感区因子,其高度敏感区和中度敏感区面积比例分别为64.75% 和24.53%(图 2)。在土地利用类型评价因子中,其结果显示高度敏感区主要分布在七塘公路以北沿海滩涂湿地、三塘横江和八塘横江一带;中度敏感区主要分布在镇域北部苗圃地和农耕用地;低度敏感区和非敏感区主要集中于镇区南部以及中部的建成区、村落和工业片区。附海镇北部为沿海滩涂区,其良好的自然环境和丰富的食物生境已成为鸟类迁徙必经的中转站。同时,它在维护生态平衡、降解污染、调节气候及控制土壤侵蚀等方面均起到重要作用,是镇域环境敏感区的重要组成部分。环境敏感区影响因子分析结果表明:该因子高度敏感区主要分布在七塘公路以北沿海滩涂湿地,以及八塘横江、三塘横江、蛟门浦、四塘横江等主干水系区域。区域开发强度因子的生态敏感度分析表明:距建筑的距离,以及距主要交通道路的距离越大,则该因子的生态敏感度越高,其结果显示出低度敏感区主要集中在观附公路、高速连接线、中横线、韩家路、郑家浦路、建附公路等镇域主要交通道路以及镇域中南部的居住、工业建筑片区。
2.2.2 综合评价
根据上述各评价因子权重及敏感性分级,综合加权得到附海镇生态敏感性综合评价值为1.2 ~10.0,采用自然裂段法(natural breaks)将生态敏感区分为4类,即高度敏感区、中度敏感区、低度敏感区和非敏感区(表 5)。由图 3综合分析得出:附海镇生态高度敏感区、中度敏感区、低度敏感区和非敏感区面积分别为155.78,593.75 ,662.73 和763.46 hm2,分别占总面积的7.16%,27.29%,30.46%和35.09%。生态高度敏感区主要分布于北部沿海滩涂湿地,以及三塘横江、八塘横江、蛟门浦等河流水系等区域。该区域生态最为敏感,应加强湿地水体的保护,禁止在该区域内开发建设用地,巩固和保护好现有的生态屏障。中度敏感区主要分布于镇域北部经济林种植片区、农耕地,以及区域中部、南部居民点附近零星的农耕地片区,该区域处于湿地水体与道路建筑之间,具有一定的植被资源,属于生态环境保护较好的区域。由于受周边人类区域开发活动强度的影响,其生态敏感性综合评价为中度,但考虑区域的生态安全,中度敏感区的开发建设活动应严格控制其规模和强度。低度敏感区主要分布于中部建成区以及南部工业建筑区域,该类区域受人类活动影响较大,其生态敏感度综合评价较低,该区域的建设用地布局和规模,应该加强控制保护好周围生态资源,减弱对周边生态环境安全的影响。非敏感区主要集中于西部居民村落片区,以及中部居住、工业建筑片区。该片区距湿地水域等环境敏感区较远,并且受到人类区域开发活动影响最大,因而生态敏感性最低。附海镇区生态敏感度大体呈现从水体、滩涂湿地到居住、工业建设用地逐步降低的趋势。
表 5 生态敏感性综合评价结果Table 5. Results of ecological sensitivity comprehensive assessment生态敏感性类别 面积/hm2 百分比/% 利用类型 利用类型面积/hm2 利用类型百分比/% 高度敏感区 155.78 7.16 核心保护区 155.78 7.16 中度敏感区 593.75 27.29 控制发展区 593.75 27.29 一般敏感区 662.73 30.46 适宜发展区 1426.19 65.55 非敏感区 763.46 35.09 3. 结论与讨论
本研究利用生态敏感性评价方法与景观生态安全理论相结合的分析途径,研究浙江省慈溪市附海镇生态敏感性程度及其空间分布状况。结果表明:从景观生态安全格局评判可以发现,道路景观的破碎化程度最高,受人为影响严重。滩涂湿地景观破碎化程度较低,没有受到大量的人为干扰影响。从生态敏感性评价可知,生态敏感性综合评价结果与生态环境现状基本一致,反映本研究所筛选的生态敏感性评价指标较为合理,其评价结果也具有客观性。生态高度敏感区最集中于北部沿海滩涂湿地等区域,与景观安全格局分析中破碎化程度越低,受到人为影响越小,生态敏感度越高的结果相符合。基于2种分析方法的融合研究,较以往单一研究方法所分析的结果更具有科学性。同时,还具有一定的客观性和可操作性等特点,将为乡镇区域建设规划方案调整与优化提供科学依据。通过上述研究,以此划分出促进本地区景观生态安全的核心保护区、控制发展区、适宜发展区3类区域利用类型,并提出相应的管护措施。
本研究选择建设用地、交通用地和环境敏感区影响因子等指标,研究开发活动对乡镇区域生态环境的影响程度,并结合土地利用类型影响因子,试图深入探讨镇域土地资源合理利用时所表证的生态用地特征,可为同类型区域开发及生态评价提供借鉴和参考。当然,也应该根据不同地区的特点,选用适宜的评判方法,并结合时间动态变化,综合分析城镇生态用地的发展趋势。
-
表 1 各处理方式下马尾松林分胸径!树高及单株材积年生长指标分析
Table 1. Analysis of DBH, tree height and annual growth index of Pinus massoniana forest under different treatments
处理方式 胸径 树高 材积 初值/
cm年均生长量/
(cm·a-1)年均生长率/% 初值/
cm年均生长量/
(cm·a-1)年均生长率/% 初值/
cm年均生长量/
(cm·a-1)年均生长率/% 中龄林 对照 12.10 0.38±0.23 3.14 11.12 0.94±0.32 8.42 0.079 4 0.012 7±0.008 7 15.95 经营 12.13 0.56±0.34 4.62 11.48 0.85±0.30 7.39 0.081 7 0.016 4±0.012 0 20.08 近熟林 对照 16.67 0.32±0.26 1.91 16.72 0.47±0.36 2.81 0.214 9 0.016 2±0.017 4 7.53 经营 18.75 0.44±0.23 2.34 16.72 0.55±0.29 3.28 0.264 8 0.022 7±0.016 3 8.56 表 2 近自然经营间伐马尾松林分目标树与非目标树胸径、树高和单株材积年生长量
Table 2. Annual growth of DBH, tree height and annual growth index of target and non-target trees in the Pinus massoniana forest
处理方式 胸径 树高 材积 中龄林 近熟林 中龄林 近熟林 中龄林 近熟林 初值/cm 年生长量/(cm·a-1) 初值/cm 年生长量/(cm·a-1) 初值/cm 年生长量/(cm·a-1) 初值/cm 年生长量/(cm·a-1) 初值/cm 年生长量/(cm·a-1) 初值/cm 年生长量/(cm·a-1) 目标树 对照 17.90 0.540±0.069 b 23.59 0.557±0.097 a 12.06 0.898±0.083 a 19.13 0.484±0.193 a 0.161 0.024±0.002 b 0.425 0.032±0.009 a 经营 16.76 0.893±0.052 a 24.71 0.639±0.063 a 12.77 0.986±0.063 a 19.94 0.404±0.073 a 0.149 0.032±0.002 a 0.485 0.038±0.006 a 非目标树 对照 10.23 0.328±0.028 c 14.25 0.234±0.047 b 10.81 0.949±0.062 a 15.87 0.464±0.072 a 0.053 0.009±0.001 c 0.142 0.011±0.002 b 经营 10.62 0.451±0.041 b 16.76 0.371±0.035 b 11.05 0.803±0.040 a 15.65 0.598±0.051 a 0.060 0.011±0.001 c 0.191 0.018±0.002 b 说明:同列不同字母表示差异显著(P<0.05) 表 3 近自然经营间伐马尾松林分蓄积的年均生长量和生长率
Table 3. Annual average growth and growth rate of pinus massoniana forest accumulation in natural management
林分 处理方式 初值
(m3·hm-2)年均生长量/
(m3·hm-2·a-1)年均生长率/% 中龄林 对照 162.84 25.97±0.45 15.95 经营 119.35 23.96±8.59 20.08 近熟林 对照 290.15 21.85±2.46 7.53 经营 233.01 19.95±2.58 8.56 表 4 近自然经营间伐下马尾松林分各优势等级的林木生长量
Table 4. Growth of single woods of different dominant grades of pinus massoniana forest under close-to-nature management thinnin
林分 处理方式 单木材积年生长量/(m3·a-1) 优势木 一般木 被压木 中龄林 对照 0.023 6±0.006 6 0.011 6±0.006 1 0.005 3±0.002 8 经营 0.031 4±0.007 1 0.014 0±0.006 7 0.004 1±0.003 5 近熟林 对照 0.032 4±0.022 9 0.013 8±0.010 9 0.004 3±0.002 6 经营 0.039 5±0.019 0 0.022 9±0.011 3 0.007 0±0.004 3 表 5 近自然经营间伐马尾松林木优势度与材积年生长量的相关性
Table 5. Correlation between dominance of Pinus massoniana forest and annual growth of volume in close-to-nature management
林分 处理方式 相关性 林木株数 中龄林 对照 0.884** 41 经营 0.902** 73 近熟林 对照 0.587** 27 经营 0.812** 44 说明:**表示相关系数达1%水平 表 6 近自然经营间伐下马尾松林下植被生长情况
Table 6. Vegetation growth under the forest of Pinus massoniana in the close-to-nature management
处理方式 灌木层 草本层 物种数 株数密度/
(株·hm-2)平均地径/
cm平均树高/m 平均生物量/
(t·株-1)物种数 平均高/m 覆盖度/% 平均生物量/
(t·株-1)中龄林 经营 27 884±183 0.83±0.53 1.71±0.36 0.99±0.41 21 0.53±0.07 64±18 0.43±0.12 对照 21 1156±564 1.73±1.03 1.56±0.62 0.86±0.28 23 0.50±0.20 53±25 0.36±0.16 近熟林 经营 22 1341±954 .1.72±0.49 1.61±0.72 1.19±0.96 9 0.73±0.28 52±21 0.36±0.14 对照 19 1 119±702 2.01±1.04 1.84±0.37 1.10±0.52 12 0.92±0.40 33±22 0.23±0.15 -
[1] 黄清麟.浅谈德国的"近自然森林经营"[J].世界林业研究, 2005, 18(3):73-77. HUANG Qinglin. Preliminary introduction to "close to nature forest management" in Germany[J]. World For Res, 2005, 18(3):73-77. [2] 陆元昌, 张守攻, 雷相东, 等.人工林近自然化改造的理论基础和实施技术[J].世界林业研究, 2009, 22(1):20-27. LU Yuanchang, ZHANG Shougong, LEI Xiangdong, et al. Theoretical basis and implementation techniques on close-to-nature transformation of plantations[J]. World For Res, 2009, 22(1):20-27. [3] 王六平, 徐海, 蔡磊, 等.关于在贵州省推进近自然森林经营提升森林质量的探讨[J].贵州林业科技, 2014, 42(4):51-54. WANG Liuping, XU Hai, CAI Lei, et al. Discussion on improving forest quality through promoting close-to-natural forest management practice in Guizhou Province[J]. Guizhou For Sci Technol, 2014, 42(4):51-54. [4] 蔡琼, 丁贵杰.黔中地区一、二代马尾松人工林土壤微生物数量及生物活性研究[J].林业科学研究, 2013, 26(2):247-251. CAI Qiong, DING Guijie. Study on soil microorganism quantity and biochemical activity of first-and second-generation of Pinus massoniana plantations in Qianzhong[J]. For Res, 2013, 26(2):247-251. [5] 李生, 姚小华, 任华东, 等.黔中石漠化地区不同土地利用类型土壤种子库特征[J].生态学报, 2008, 28(9):4602-4608. LI Sheng, YAO Xiaohua, REN Huadong, et al. Different land-used soil seed banks in Karst rocky desertification area of middle Guizhou Province, China[J]. Acta Ecol Sin, 2008, 28(9):4602-4608. [6] 李明军, 杜明凤, 喻理飞.贵州省森林植被碳储量、碳密度及其分布[J].西北林学院学报, 2016, 31(1):48-54, 64. LI Mingjun, DU Mingfeng, YU Lifei. Carbon storage and density of forest vegetation and its spatial distribution pattern in Guizhou Province[J]. J Northwest For Univ, 2016, 31(1):48-54, 64. [7] 国家林业局造林绿化管理局, 国家林业局调查规划设计院.森林抚育规程: GB/T 15781-2015[S].北京: 中国标准出版社, 2015: 6-8. [8] 林力.马尾松人工林生物量模型的研究[D].福州: 福建农林大学, 2011. LIN Li. Studies on the Biomass Model of Pinus massoniana Plantations[D]. Fuzhou: Fujian Agriculture and Forestry University, 2011. [9] 吕勇.马尾松林下植被及其生物量的研究[J].中南林业调查规划, 1997, 16(1):53-54, 56. LÜ Yong. Study on the understory vegetation and biomass of Pinus massoniana[J]. Cent South For Invent Plan, 1997, 16(1):53-54, 56. [10] 陆晓明.马尾松人工林近自然化改造对物种多样性及生物量的影响[D].南宁: 广西大学, 2014. LU Xiaoming. The Effects of Near-nature Transformation on Species Diversity and Biomas in Pinus massoniana Plantation[D]. Nanning: Guangxi University, 2014. [11] 方萍.间伐对马尾松中龄林生长的影响[J].福建林业, 2017(2):38-41, 37. FANG Ping. Thinning effect on the growth of middle aged Pinus massoniana plantation[J]. Fujian For, 2017(2):38-41, 37. [12] 何先进.马尾松人工林抚育间伐对林分生长及地力的影响[D].长沙: 中南林业科技大学, 2017. HE Xianjin. The Study on Effects of Tending Thinning of Pinus massoniana Plantation on Stand Growth and Soil Fertility[D]. Changsha: Central South University of Forestry and Technology, 2017. [13] 王懿祥, 张守攻, 陆元昌, 等.干扰树间伐对马尾松人工林目标树生长的初期效应[J].林业科学, 2014, 50(10):67-73. WANG Yixiang, ZHANG Shougong, LU Yuanchang, et al. Initial effects of crop trees growth after crop tree release on Pinus massoniana plantation[J]. Sci Silv Sin, 2014, 50(10):67-73. [14] 谌红辉, 方升佐, 丁贵杰, 等.马尾松间伐的密度效应[J].林业科学, 2010, 46(5):84-91. CHEN Honghui, FANG Shengzuo, DING Guijie, et al. Thinning density effects on masson pine plantation[J]. Sci Silv Sin, 2010, 46(5):84-91. [15] 马履一, 李春义, 王希群, 等.不同强度间伐对北京山区油松生长及其林下植物多样性的影响[J].林业科学, 2007, 43(5):1-9. MA Lüyi, LI Chunyi, WANG Xiqun, et al. Effects of thinning on the growth and the diversity of undergrowth of Pinus tabulaeformis plantation in Beijing mountainous areas[J]. Sci Silv Sin, 2007, 43(5):1-9. [16] 沈国舫, 翟明普.森林培育学[M].北京:中国林业出版社, 2001. [17] 苏俊武, 李莲芳, 郑畹, 等.不同间伐强度对云南松人工林生长影响的研究[J].西部林业科学, 2010, 39(3):27-32. SU Junwu, LI Lianfang, ZHENG Wan, et al. Effect of intermediate cutting intensity on growth of Pinus yunnanensis plantation[J]. J West China For Sci, 2010, 39(3):27-32. [18] 马正锐, 孟祥江, 王蕾, 等.重庆地区马尾松人工林不同间伐强度试验[J].福建林业科技, 2017, 44(4):33-36, 67. MA Zhengrui, MENG Xiangjiang, WANG Lei, et al. Study on different intensities experiment of Pinus massoniana plantation in Chongqing area[J]. J Fujian For Sci Technol, 2017, 44(4):33-36, 67. [19] 刘红梅, 王祖华, 关庆伟, 等.间伐对杉木和马尾松人工林生长及植物多样性的影响[J].林业科技开发, 2010, 24(3):33-37. LIU Hongmei, WANG Zuhua, GUAN Qingwei, et al. The effects of thinning on growth and plant diversity in Chinese fir and Pinus massoniana plantation[J]. For Sci Technol Dev, 2010, 24(3):33-37. [20] 何贤勤, 钟少伟, 段钰, 等.浅析近自然森林经营与传统森林抚育的差异[J].中国林业经济, 2014(4):48-50. HE Xianqin, ZHONG Shaowei, DUAN Yu, et al. A brief analysis of divergences between near-natural forest management and traditional forest tending[J]. China For Econ, 2014(4):48-50. [21] 王小平, 陆元昌, 秦永胜.北京近自然森林经营技术指南[M].北京:中国林业出版社, 2008. [22] 王霞.马尾松人工林近自然化改造初期效果分析研究[D].北京: 北京林业大学, 2013. WANG Xia. The Study on the Initial Effort of Transforming Pinus massoniana Plantation into Close-to-nature Forest[D]. Beijing: Beijing Forestry University, 2013 [23] 熊有强, 盛炜彤, 曾满生.不同间伐强度杉木林下植被发育及生物量研究[J].林业科学研究, 1995, 8(4):408-412. XIONG Youqiang, SHENG Weitong, ZENG Mansheng. A study on the development and biomass of undergrowth vegetation in Chinese fir plantation with different thining intensities[J]. For Res, 1995, 8(4):408-412. [24] 曾骥, 雷渊才, 蔡道雄, 等.桂西南杉木林分生长对间伐的动态响应[J].浙江农林大学学报, 2017, 34(5):841-848. ZENG Ji, LEI Yuancai, CAI Daoxiong, et al. Growth response of a Cunninghamia lanceolata plantation to thinning in southwestern Guangxi, China[J]. J Zhejiang A&F Univ, 2017, 34(5):841-848. [25] 王瑞华, 葛晓敏, 唐罗忠.林下植被多样性、生物量及养分作用研究进展[J].世界林业研究, 2014, 27(1):43-48. WANG Ruihua, GE Xiaomin, TANG Luozhong. A review of diversity, biomass and nutrient effect of understory vegetation[J]. World For Res, 2014, 27(1):43-48. [26] 明安刚, 张治军, 谌红辉, 等.抚育间伐对马尾松人工林生物量与碳贮量的影响[J].林业科学, 2013, 49(10):1-6. MING Angang, ZHANG Zhijun, CHEN Honghui, et al. Effects of thinning on the biomass and carbon storage in Pinus massoniana plantation[J]. Sci Silv Sin, 2013, 49(10):1-6. 期刊类型引用(6)
1. 李瑞连,王玉倩,母德锦,徐骏飞,蔡年辉,许玉兰,陈林. 云南松GA20氧化酶基因的克隆与表达分析. 西南林业大学学报(自然科学). 2025(01): 55-67 . 百度学术
2. 桑娟,王艺程,李玺,张世杰,朱盛杰,席志俊,张琼,张志国,秦巧平,刘翔. 萱草海水胁迫相关WRKY转录因子密码子偏向性分析. 应用技术学报. 2024(02): 245-253 . 百度学术
3. 侯哲,娄晓鸣,李昂,黄长兵. 11种唐松草属(Thalictrum)rbcL基因的密码子偏好性研究. 江苏农业科学. 2023(03): 46-53 . 百度学术
4. 高守舆,李钰莹,杨志青,董宽虎,夏方山. 白羊草叶绿体基因组密码子使用偏好性分析. 草业学报. 2023(07): 85-95 . 百度学术
5. 韩春丽,杨果豪,李天香,王健宇,熊忠萍,许尤厚,朱鹏,杨家林,王鹏良. 方格星虫线粒体全基因组密码子偏好性分析. 南方农业学报. 2023(09): 2604-2613 . 百度学术
6. 刘璐,武志博,李晓佳,海春兴,姜洪涛,郝思鸣,刘世英. 干旱胁迫对千屈菜种子萌发和幼苗生长的影响. 草原与草坪. 2022(03): 139-145 . 百度学术
其他类型引用(0)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.05.006