留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分位数回归的针阔混交林树高与胸径的关系

张冬燕 王冬至 李晓 高雨珊 李天宇 陈静

邹为民, 丁俊, 黄子豪, 等. 浙江省松阳县亚热带森林干扰与恢复遥感监测[J]. 浙江农林大学学报, 2024, 41(2): 353-361. DOI: 10.11833/j.issn.2095-0756.20230324
引用本文: 张冬燕, 王冬至, 李晓, 等. 基于分位数回归的针阔混交林树高与胸径的关系[J]. 浙江农林大学学报, 2020, 37(3): 424-431. DOI: 10.11833/j.issn.2095-0756.20190461
ZOU Weimin, DING Jun, HUANG Zihao, et al. Remote sensing monitoring of subtropical forest disturbance and restoration in Songyang County, Zhejiang Province[J]. Journal of Zhejiang A&F University, 2024, 41(2): 353-361. DOI: 10.11833/j.issn.2095-0756.20230324
Citation: ZHANG Dongyan, WANG Dongzhi, LI Xiao, et al. Relationship between height and diameter at breast height(DBH) in mixed coniferous and broadleaved forest based on quantile regression[J]. Journal of Zhejiang A&F University, 2020, 37(3): 424-431. DOI: 10.11833/j.issn.2095-0756.20190461

基于分位数回归的针阔混交林树高与胸径的关系

DOI: 10.11833/j.issn.2095-0756.20190461
基金项目: 河北省教育厅科研资助项目(QN2018125);国家自然科学青年基金资助项目(31700561);“十三五”国家重点研发计划项目(2016YFD060020303,2017YFD0600403)
详细信息
    作者简介: 张冬燕,讲师,博士研究生,从事森林可持续经营研究。E-mail: zhdys@163.com
    通信作者: 王冬至,讲师,博士,从事森林可持续经营研究。E-mail: wangdz@126.com
  • 中图分类号: S718.5

Relationship between height and diameter at breast height(DBH) in mixed coniferous and broadleaved forest based on quantile regression

  • 摘要:   目的  基于包含哑变量的非线性分位数回归方法,构建华北落叶松Larix principis-rupprechtii与白桦Betula platyphylla针阔混交林树高与胸径关系的预测模型,对研究混交林中树种结构及立地生产力预测具有重要意义。  方法  以河北省塞罕坝机械林场华北落叶松与白桦针阔混交林为研究对象,利用83块标准地调查数据,基于哑变量分别采用最小二乘法和非线性分位数回归方法,构建不同树种树高与胸径关系模型。  结果  基于包含哑变量的非线性分位数回归预测模型精度高于最小二乘法,其中利用最小二乘法拟合不同树种模型,其确定系数、平均差及平均绝对误差分别为0.787~0.814、1.581~1.877、2.447~2.654;而利用非线性分位数回归不同树种不同分位点模型,其确定系数、平均差及平均绝对误差分别为0.839~0.921、0.213~1.469、0.561~2.322,经过残差分析确定,当分位点τ=0.7时,不同树种树高与胸径关系预测模型精度较高。  结论  与最小二乘法相比,基于非线性分位数构建的包含哑变量不同树种树高与胸径关系的预测模型精度更高。图3表3参33
  • 森林作为陆地生态系统的主体,是全球气候系统的重要组成部分,森林生态系统的碳循环是全球陆地碳循环与气候变化响应研究的重要内容[14]。森林容易受海陆位置以及气候条件(如夏季高温、台风等)的影响,同时,人类活动对森林的干扰也较为频繁,因此森林所受干扰特性较为复杂。森林干扰与恢复引起的森林变化,直接影响地表水文、气候以及生物地球化学循环过程[57]。干扰与恢复是森林生态系统动态变化的主要驱动力,干扰与恢复的历史会影响林分的生长状态,不同干扰与恢复的类别、强度与大小将会改变林分物种组成与林分结构[810]。典型的自然干扰(雨雪灾害等)与人为干扰(采伐、土地利用变化等)以及干扰后更新,都将影响森林碳汇[1112]。目前,缺乏长时期的森林时空动态监测资料,森林干扰与恢复对于森林碳循环的贡献仍不确定[1315]。因此,监测森林干扰与恢复,揭示和掌握森林干扰与恢复的时空变化特征,对于理解景观、区域甚至全球尺度的森林碳循环和气候变化至关重要[1617]

    遥感技术具有大面积同步观测、覆盖范围广、时效性好等特点,可作为森林干扰与恢复监测的重要技术手段[11, 1819]。传统的森林变化监测往往采用时间跨度大的2期或者多期同一地区影像进行分类对比分析[20]。过去20 a内通常采用MODIS和AVHRR等高时间分辨率和低空间分辨率的影像进行长时间序列分析[21]。此类方法对于面积较小区域的(如县域)森林变化监测能力较差。近年来,30 m的Landsat卫星影像构成的时间序列堆栈(LTSS)数据为精确的森林干扰监测提供了重要的数据支撑[2223]

    森林干扰与恢复的监测方法主要有分类比较法、影像差异法、分类及统计分析法、时间序列分析法、数据融合法等[16, 23]。与其他方法相比,时间序列分析方法能够确定森林干扰与恢复发生的年份、持续时间、干扰强度等信息,能够有效地监测森林的长期变化状况[19, 23]。时间序列分析法主要包含基于光谱轨迹的Landsat干扰和恢复趋势监测(LandTrendr)、持续变化监测与分类(CCDC)、植被变化跟踪(VCT)以及季节与趋势断点监测(BFAST)等算法[2429]。其中,VCT能够较好监测森林变化,但不能有效监测间伐与森林退化等干扰;BFAST算法对于影像要求较高,在云覆盖高的区域监测效果欠佳;LandTrendr算法却能识别急剧(皆伐等)和缓慢变化(干扰后更新等)的事件,能够有效且精确地监测到森林干扰与恢复。因此,采用LandTrendr算法监测森林干扰与恢复逐渐成为森林干扰与恢复监测的主要方法[3033]

    自20世纪80年代起,中国亚热带森林覆盖率显著增加,较小的林龄结构与充沛的雨热条件使得该区域森林有可能成为全球较大的碳汇区[3435]。持续的森林干扰与恢复带来的林龄效应将会严重影响该区域的碳收支情况[16, 36]。浙江省松阳县森林资源丰富,碳汇潜力巨大,是百山祖国家公园三级联动区,因此,监测松阳县森林变化可为准确评估该区域森林发展态势,为森林经营规划提供理论依据与技术支撑,也对提高亚热带森林的抗干扰能力,增强亚热带森林的自然恢复能力和保护百山祖国家公园生态环境具有重要的参考意义。本研究以松阳县为例,基于长时间序列的LandsatTM/OLI影像数据,采用LandTrendr算法监测松阳县森林干扰与恢复,分析其时空动态变化,从而为松阳县亚热带森林管理提供参考。

    松阳县位于浙江省丽水市,地理坐标为28°14′~28°36′N,119°10′~119°42′E。地处浙江省西南部,东连丽水市莲都区,南接龙泉市、云和县,西北靠遂昌县,东北与金华市武义县接壤。全境以中、低山丘陵地带为主,属亚热带季风气候,温暖湿润,四季分明。全县辖3个街道,5个镇,11个乡,总面积为1406.00 km2。截至2022年,松阳县森林面积达1 119.23 km2,森林覆盖率为79.83%。其中公益林面积为637.88 km2,占全县林地总面积的54.9%,松林面积占全县森林面积的59.39%。

    1.2.1   遥感时间序列数据

    本研究基于谷歌地球引擎(GEE)云平台,选取1987—2020年所有可获得的LandsatTM/OLI地表反射率影像作为LandTrendr算法的数据基础。所选择的影像都属于Landsat Collection 1 L1TP级别,且经过辐射定标、大气校正和几何校正等,质量较高,适用于长时间序列的定量分析。影像选取原则为:①尽量获取在植被生长茂盛期(6—9月)的影像,以减少物候对植被光谱识别的干扰;②尽量选取云量少(<10%)的影像,以保证时间序列内有相对较高的影像质量。利用美国地质勘探局(USGS)的CFMask算法去云,并使用邻近月份的清晰像素填充,以确保生成无云影像。最终,收集到符合条件的影像共计52幅。将所有选定的地表反射率影像组合在一起,形成年度Landsat时间序列影像堆栈(LTSS),通过每年1幅影像组成Landsat影像的时间序列。每年1幅影像的像元值是该年符合时间和云量条件的影像对应像元值的中值,后续通过年度LTSS数据与LandTrendr算法监测森林干扰。

    1.2.2   土地覆盖数据

    松阳县森林信息分布数据(图1A~B)来源于ZHANG等[37]的1985—2020年全球30 m精细地表覆盖动态监测产品(GLC_FCS30-1985-2020)。从产品中剔除水体、农田、不透水表面3类土地覆盖,确定1985与2020年森林(阔叶林、针叶林)区域,并将2期森林区域合并,取两者并集作为本研究的森林变化潜在区域。此森林变化潜在区域将用来掩膜LandTrendr结果中非林地区域,以此来避免与农田、草地的错误检测。

    图 1  1985和2020年研究区土地覆盖空间格局
    Figure 1  Spatial pattern of land cover in 1985 (A) and 2020 (B) of the study area
    1.2.3   验证样本数据

    森林干扰与恢复的样点数据来源于1986—2014年浙江省森林资源连续清查与谷歌高清影像目视解译。根据样点位置,结合样地的地类、树种及林龄等信息,通过目视解译来区分1987—2020年清查样点的变化情况(森林干扰、恢复、稳定)。共随机标记了100个样点,其中包括32个森林损失样点,40个森林恢复样点,其余为森林持续(未变化)样点。这些样点将用于LandTrendr分割结果的验证分析。

    LandTrendr算法是最有效的监测森林干扰和恢复的方法之一[3839],主要通过时间序列分割算法获取影像光谱值突变和缓慢变化的信息[25, 40]。目前,LandTrendr算法移植到GEE平台后,简化了数据管理与图像预处理,作为LT-GEE算法被广泛使用[4142]。本研究采用LT-GEE来实现LandTrendr算法。

    KENNEDY等[25]与COHEN等[40]研究表明:归一化燃烧比指数(RNB)对于捕捉干扰事件具有最大敏感性,且具备较好的解释能力[25, 40]。因此,本研究使用$ {R}_{\mathrm{N}\mathrm{B}} $作为LandTrendr算法的监测指数,其计算公式为:

    $$ {R}_{\mathrm{N}\mathrm{B}}=\frac{{\sigma }_{\mathrm{N}\mathrm{I}\mathrm{R}}-{\sigma }_{\mathrm{S}\mathrm{W}\mathrm{I}\mathrm{R}2}}{{\mathrm{\sigma }}_{\mathrm{N}\mathrm{I}\mathrm{R}}+{\sigma }_{{\rm{S}}\mathrm{W}\mathrm{I}\mathrm{R}2}} 。 $$ (1)

    式(1)中:$ {\sigma }_{\mathrm{N}\mathrm{I}\mathrm{R}} $为近红外波段反射率,反映健康绿色植被,$ {\sigma }_{\mathrm{S}\mathrm{W}\mathrm{I}\mathrm{R}2} $为短波中红外波段反射率,反映岩石和裸土。健康的森林有高的$ {\sigma }_{\mathrm{N}\mathrm{I}\mathrm{R}} $值与低的$ {\sigma }_{{\rm{SWIR2}}} $值,从而具备高的$ {R}_{\mathrm{N}\mathrm{B}} $值。一旦森林经过干扰,$ {R}_{\mathrm{N}\mathrm{B}} $将会大幅度下降。

    LandTrendr算法将对时间序列LTSS中的每个像元构建归一化燃烧比指数光谱轨迹,并利用时间序列分割算法来回归出归一化燃烧比指数光谱直线轨迹,从而识别归一化燃烧比指数急剧变化的断点并判断得到变化的年份。整个过程将识别归一化燃烧比指数值的3种特性,即整体下降(干扰)、整体增加(恢复)和整体保持不变(稳定)。LandTrendr算法在GEE上运行的具体参数设置如表1所示。分别利用LandTrendr算法对森林干扰与恢复事件进行检测,从而获得1987—2020年松阳县森林干扰与恢复发生的年份。基于森林干扰与恢复的样点数据,通过混淆矩阵计算总体精度、生产者精度、用户者精度,评估森林干扰与恢复的监测效果。

    表 1  基于GEE的LandTrendr运行所需参数
    Table 1  Parameters used in LandTrendr processing
    过程参数过程参数过程参数
    分割 光谱指数 RNB 分割 恢复阈值 0.25 过滤 年份 1987—2020
    轨迹分割最大数量 6.0 拟合最大P 0.05 变化量 >200
    尖峰抑制参数 0.9 最优模型比例 0.75 持续时间 <4
    顶点数量控制参数 3.0 最小观测值数量 6.00 变化前光谱值 >300
    是否允许1 a恢复 true
    下载: 导出CSV 
    | 显示表格

    图2是森林干扰与恢复监测结果的2个示例。由图2A可见:标记处RNB光谱值在2016年急剧下降,表明森林干扰发生在2016年,与LandTrendr算法计算结果一致;图2B标记处RNB光谱值在2003年开始下降,到2014年最小,并在2014年后逐渐升高,表明森林恢复发生在2004年,也与LandTrendr算法计算结果相一致。由此可见:LandTrendr算法分割的光谱轨迹可有效区分森林干扰与恢复年份。

    图 2  轨迹分割结果
    Figure 2  Spectral trajectorysegmentationresults

    为了定量评估森林干扰与恢复精度,计算混淆矩阵(表2)。由表2可见:LandTrendr算法计算的总体精度达到了82.00%,森林干扰与恢复监测的生产者精度分别达87.50%、80.00%,干扰与恢复监测的用户者精度分别达84.80%、82.05%。精度均在80.00%,表明LandTrendr可以有效地监测到松阳县森林干扰与恢复情况。

    表 2  基于混淆矩阵的LandTrendr检测精度评价    
    Table 2  Accuracy evaluation of LandTrendr detection based on confusion matrix
    类型生产精度/%用户精度/%总体精度/%
    干扰87.5084.8082.00
    恢复80.0082.05
    稳定78.5778.57
    下载: 导出CSV 
    | 显示表格

    图3可见:水体、非森林、持续森林已被掩膜。从空间分布上来看,1987—2020年森林干扰较为破碎,多数分布在不透水地表周边,尤其集中在松阳县东南角(如西屏街道、水南街道、象溪镇)等区域,而森林恢复在各个区域均有发生,分布较广。

    图 3  1987—2020年间松阳县森林干扰(A)与恢复(B)发生年份以及各年份森林减少(C)与增加(D)面积     
    Figure 3  Years of forest disturbance (A) and restoration (B) and areas of forest loss (C) and gain (D) in Songyang County during 1987-2020

    经统计,1987—2020年森林干扰总面积达148.14 km2,占林地面积的12.00%。其中2006—2010年森林干扰面积最高,达36.62 km2,占总干扰的24.00%。这一段时间内森林干扰严重,一方面是受松材线虫Bursaphelenchus xylophilus病影响,松阳县大量马尾松Pinus massoniana林因受侵害而被砍伐;另一方面是由于2008年松阳县受特大暴雪和冻雨灾害侵袭,森林资源损失严重[43]。而1987—2020年森林恢复总面积达236.86 km2,占林地面积的20.37%。其中1987—1990和2006—2010年森林恢复面积较高,分别达67.90和59.55 km2,占总森林恢复的28.67%和25.14%。1987—1990年森林恢复主要原因是改革开放后退耕还林、植树造林等重大工程项目的实施,而2006—2010年森林恢复主要是因为自2008年雪灾后的2009与2010年森林自然更新与人为再造林。

    除森林重大受灾或国家重大植树造林工程展开的年份外,松阳县隔5 a的森林干扰与恢复面积一般稳定在20.00~30.00 km2。整体上,松阳县森林恢复面积高于森林干扰面积,森林面积呈现逐渐增加趋势。

    表3可见:各乡(镇)在1987—2020年森林总干扰面积为1.62~25.96 km2,总恢复面积为2.43~46.00 km2。各个乡(镇)总恢复面积均高于总干扰面积,说明1987—2020年各乡(镇)森林总面积净增长。其中,大东坝镇、板桥畲族乡、新兴镇、玉岩镇总恢复面积远远高于总干扰面积,森林面积分别增加了20.04、11.03、10.33、8.49 km2。这些乡(镇)位于山地丘陵,自然林和公益林较多,受自然灾害与人为破坏后,森林自然更新以及造林再造林活动等促使了森林大量恢复。位于松阳县平原且人类活动频繁的城镇中心,如往松街道、古市镇、斋坛乡、樟溪乡等乡(镇)森林干扰面积与恢复面积相当,森林面积增加较少。

    表 3  松阳县乡(镇)级别森林干扰与恢复面积统计
    Table 3  Statistics of forest disturbance and restoration area at township level in Songyang County
    乡(镇)森林面积/km2乡(镇)森林面积/km2乡(镇)森林面积/km2
    干扰面积恢复面积干扰面积恢复面积干扰面积恢复面积
    大东坝镇 25.96 46.00 裕溪乡 9.89 14.57 玉岩镇   15.10 25.43
    望松街道 1.62 3.84 三都乡 9.05 14.44 竹源乡   5.40 8.60
    水南街道 6.63 10.61 古市镇 3.31 4.63 板桥畲族乡 3.54 5.52
    西屏街道 8.86 14.22 斋坛乡 2.01 2.43 象溪镇   16.04 27.07
    叶村乡  2.60 5.03 新兴镇 14.00 21.64 赤寿乡   6.73 8.00
    四都乡  3.40 6.16 枫坪乡 8.04 13.84
    安民乡  9.41 17.91 樟溪乡 2.11 3.74
    下载: 导出CSV 
    | 显示表格

    LandTrendr算法的主要思想是从Landsat时间序列数据中提取归一化燃烧比指数等光谱变化轨迹,并分割轨迹及线性拟合,去除光谱尖峰噪音信息,将复杂的变化特征简化为几段光谱直线,以此来突出变化时刻断点,从而捕获时间序列数据的干扰与恢复信息。本研究利用LandTrendr算法有效地提取了1987—2020年浙江省松阳县森林干扰与恢复发生年份,精度均在70%以上,表明LandTrendr算法可有效监测松阳县森林变化。LandTrendr算法不仅能够监测干扰年份,同时也能够监测干扰量[11, 19]。已有研究通过干扰量来区分干扰类型,以及识别主要与次要干扰的分布,或者划分森林干扰与恢复等级[11, 19, 25, 34]。以往采用最佳的单一指数作为LandTrendr算法监测,不同指数运行好坏的贡献未知,监测效果好坏不一。当前,利用LandTrendr算法完善森林干扰与恢复的研究越来越全面,LandTrendr算法综合多波段、多光谱指数的监测方法已得到很好应用,监测效果要优于单一指数监测效果[4446]。后续,可以尝试利用多光谱指数,结合LandTrendr监测干扰与恢复变化量来识别松阳县森林主要与次要干扰,区分干扰强度,从而提出相应措施减少森林主要干扰,避免森林急剧减少。

    本研究采用的验证方法为基于样地的目视解译。经目视解释可知:松阳县森林干扰类型多为人工采伐以及台风雪灾等自然灾害,恢复类型多为人工造林等,但并没有通过LandTrendr进行具体的类型划分。后续,可结合其他技术手段对干扰与恢复类型进行区分,并优化验证方法。目前,国外研究多采用Timesync工具来验证LandTrendr算法,这种工具可自动获取解译结果,并与算法分割结果作比较[8, 25]。综合现有结果分析,尽管本研究尚未能分析出松阳县森林干扰与恢复的类型和强度,但可有效监测森林干扰与恢复发生的年份,并分析了松阳县森林变化情况,为松阳县森林经营管理提供相应参考数据。

    本研究采用GEE云平台的LandTrendr算法监测浙江省松阳县1987—2020年森林干扰与恢复状况,并进行森林干扰与恢复时空特征分析。结论如下:①LandTrendr算法监测森林干扰与恢复的总体精度达到了82%,森林干扰与恢复的生产者精度用户精度均高于80%,表明松阳县森林干扰与恢复监测效果较好。②松阳县森林干扰与恢复总面积分别为148.14与236.86 km2,分别占林地面积的12.74%、20.37%,表明松阳县1987—2020年森林面积呈净增加趋势。③松阳县大东坝镇、板桥畲族乡、新兴镇、玉岩镇森林面积变化较为频繁,森林干扰与恢复面积均比其他乡(镇)高。大东坝镇森林面积变化最大,增加了20.04 km2

  • 图  1  不同树种胸径与树高分布

    Figure  1  Height-diameter distribution of different tree species

    图  2  不同树种各分位点残差分布

    Figure  2  Residual distribution of each quantile of different tree species

    图  3  不同分位点树高与胸径的关系

    Figure  3  Relationship between tree height and DBH of different quantiles

    表  1  模型建立数据

    Table  1.   Data of establishment model

    统计量海拔/m林分断面积/hm2密度/(株·hm–2)华北落叶松白桦
    胸径/cm树高/m胸径/cm树高/m
    平均值1 424.00208.871 070.0015.5010.6014.3010.10
    最大值1 672.00452.191 725.0034.6017.9029.2016.20
    最小值1 177.00 19.96 675.00 5.00 4.20 5.10 4.60
    标准差 149.63 78.69 241.00 4.25 2.34 3.92 1.77
    下载: 导出CSV

    表  2  模型检验数据

    Table  2.   Data of test model

    统计量海拔/m林分断面积/hm2密度/(株·hm–2)华北落叶松白桦
    胸径/cm树高/m胸径/cm树高/m
    平均值1 464.00254.001 162.0017.5011.0012.50 8.90
    最大值1 540.00387.402 000.0034.7017.8027.2015.60
    最小值1 396.00157.83 850.00 5.00 3.20 5.10 4.80
    标准差 39.28 73.41 269.76 6.26 2.70 4.47 2.16
    下载: 导出CSV

    表  3  基础模型和分位数回归模型拟合与评价

    Table  3.   Fitting and evaluation of basic model and quantile regression model

    模型参数评价指标
    abcMDMADR2
    OLSL20.2990.0010.1551.5182.4470.814
    OLSB16.3010.0320.9061.8772.6540.787
    τL=0.117.4450.0330.9780.9622.0320.848
    τL=0.317.5760.0380.9820.7251.7090.855
    τL=0.517.6570.0430.9920.4651.3420.872
    τL=0.717.9980.0511.0020.2130.5610.912
    τL=0.918.0050.0651.0051.4322.2060.839
    τB=0.113.9560.0430.8920.9922.0430.848
    τB=0.314.5590.0520.9810.6811.8820.861
    τB=0.514.7030.0590.9970.4281.2690.882
    τB=0.714.9960.0711.0010.2350.8520.921
    τB=0.915.0110.0921.0091.4692.3220.838
      说明:L表示华北落叶松,B表示白桦;OLS表示最小二乘法
    下载: 导出CSV
  • [1] DUCEY M J, KNAPP R A. A stand density index for complex mixed species forests in the northeastern United States [J]. For Ecol Manage, 2010, 260(9): 1613 − 1622.
    [2] 周晏平,雷泽勇,赵国军,等. 沙地樟子松不同树高-胸径模型比较分析[J]. 华南农业大学学报, 2019, 40(3): 75 − 81.

    ZHOU Yanping, LEI Zeyong, ZHAO Guojun, et al. Comparing different height-diameter models of Pinus sylvestris var. mongolica in sandy land [J]. J South China Agric Univ, 2019, 40(3): 75 − 81.
    [3] 樊伟,许崇华,崔珺,等. 基于混合效应的大别山地区杉木树高-胸径模型比较[J]. 应用生态学报, 2017, 28(9): 2831 − 2839.

    FAN Wei, XU Chonghua, CUI Jun, et al. Comparisons of height-diameter models of Chinese fir based on mixed effect in Dabie Mountain area, China [J]. Chin J Appl Ecol, 2017, 28(9): 2831 − 2839.
    [4] 徐庆华,杨进良,黄练忠,等. 次生常绿阔叶林群落林冠结构对林下植被的影响[J]. 浙江农林大学学报, 2019, 36(6): 1151 − 1157.

    XU Qinghua, YANG Jinliang, HUANG Lianzhong, et al. Influence of canopy structure on understory vegetation of secondary evergreen broadleaf forest communities [J]. J Zhejiang A&F Univ, 2019, 36(6): 1151 − 1157.
    [5] PYA N, SCHMIDT M. Incorporating shape constraints in generalized additive modelling of the height-diameter relationship for Norway spruce [J]. For Ecosyst, 2016, 3(2): 112 − 125.
    [6] WANG Jing. Bayesian quantile regression for parametric nonlinear mixed effects models [J]. Stat Methods Appl, 2012, 21(3): 279 − 295.
    [7] GERACI M, BOTTAI M. Linear mixed quantile regression models: extensions and developments [J]. Lifetime Data Anal, 2007, 13(4): 497 − 512.
    [8] 张兴皖,周石鹏. 人口老龄化与区域产业结构——基于分位数回归的实证研究[J]. 经济数学, 2019, 36(1): 24 − 31.

    ZHANG Xingwan, ZHOU Shipeng. Population aging and regional industrial structure: empirical research based on quantile regression [J]. J Quant Econ, 2019, 36(1): 24 − 31.
    [9] 田德超,李凤日,董利虎. 依据分位数回归建立的长白落叶松潜在最大冠幅预测模型[J]. 东北林业大学学报, 2019, 47(8): 41 − 46.

    TIAN Dechao, LI Fengri, DONG Lihu. Potentila maximum crown width prediction model of Larix olgensis by quantile regression [J]. J Northeast For Univ, 2019, 47(8): 41 − 46.
    [10] BOHORA S B, CAO Q V. Prediction of tree diameter growth using quantile regression and mixed-effects models [J]. For Ecol Manage, 2014, 319: 62 − 66.
    [11] KOENKER R. Quantile Regression[M]. London: Cambridge University Press, 2005: 32 − 38.
    [12] AUSTIN P C, SCHULL M J. Quantile regression: a statistical tool for out-of-hospital research [J]. Acad Emergency Med, 2003, 10(7): 789 − 797.
    [13] MACHADO P J A F, MATA J. Counterfactual decomposition of changes in wage distributions using quantile regression [J]. J Appl Econ, 2010, 20(4): 445 − 465.
    [14] HAILE G A, NGUYEN A N. Determinants of academic attainment in the United States: a quantile regression analysis of test scores [J]. Educ Econ, 2008, 16(1): 29 − 57.
    [15] CADE B S, NOON B R, FLATHER C H. Quantile regression reveals hidden bias and uncertainty in habitat models [J]. Ecology, 2005, 86(3): 786 − 800.
    [16] ZANG Hao, LEI Xiangdong, ZENG Weisheng. Height-diameter equations for larch plantation in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models [J]. Forestry, 2016, 89(4): 434 − 445.
    [17] MEHTÄTALO L, GREGOIRE T G, BURKHART H E. Comparing strategies for modeling tree diameter percentiles from remeasured plots [J]. Environmetrics, 2010, 19(5): 529 − 548.
    [18] DUCEY M J. The ratio of additive and traditional stand density indices [J]. Western J Appl For, 2009, 24(1): 5 − 10.
    [19] EVANS A M, GREGOIRE T G. A geographically variable model of hemlock woolly adelgid spread [J]. Biol Invasions, 2007, 9(4): 369 − 382.
    [20] ÖZÇELIK R, CAO Q V, TRINCADO G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey [J]. For Ecol Manage, 2018, 419/420: 240 − 248.
    [21] 高慧淋,董利虎,李凤日. 基于分位数回归的长白落叶松人工林最大密度线[J]. 应用生态学报, 2016, 27(11): 3420 − 3426.

    GAO Huilin, DONG Lihu, LI Fengri. Maximum density-size line for Larix olgensis, plantations based on quantile regression [J]. Chin J Appl Ecol, 2016, 27(11): 3420 − 3426.
    [22] 高东启,邓华锋,王海宾,等. 基于哑变量的蒙古栎林分生长模型[J]. 东北林业大学学报, 2014, 21(1): 61 − 64.

    GAO Dongqi, DENG Huafeng, WANG Haibin, et al. Dummy variables models in Quercus mongolica growth [J]. J Northeast For Univ, 2014, 21(1): 61 − 64.
    [23] 杨英,冉啟香,陈新云,等. 哑变量在云杉地上生物量模型中的应用研究[J]. 林业资源管理, 2015, 12(6): 71 − 76.

    YANG Ying, RAN Qixiang, CHEN Xinyun, et al. Research on dummy variable in aboveground biomass models for spruce [J]. For Resou Manage, 2015, 12(6): 71 − 76.
    [24] 唐守正, 朗奎建, 李海奎. 统计和生物数学模型计算[M]. 北京: 科学出版社, 2009: 12 − 15.
    [25] 郑冬梅,曾伟生. 用哑变量方法构建东北落叶松和栎类分段地上生物量模型[J]. 北京林业大学学报, 2013, 35(6): 32 − 35.

    ZHENG Dongmei, ZENG Weisheng. Using dummy variable approach to construct segmented above ground biomass models for larch and oak in northeastern China [J]. J Beijing For Univ, 2013, 35(6): 32 − 35.
    [26] HUANG S, PRICE D, TITUS S J. Development of ecoregion-based height-diameter models for white spruce in boreal forests [J]. For Ecol Manage, 2000, 129(3): 139 − 141.
    [27] PENG Changhui, ZHANG Lianjun, LIU Jinxun. Developing and validating nonlinear height-diameter models for major tree species of Ontario’s boreal forests [J]. Northern J Appl For, 2001, 18(3): 87 − 94.
    [28] 臧颢,雷相东,张会儒. 红松树高-胸径的非线性混合效应模型研究[J]. 北京林业大学学报, 2016, 38(6): 8 − 16.

    ZANG Hao, LEI Xiangdong, ZHANG Huiru. Nonlinear mixed-effects height-diameter model of Pinus koraiensis [J]. J Beijing For Univ, 2016, 38(6): 8 − 16.
    [29] 陈义刚,谢正生,张祥生,等. 粤北低山丘陵地区小红栲生长过程分析[J]. 华南农业大学学报, 1994, 14(2): 124 − 128.

    CHEN Yigang, XIE Zhengsheng, ZHANG Xiangsheng, et al. Analysis of the growth process of Castanopsisc arlesii in north Guangdong mountain and hill areas [J]. J South China Agric Univ, 1994, 14(2): 124 − 128.
    [30] SANTOS F M, TERRA G, CHAER G M, et al. Modeling the height-diameter relationship and volume of young African mahoganies established in successional agro forestry systems in northeastern Brazil [J]. New For, 2019, 50(3): 389 − 407.
    [31] 李忠国,孙晓梅,陈东升. 基于哑变量的日本落叶松生长模型研究[J]. 西北农林科技大学学报(自然科学版), 2011, 39(8): 69 − 74.

    LI Zhongguo, SUN Xiaomei, CHEN Dongsheng, et al. Dummy variables model of increment of Larix kaempferi [J]. J Northwest A&F Univ Nat Sci Ed, 2011, 39(8): 69 − 74.
    [32] 吕常笑,邓华锋,王秋鸟. 基于哑变量的马尾松生物量模型研究[J]. 河南农业大学学报, 2016, 12(3): 304 − 310.

    LÜ Changxiao, DENG Huafeng, WANG Qiuniao, et al. Dummy variable models in Masson pine biomass [J]. J Henan Agric Univ, 2016, 12(3): 304 − 310.
    [33] SHARMA R P, VACEK Z, VACEK S, et al. Modelling individual tree height-diameter relationships for multi-layered and multi-species forests in central Europe [J]. Trees, 2019, 33(1): 103 − 119.
  • [1] 冉佳璇, 戚玉娇.  黔中马尾松木荷混交林树高-胸径模型 . 浙江农林大学学报, 2024, 41(2): 343-352. doi: 10.11833/j.issn.2095-0756.20230363
    [2] 申家朋, 陈东升, 孙晓梅, 张守攻.  基于似乎不相关回归和哑变量的日本落叶松单木生物量模型构建 . 浙江农林大学学报, 2019, 36(5): 877-885. doi: 10.11833/j.issn.2095-0756.2019.05.005
    [3] 刘薇祎, 邓华锋, 冉啟香, 黄国胜, 王雪军.  湖南省杉木林分相容性树高曲线方程组研究 . 浙江农林大学学报, 2017, 34(6): 1051-1058. doi: 10.11833/j.issn.2095-0756.2017.06.012
    [4] 牛晓栋, 江洪, 方成圆, 陈晓峰, 孙恒.  天目山常绿落叶阔叶混交林生态系统水汽通量特征 . 浙江农林大学学报, 2016, 33(2): 216-224. doi: 10.11833/j.issn.2095-0756.2016.02.005
    [5] 季蕾, 亢新刚, 张青, 郭韦韦, 周梦丽.  吉林金沟岭林场不同密度天然云冷杉林林下主要灌木生物量模型 . 浙江农林大学学报, 2016, 33(3): 394-402. doi: 10.11833/j.issn.2095-0756.2016.03.004
    [6] 李海防, 段文军.  华南地区典型人工林土壤二氧化碳和氧化亚氮通量研究 . 浙江农林大学学报, 2011, 28(1): 26-32. doi: 10.11833/j.issn.2095-0756.2011.01.005
    [7] 何莹, 韦新良, 蔡霞, 李可追, 王珍.  生态景观林群落结构定量分析 . 浙江农林大学学报, 2007, 24(6): 711-718.
    [8] 黄勇来.  枫香与不同树种混交林的培肥土壤功能 . 浙江农林大学学报, 2006, 23(5): 497-500.
    [9] 曹永慧, 萧江华, 陈双林, 吴柏林, 吴明, 张德明.  竹阔混交林中阔叶树对毛竹生长的影响及竞争关系 . 浙江农林大学学报, 2006, 23(1): 35-40.
    [10] 李燕燕, 樊后保, 林德喜, 苏兵强, 刘春华, 孙新.  马尾松林混交阔叶树的生物量及其分布格局 . 浙江农林大学学报, 2004, 21(4): 388-392.
    [11] 刘芳.  杉木光皮桦纯林及混交林生物量 . 浙江农林大学学报, 2002, 19(2): 143-147.
    [12] 徐凤兰, 魏坦, 刘爱琴.  杉木泡桐混交幼林地土壤的物理性质 . 浙江农林大学学报, 2000, 17(3): 285-288.
    [13] 钱国钦.  枫香杉木混交林生产力及生态特性 . 浙江农林大学学报, 2000, 17(3): 289-293.
    [14] 严逸伦, 严其鹏, 胡立中.  杉木檫树混交林根系生理的初步研究 . 浙江农林大学学报, 2000, 17(1): 20-23.
    [15] 张任好.  杉木福建柏混交林杉木生长特点的研究 . 浙江农林大学学报, 1999, 16(2): 141-144.
    [16] 刘安兴, 郭仁鉴, 杨水海, 严水华, 商克荣, 卢梅富, 刘金土.  针阔混交防护林可持续经营技术研究 . 浙江农林大学学报, 1998, 15(1): 42-50.
    [17] 郑郁善, 管大耀, 李仁昌.  杉木( 19年生)毛竹混交林水源涵养能力研究 . 浙江农林大学学报, 1998, 15(1): 63-98.
    [18] 金崇华, 章伟成, 冯宝贤, 王宝女, 周国模.  湿地松马尾松和福建柏混交试验 . 浙江农林大学学报, 1995, 12(3): 258-261.
    [19] 杜国坚, 黄天平, 张庆荣, 张浦山, 程荣亮.  杉木混交林土壤微生物及生化特征和肥力* . 浙江农林大学学报, 1995, 12(4): 347-352.
    [20] 余梅林, 王志明, 刘智, 童修耀, 林芷, 吴家胜, 陈有全, 金远东, 王宝女, 丁一飞.  枫香为主的混交林营造技术研究 . 浙江农林大学学报, 1995, 12(2): 139-143.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190461

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2020/3/424

图(3) / 表(3)
计量
  • 文章访问数:  2744
  • HTML全文浏览量:  928
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-05
  • 修回日期:  2019-11-22
  • 网络出版日期:  2020-05-21
  • 刊出日期:  2020-06-01

基于分位数回归的针阔混交林树高与胸径的关系

doi: 10.11833/j.issn.2095-0756.20190461
    基金项目:  河北省教育厅科研资助项目(QN2018125);国家自然科学青年基金资助项目(31700561);“十三五”国家重点研发计划项目(2016YFD060020303,2017YFD0600403)
    作者简介:

    张冬燕,讲师,博士研究生,从事森林可持续经营研究。E-mail: zhdys@163.com

    通信作者: 王冬至,讲师,博士,从事森林可持续经营研究。E-mail: wangdz@126.com
  • 中图分类号: S718.5

摘要:   目的  基于包含哑变量的非线性分位数回归方法,构建华北落叶松Larix principis-rupprechtii与白桦Betula platyphylla针阔混交林树高与胸径关系的预测模型,对研究混交林中树种结构及立地生产力预测具有重要意义。  方法  以河北省塞罕坝机械林场华北落叶松与白桦针阔混交林为研究对象,利用83块标准地调查数据,基于哑变量分别采用最小二乘法和非线性分位数回归方法,构建不同树种树高与胸径关系模型。  结果  基于包含哑变量的非线性分位数回归预测模型精度高于最小二乘法,其中利用最小二乘法拟合不同树种模型,其确定系数、平均差及平均绝对误差分别为0.787~0.814、1.581~1.877、2.447~2.654;而利用非线性分位数回归不同树种不同分位点模型,其确定系数、平均差及平均绝对误差分别为0.839~0.921、0.213~1.469、0.561~2.322,经过残差分析确定,当分位点τ=0.7时,不同树种树高与胸径关系预测模型精度较高。  结论  与最小二乘法相比,基于非线性分位数构建的包含哑变量不同树种树高与胸径关系的预测模型精度更高。图3表3参33

English Abstract

邹为民, 丁俊, 黄子豪, 等. 浙江省松阳县亚热带森林干扰与恢复遥感监测[J]. 浙江农林大学学报, 2024, 41(2): 353-361. DOI: 10.11833/j.issn.2095-0756.20230324
引用本文: 张冬燕, 王冬至, 李晓, 等. 基于分位数回归的针阔混交林树高与胸径的关系[J]. 浙江农林大学学报, 2020, 37(3): 424-431. DOI: 10.11833/j.issn.2095-0756.20190461
ZOU Weimin, DING Jun, HUANG Zihao, et al. Remote sensing monitoring of subtropical forest disturbance and restoration in Songyang County, Zhejiang Province[J]. Journal of Zhejiang A&F University, 2024, 41(2): 353-361. DOI: 10.11833/j.issn.2095-0756.20230324
Citation: ZHANG Dongyan, WANG Dongzhi, LI Xiao, et al. Relationship between height and diameter at breast height(DBH) in mixed coniferous and broadleaved forest based on quantile regression[J]. Journal of Zhejiang A&F University, 2020, 37(3): 424-431. DOI: 10.11833/j.issn.2095-0756.20190461
  • 树高和胸径不仅是用来预测林分蓄积量[1]、生物量[2]、立地生产力[2-3]及林分结构[4]的重要变量,而且是森林资源调查及经营效果评价的重要因子。在标准地调查过程中,树高测量难度较大且观测成本高,其观测误差也相对较大,给精准林业质量提升带来了一定困难[2,4],而胸径观测方便且精度较高。因此,根据标准地调查数据,建立树高与胸径关系预测模型,可降低调查成本,提高预测精度[5],这对于森林质量精准提升具有重要意义。当前林业研究多采用线性或非线性树高与胸径关系模型来模拟预测两者之间的关系,其参数估计方法多采用最小二乘法来模拟,然而最小二乘法是基于均值回归,利用变量均值来拟合模型参数[6],该方法要求调查数据需满足独立正态同分布等条件。在林业调查中,树高与胸径观测数据不能满足该要求,而分位数回归对调查数据没有严格要求[7],利用变量条件分位数来建模[6],对具有尖峰、厚尾、异方差显著的数据拟合效果更加稳健[8-10]。分位数回归理论框架是由KOENKER[11]提出,已在医学[12]、经济学[13]、教育与政策[14-15]及自然资源管理等领域进行了研究与应用。在林业相关研究中,分位数回归被应用于模拟林分自疏边界线[16]、直径分布规律[17]、林分密度指数[18]及森林病虫害[19]等方面研究。ÖZÇELIK等[20]基于分位数回归建立了树高与胸径关系模型,高慧淋等[21]采用此方法建立了长白落叶松Larix olgensis人工林最大林分密度线模型,提高了模型预测精度及适用性。然而在华北暖温带针阔混交林中,如何基于一个分位数回归模型,预测不同树种树高与胸径关系是亟待解决的科学问题。在混交林中为了描述树种结构对树木生长影响,部分学者[22-25]采用哑变量方法构建了不同间伐方式、不同地域树高曲线及生长量预测模型。然而基于包含哑变量的非线性分位数回归方法来构建不同树种树高与胸径关系模型的研究较少。因此,本研究以河北省塞罕坝华北落叶松Larix principis-rupprechtii与白桦Betula platyphylla针阔混交林为研究对象,基于哑变量方法和分位数回归相结合方法,构建混交林不同树种分位数回归模型,为精确描述树高与胸径的关系提供依据。

    • 河北省塞罕坝机械林场(41°22′~42°58′N,116°53′~118°31′E)位于河北省最北部,地势北高南低,属华北暖温带立地类型区,林场总面积约9.2×104 hm2,总蓄积约8.1×106 m3。土壤类型以褐色森林土、棕色森林土及风沙土等为主;成土母质主要为坡积物、残积物及洪积物等;极端最高气温为33.4 ℃,最低气温−43.3 ℃,年均气温−1.3 ℃,年均无霜期64 d,年均降水量460.3 mm,是典型的半干旱半湿润寒温性大陆季风气候。研究区植被类型丰富,主要乔木树种有华北落叶松、白桦、樟子松Pinus sylvestris、云杉Picea asperata等,主要灌木树种有山刺玫Rosa daverica、胡枝子Lespedeza bicolor、沙棘Hippophae rhamnoides等,主要草本植物有地榆Sanguisorba offcinalis、唐松草Thalictrum aquilegifolium、曼陀罗Datura stramonium等。

    • 在北曼店、大唤起、阴河、千层板和第三乡等5个林场设立了83块标准地(30 m×30 m),对标准地内各林分因子(林分密度、平均高、平均胸径、树种断面积、林分总断面积、优势高等)和立地因子(海拔、坡度、坡向、坡位、土层厚度等)进行调查,共调查立木10 104株(华北落叶松5 258株,白桦4 846株),林分年龄分布为24~45 a,不同标准地混交度分布为0.39~0.62。研究过程中,分树种将观测数据分别按3∶1分为建模数据(62块标准地)和检验数据(21块标准地),基本信息如表1表2所示。

      表 1  模型建立数据

      Table 1.  Data of establishment model

      统计量海拔/m林分断面积/hm2密度/(株·hm–2)华北落叶松白桦
      胸径/cm树高/m胸径/cm树高/m
      平均值1 424.00208.871 070.0015.5010.6014.3010.10
      最大值1 672.00452.191 725.0034.6017.9029.2016.20
      最小值1 177.00 19.96 675.00 5.00 4.20 5.10 4.60
      标准差 149.63 78.69 241.00 4.25 2.34 3.92 1.77

      表 2  模型检验数据

      Table 2.  Data of test model

      统计量海拔/m林分断面积/hm2密度/(株·hm–2)华北落叶松白桦
      胸径/cm树高/m胸径/cm树高/m
      平均值1 464.00254.001 162.0017.5011.0012.50 8.90
      最大值1 540.00387.402 000.0034.7017.8027.2015.60
      最小值1 396.00157.83 850.00 5.00 3.20 5.10 4.80
      标准差 39.28 73.41 269.76 6.26 2.70 4.47 2.16
    • 在描述树木生长及树高与胸径关系的近百种不同模型中,Richard方程不但具有可解释的生物学意义,而且具有易收敛且灵活性高等特性。部分研究基于Richard方程构建了不同林分类型树高与胸径关系的预测模型,均取得了较好的预测结果[18, 20, 26-29]。因此,本研究以Richard方程作为构建华北落叶松与白桦针阔混交林树高与胸径关系基础模型,模型表达如式(1)所示。

      $${H_{i\!j}} = 1.3 + a{\left[ {1 - \exp \left( { - b{d_{i\!j}}} \right)} \right]^c} + {\varepsilon _{i\!j}}\text{。}$$ (1)

      式(1)中:Hij为第i个样地第j株树的树高(m);dij为第i个样地第j株树的胸径(cm);abc为基础模型的参数;εij为误差项。

    • 为了解决模型预测精度的影响,可以在模型中加入哑变量[23, 30-32]。包含哑变量的树高与胸径关系预测模型,不仅可以实现模型对不同树种相容性,而且在一定程度上可以提供模型预测精度及适用性,包含哑变量的树高与胸径关系预测模型表达如式(2)所示。

      $${H_{i\!j}} = 1.3 + \left( {{a_1}{M_1} + {a_2}{M_2}} \right){\left\{ {1 - \exp \left[ { - \left( {{b_1}{M_1} + {b_2}{M_2}} \right){d_{i\!j}}} \right]} \right\}^{\left( {{c_1}{M_1} + {c_2}{M_2}} \right)}} + {\varepsilon _{i\!j}}\text{。}$$ (2)

      式(2)中:Mi为哑变量,当M1=1、M2=0时为华北落叶松,当M1=0、M2=1时为白桦;aibici为模型参数;εij为误差项。

    • 由于分位数回归对模型误差不需要严格假设条件,因此本研究基于Richard方程,选取5个分位点(τ=0.1、0.3、0.5、0.7、0.9)构建不同树种的树高与胸径关系预测模型,利用加权最小一乘法可以得到不同分位点参数估计值,具体见式(3)。

      $$ S=\sum\limits_{{H_{i\!j}} \geqslant {{\hat H}_\tau }({d_{i\!j}})} {\tau \left[ {{H_{i\!j}} - {{\hat H}_\tau }({d_{i\!j}})} \right]} + \sum\limits_{{H_{i\!j}} < {{\hat H}_\tau }({d_{i\!j}})} {(1 - \tau )\left[ {{{\hat H}_\tau }({d_{i\!j}}) - {H_{i\!j}}} \right]}\text{。} $$ (3)

      式(3)中:S为不同分位点估计值;${\hat H_\tau }$Hij分别为第i个样地第j株树在不同分位点τ树高预测值与树高值(m);diji个样地第j株树胸径(cm);τ为分位点。

    • 统计分析均基于SPSS 24.0和SAS 9.4中的PROC NLIN和PROC NLP完成,基于模型确定系数(R2)、平均差(MD)、平均绝对误差(MAD)对模型拟合精度及适用性进行评价与比较。

      $${R^2} = 1 - \sum\limits_{i = 1}^m {\sum\limits_{i = 1}^{{n_i}} {{{({H_{i\!j}} - {{\hat H}_{i\!j}})}^2}} \Big/\sum\limits_{i = 1}^m {\sum\limits_{i = 1}^{{n_i}} {{{({H_{i\!j}} - {{\overline H}_{i\!j}})}^2}} } }\text{;} $$ (4)
      $${M_{\rm{D}}} = \sum\limits_{i = 1}^m {\sum\limits_{j = 1}^{{n_i}} {({H_{i\!j}} - {{\hat H}_{i\!j}})} } \Big/\sum\limits_{i = 1}^m {{n_i}}\text{;}$$ (5)
      $${M_{{\rm{AD}}}} = \sum\limits_{i = 1}^m {\sum\limits_{j = 1}^{{n_i}} {\left| {{H_{i\!j}} - {{\hat H}_{i\!j}}} \right|} } \Big/\sum\limits_{i = 1}^m {{n_i}} \text{。}$$ (6)

      式(4)~(6)中:Hij${\hat H_{i\!j}}$${\overline H_{i\!j}}$分别为树高观测值、预测值和平均值;m为标准地数量;n为标准地株数。

    • 图1为不同树种胸径与树高的关系。华北落叶松和白桦的树高分别为4~18和6~16 m,胸径分别为6~32和6~28 cm。

      图  1  不同树种胸径与树高分布

      Figure 1.  Height-diameter distribution of different tree species

    • 表3可见:在华北落叶松与白桦针阔混交林中,基于分位数回归的不同树种不同分位点确定系数均大于传统回归方法,平均差及平均绝对误差均小于传统回归方法。在确定的5个分位点中,当分位点τ=0.7时,华北落叶松与白桦的树高与胸径关系预测模型精度最高。基于不同分位点预测模型建立了不同树种在各分位点残差分布图(图2),确定当分位点位为τ=0.7时,华北落叶松与白桦树高与胸径关系模型能够更好描述两者之间的关系。

      图  2  不同树种各分位点残差分布

      Figure 2.  Residual distribution of each quantile of different tree species

      表 3  基础模型和分位数回归模型拟合与评价

      Table 3.  Fitting and evaluation of basic model and quantile regression model

      模型参数评价指标
      abcMDMADR2
      OLSL20.2990.0010.1551.5182.4470.814
      OLSB16.3010.0320.9061.8772.6540.787
      τL=0.117.4450.0330.9780.9622.0320.848
      τL=0.317.5760.0380.9820.7251.7090.855
      τL=0.517.6570.0430.9920.4651.3420.872
      τL=0.717.9980.0511.0020.2130.5610.912
      τL=0.918.0050.0651.0051.4322.2060.839
      τB=0.113.9560.0430.8920.9922.0430.848
      τB=0.314.5590.0520.9810.6811.8820.861
      τB=0.514.7030.0590.9970.4281.2690.882
      τB=0.714.9960.0711.0010.2350.8520.921
      τB=0.915.0110.0921.0091.4692.3220.838
        说明:L表示华北落叶松,B表示白桦;OLS表示最小二乘法
    • 基于不同分位点预测模型,分别对华北落叶松和白桦的树高与胸径关系进行了模拟(图3)。不同树种在不同分位点树高与胸径关系预测趋势及范围基本一致,表明包含哑变量的分位数回归模型预测效果较好。

      图  3  不同分位点树高与胸径的关系

      Figure 3.  Relationship between tree height and DBH of different quantiles

    • 在描述树高与胸径关系的多种线性和非线性预测模型中,通常采用具有生物学意义且灵活性较高的Richard方程来研究不同林分类型树高与胸径的关系[26, 33],因此,本研究将Richard方程作为构建华北落叶松与白桦混交林树高与胸径关系基础模型。对红松Pinus koraiensis人工林、土耳其松Pinus brutia和黎巴嫩雪松Cedrus libani混交林的研究[20, 26-28]表明:Richard方程是描述其树高与胸径关系的最优模型。

      在构建树木生长及生物量预测模型中,包含哑变量模型具有更高的预测精度[22, 25, 31-32]。本研究在华北落叶松与白桦针阔混交林中,基于非线性分位数回归构建的包含哑变量树高与胸径的关系模型,其精度高于传统回归预测模型,这与人工林最大密度线确定[21]及树高与胸径关系模型[20]的研究结论相一致,表明非线性分位数回归较传统回归方法更加稳定,可用于人工林和混交林立地潜在生产力的评价。

    • 本研究以塞罕坝华北落叶松与白桦针阔混交林调查数据为基础,确定Richard模型为描述不同树种树高与胸径关系的基础模型,在基础模型中构造一个表示树种的哑变量,并利用分位数回归在一个模型中同时估计不同树种及不同分位点的树高与胸径关系模型参数,经过检验不同树种分位数回归模型均能较好反映树高与胸径的关系,当分位点τ=0.7时,分位数回归模型预测精度最高,拟合效果最好。

参考文献 (33)

目录

/

返回文章
返回