-
喜树碱(camptothecin, CPT)是一种细胞毒性喹啉类生物碱,1966年由WALL等[1]首次从喜树Camptotheca acuminata中分离得到。作为植物源农药的喜树碱是一种昆虫不育剂[2],并且对昆虫有触杀和胃毒的作用[3];对黄瓜白粉病Sphaerotheca fuliginea、番茄灰霉病Botrytis cinerea等也有较好的防治效果[4]。因此,喜树碱在农业病虫害防治方面有较大的应用开发潜力。马比木Nothapodytes pittosporoides是茶茱萸科Icacinaceae假柴龙树属Nothapodytes灌木,又名海桐马比木、公黄珠子、追风伞[5]。主产于贵州、湖南、湖北、四川等地,入药能除湿、祛风、理气,主治湿痹、浮肿、疝气[6-7]。在马比木植株中,其根、茎、枝、叶、果实和种子中都含有喜树碱[8-10]。随着市场对喜树碱需求量不断增加,马比木作为喜树碱药源, 具有原料成本低的优点,是国家二级保护植物喜树的最佳替代品,已成为提取喜树碱的重要原料[11-13]。目前国内关于马比木中喜树碱提取工艺的研究较少,且基本采用的均为正交设计优化。本研究以马比木为原料,以喜树碱提取率作为优化指标,采用Box-Behnken响应面法对喜树碱的提取工艺进行了研究,以期为喜树碱提取工艺的优化提供科学依据。
-
高效液相色谱仪(型号1260,Agilent);高速多功能粉碎机(800Y-304,旭曼);超声波清洗器(DS-080S,工作频率40 kHz,东森);电子分析天平(ME204E,METTLER TLLEDO)。
-
马比木(购于贵州中药材市场, 主要为枝和叶),晒干后粉碎过60目筛。
-
甲醇(上海阿拉丁生化科技股份有限公司,分析纯);甲醇(北京百灵威科技有限公司,色谱纯);乙腈(北京百灵威科技有限公司,色谱纯);水为超纯水;喜树碱对照样品(纯度≥98%,合肥博美有限公司)。
-
称取喜树碱标准样品10.50 mg,置于容量瓶中,甲醇溶解稀释、定容至50 mL,配制质量浓度为0.21 g·L−1的喜树碱对照样品溶液,摇匀,备用。
-
称取粉碎后马比木粉末5.06 g,置于锥形瓶中,加入甲醇100 mL,室温下超声30 min,0.45 μm的微孔滤膜过滤,取续滤液备用。
-
色谱柱Alltima C18(4.6 mm×250.0 mm,5 μm);流动相为乙腈∶水=25∶75(V∶V);流速1.0 mL·min−1;检测波长254 nm;柱温30 ℃;进样量20 μL。
-
取对照样品溶液1.0、3.0、5.0、7.0、9.0 mL置于10 mL容量瓶中,甲醇定容至10 mL,按照1.2.3色谱条件进行检测。以喜树碱质量浓度为横坐标,峰面积为纵坐标,绘制标准曲线。
-
称取粉碎后的马比木粉末10.16 g,置于锥形瓶中,加入甲醇100 mL,温度条件30 ℃,超声30 min,0.45 μm微孔滤膜过滤,取续滤液按照1.2.3色谱条件进行检测。根据以下公式计算喜树碱提取率(R1):R1=CV/1 000M×100%。其中:C表示提取液中喜树碱质量浓度(g·L−1),V表示溶剂体积(mL),M表示药材质量(g)。
-
称取粉碎后马比木粉末10 g,置于锥形瓶中,将3个实验因素:甲醇体积分数、超声时间、液料比中2个固定不变,1个作为变量进行单因素试验,0.45 μm微孔滤膜过滤,取续滤液在1.2.3色谱条件进行检测,平行3次,取平均值。
-
在单因素实验基础上,选择超声时间30 min、甲醇体积分数80%和液料比20 mL·g−1(溶剂体积∶药材质量=100∶5)3个因素进行优化实验。以喜树碱提取率为指标,采用Box-Behnken设计优化提取条件。因素水平如表1所示。
表 1 因素水平表
Table 1. Factors and levels
水平 A. 甲醇体积
分数/%B. 超声
时间/minC. 液料比/
(mL·g−1)−1 70 20 12(60∶5) 0 80 30 20(100∶5) 1 90 40 28(140∶5) -
响应面实验数据采用Designer-Expert 8.0软件进行处理,并对数据进行差异显著性分析。
-
为准确测量马比木中喜树碱的质量浓度,建立高效液相色谱法,以喜树碱质量浓度为横坐标(x),峰面积为纵坐标(y),计算得线性回归方程为:y=9×106x+902 381,相关系数R2=0.999 2,喜树碱质量浓度的线性范围为0.021~0.189 g·L−1。
-
在超声时间为30 min,液料比为20 mL·g−1时,选取甲醇体积分数为50%、60%、70%、80%、90%的条件下进行提取。由图1A可知:随着甲醇体积分数的增大,喜树碱的提取率先增大后减小。当甲醇体积分数超过80%时,提取率开始减小。提高甲醇体积分数有利于喜树碱的提取,当甲醇体积分数>80%时,喜树碱提取率反而降低,可能由于随甲醇体积分数的提高,提取液极性减小,其中某些杂质的溶出增加,干扰了马比木的检测,提取率下降。当甲醇体积分数为80%时,提取率达最大值,因此选择甲醇体积分数为80%为宜。
-
在甲醇体积分数为80%,液料比为20 mL·g−1时,选取超声时间分别为10、20、30、40和50 min的条件下进行提取。由图1B可知:随超声时间的增加,喜树碱提取率先增加后减小,在超声时间为30 min时喜树碱提取率最高。这是因为随超声时间增加,喜树碱发生氧化的概率也会增大,使提取率降低,所以选择提取时间为30 min适宜。
-
在超声时间为30 min,甲醇体积分数为80%时,选取液料比分别为12、16、20、24和28 mL·g−1的条件进行提取。由图1C可知:随着液料比由小到大,喜树碱提取率先增加后减小,提取率最高的液料比为20 mL·g−1。随着溶剂的增多,马比木与溶剂之间能充分接触,有利于马比木溶解于溶剂中,当液料比超过20 mL·g−1后,已经达到饱和状态,再加就稀释了,喜树碱提取率下降,所以选择液料比20 mL·g−1较适宜。
-
依据单因素实验结果,初步选定甲醇体积分数80%、超声时间30 min和液料比20 mL·g−1为最佳提取条件,采用Box-Behnken响应面法对其进行优化,结果如表2所示。
表 2 Box-Behnken设计实验和结果
Table 2. Box-Behnken Design tests and results
实验号 A. 甲醇体积分数 B. 超声时间 C. 液料比 提取率R1/% 1 1 −1 0 0.043 2 0 0 0 0.108 3 −1 −1 0 0.062 4 0 −1 −1 0.057 5 0 0 0 0.113 6 0 1 −1 0.043 7 −1 0 −1 0.045 8 1 0 1 0.029 9 1 0 −1 0.043 10 0 1 1 0.078 11 0 −1 1 0.031 12 0 0 0 0.105 13 0 0 0 0.103 14 −1 1 0 0.056 15 0 0 0 0.106 16 −1 0 1 0.085 17 1 1 0 0.065 以喜树碱提取率为指标(R1),采用Designer-Expert 8.0软件进行二次多项式回归拟合,得到方程:R1=0.11−8.500×10−3A+6.125×10−3B+4.375×10−3C+7.000×10−3AB−0.014AC+0.015BC−0.026A2−0.024B2−0.030C2。其中:A表示甲醇体积分数,B表示超声时间,C表示液料比。多元回归模型的方差分析见表3。由ANVOA分析可知:在考察指标的二项式方程中,模型的F为24.59(P=0.000 2<0.001),说明回归模型极显著;拟合相关系数R2=0.969 3,调整系数R2Adj=0.929 9,失拟项显著(P=0.034 3<0.05)。该模型拟合程度较好,实验误差较小;信噪比较高,为12.503>4.000,说明该多元回归模型可预测马比木中喜树碱的最优提取工艺条件。
表 3 响应面回归模型ANOVA分析结果
Table 3. Response surface regression model ANOVA analysis results
方差来源 平方和 自由度 均方 F P 显著性 模型 0.013 9 1.469×10−3 24.59 0.000 2 *** A 5.780×10−4 1 5.780×10−4 9.67 0.017 1 * B 3.001×10−4 1 3.001×10−4 5.02 0.060 0 C 1.531×10−4 1 1.531×10−4 2.56 0.153 4 AB 1.960×10−4 1 1.960×10−4 3.28 0.113 0 AC 7.290×10−4 1 7.290×10−4 12.20 0.010 1 * BC 9.303×10−4 1 9.303×10−4 15.57 0.005 6 ** A2 2.874×10−3 1 2.874×10−3 48.10 0.000 2 *** B2 2.502×10−3 1 2.502×10−3 41.87 0.000 3 *** C2 3.885×10−3 1 3.885×10−3 65.02 <0.000 1 *** 残差 4.183×10−4 7 5.975×10−5 失拟项 3.603×10−4 3 1.201×10−4 8.28 0.034 3 误差 5.800×10−5 4 1.450×10−5 总和 0.014 16 说明:A. 甲醇体积分数;B. 超声时间;C. 液料比。*表示P<0.05;**表示P<0.01;***表示P<0.001 显著性检验结果表明:甲醇体积分数(A)、超声时间(B)、液料比(C)对马比木中喜树碱提取率的影响顺序依次为A、B、C。甲醇体积分数的二次项A2、超声时间的二次项B2、液料比的二次项C2对马比木中喜树碱的提取率有极显著影响(P<0.001);超声时间和液料比的交互项BC对马比木中喜树碱的提取率有极显著影响(P<0.01);甲醇体积分数A与甲醇体积分数和液料比的交互项AC对马比木中喜树碱的提取率有显著影响(P<0.05);超声时间B、液料比C、甲醇体积分数与超声时间的交互项AB对马比木中喜树碱提取率的影响不显著(P>0.05)。
相对于3个单因素的其中2个因素,采用Box-Behnken绘制三维响应面图,两两因素的交互作用对马比木中喜树碱提取率的影响见图2。由图2A可见:甲醇体积分数A的曲面较陡峭,超声时间B的曲面较平缓,说明甲醇体积分数对马比木中喜树碱提取率的影响比超声时间的影响大。由图2B可见:甲醇体积分数A的曲面较为陡峭,液料比C的曲面较为平缓,说明甲醇体积分数对马比木中喜树碱提取率的影响比液料比大。由图2C可见:超声时间B的曲面较陡,液料比C的曲面较为平缓,表明超声时间对马比木中喜树碱提取率的影响比液料比的影响大。可见,在选择的3个单因素中,甲醇体积分数A对马比木中喜树碱的提取率的影响显著,表现为其曲线较陡;在两两因素交互作用中,甲醇体积分数与液料比的交互作用(AC)对马比木中喜树碱的提取率影响显著,超声时间与液料比的交互作用(BC)对马比木中喜树碱的提取率影响显著。
-
根据模型预测,得到马比木中喜树碱提取的最优工艺为:甲醇体积分数46.4%,超声时间26.1 min,液料比21.20 mL·g−1。在此条件下进行3次平行实验,测得喜树碱提取率分别为0.080 4%、0.082 6%、0.082 1%,与模型预测值接近,平均误差3.2%,表明模型能较好地预测喜树碱实际提取率。
-
本研究以马比木为原料,以喜树碱提取率作为优化指标,在单因素实验基础上,选取甲醇体积分数、超声时间和液料比3个因素,通过Box-Behnken响应面法对17组实验进行分析,在整个区域得到回归方程,可以直观反映出各个因素对喜树碱提取率的影响。优化的最优工艺为:甲醇体积分数46.4%,超声时间26.1 min,液料比21.20 mL·g−1,喜树碱提取率为0.084 4%。3次验证实验结果显示:提取率平均误差3.2%。说明本次建立的拟合模型较为成功,可以为马比木中喜树碱的提取应用提供一定的参考。
Optimization of camptothecin extraction process from Nothapodytes pittosporoides by Box-Behnken response surface method
-
摘要:
目的 应用响应面法及超声波辅助优化马比木Nothapodytes pittosporoides中喜树碱的提取工艺。 方法 采用高效液相色谱法测定喜树碱含量,以市售马比木为研究对象,在单因素实验的基础上,选取甲醇体积分数、液料比及超声时间为影响因素,喜树碱提取率为响应值,通过Box-Behnken响应面法设计3因素3水平实验,确定最优提取工艺。 结果 最优提取工艺为甲醇体积分数46.4%,超声时间26.1 min,液料比21.20 mL·g−1,喜树碱的提取率为0.084 4%,二项式拟合相关系数R2为0.969 3,预测值与实验值偏差为3.2%。 结论 采用Box-Behnken优化马比木中喜树碱提取工艺,精确度高,预测值与实验值吻合度较高,预测性良好。图2表3参13 Abstract:Objective This study aims to optimize extraction process of camptothecin from Nothapodytes pittosporoides by response surface method and ultrasonic wave. Method The content of camptothecin was determined by high performance liquid chromatography, and N. pittosporoides wood available on the market was used as the research object. Based on the single factor experiment, methanol concentration, liquid to solid ratio and ultrasonic time were taken as the influencing factors, and the extraction rate of camptothecin as the response value. Box-Behnken response surface method was used to design the experiment with 3 factors and 3 levels, so as to determine the optimal extraction process. Result The optimal extraction process was as follows: methanol concentration 46.4%, ultrasonic time 26.1 min, liquid to solid ratio 21.20 mL·g−1, extraction rate of camptothecin 0.084 4%, binomial fitting correlation coefficient R2 0.969 3, and deviation between the predicted value and the experimental value 3.2%. Conclusion Box-Behnken can be used to optimize the extraction process of camptothecin from N. pittosporoides, with high precision and good predictability. [Ch, 2 fig. 3 tab. 13 ref.] -
冬青属Ilex植物多常绿,树冠优美,果实通常红色光亮,长期宿存,是良好的庭园观赏和城市绿化树种,拥有巨大的园林应用潜力。冬青属种子具有种胚后熟的特性[1],常规播种繁殖生长缓慢,且后代性状易发生分离。嫁接繁殖步骤繁琐,操作技术不易掌握,管理要求严格。相比之下,扦插繁殖操作简单,繁殖系数较高,还能保持植物的优良性状。然而,冬青属植物中的很多种类扦插生根困难、成活率低,严重制约了该属植物的推广和应用[2]。金晓玲等[3]研究了34种杂交冬青的生态适应性和扦插成活率后发现:不同品种的冬青扦插成活率存在较大差异,其中光滑冬青Ilex glabra系列栽培品种扦插成活率较高(90.5%~100.0%),美洲冬青I. verticillata系列栽培品种较低(47.5%~64.3%)。生产上常常使用植物生长调节剂处理插穗以获得较高的生根率。胡曼筠等[4]研究发现:经500 mg·L−1 钾盐吲哚丁酸(KIBA)处理的华中枸骨I. centrochinensis生根率最高,雌雄株分别为83.33%和87.50%,比对照明显提高了20.83%。冬青‘长叶阿尔塔’I. × altaclerensis ‘Belgica Aurea’为冬青属常绿小乔木,是欧洲冬青I. aquifolium和加那利冬青I. perado的园艺杂交种,均为雌株[5]。该植物茎绿色,具黄色条纹;叶边缘金黄色不规则,中央有灰绿色斑纹;入秋红果累累,经冬不落,是优良的观干、观叶、观果树种。此外,该树种耐修剪,适应性强,亮丽的色彩很适合与其他彩叶植物搭配种植,极具园林应用前景。但‘长叶阿尔塔’扦插生根较为困难,经萘乙酸(NAA)、吲哚乙酸(IAA)、吲哚丁酸(IBA)、GGR6生根粉处理后生根率均不到40%,生根持续时间较长,生根机制尚不清楚[6]。本研究考察了植物生长调节剂种类和质量浓度、处理方法、基质类型对插穗生根的影响,并从形态解剖学角度探讨了插穗不定根的发生及发育过程,旨在揭示‘长叶阿尔塔’插穗的生根机制,为冬青属植物扦插繁殖技术提供理论基础。
1. 材料与方法
1.1 材料
材料取自宁波高新农业技术实验园区苗圃。从10 a以上生长健壮、无病虫害且无机械损伤的‘长叶阿尔塔’嫁接苗母株上采集当年生半木质化枝条为插穗。插穗长度为8~10 cm,上切口平剪,下切口45° 斜剪,保留3~5个芽及顶端2片1/2成熟叶。本研究在南京林业大学园林实验中心温室的扦插床上进行。扦插前基质均经过消毒处理,插床配置间歇自动喷雾装置,保持扦插环境相对空气湿度为90%,插穗上方3 m处覆盖50%遮阳网。扦插时温室内温度为20~25 ℃。
1.2 方法
1.2.1 试验设计
以植物生长调节剂种类和质量浓度、处理方法、基质类型为试验因素,每个因素下设3个水平,采用3因素3水平正交试验设计(表1),试验共9个处理,每处理30根插穗,重复3次。
表 1 ‘长叶阿尔塔’扦插的L9(34)正交试验设计Table 1 L9(34) orthogonal experimental design for cutting of I. × altaclerensis ‘Belgica Aurea’处理号 植物生长调节剂 处理方法 基质类型[V(草
炭)∶V(蛭
石)∶V(珍珠岩)]种类 质量浓度/
(mg∙L−1)T1 ABT1生根粉 300 浸泡1 h 3∶3∶4 T2 ABT1生根粉 500 浸泡1 h 4∶3∶3 T3 ABT1生根粉 1 000 速蘸10 s 4∶2∶4 T4 NAA 300 浸泡1 h 4∶3∶3 T5 NAA 500 浸泡1 h 4∶2∶4 T6 NAA 1 000 速蘸10 s 3∶3∶4 T7 IBA 300 浸泡1 h 4∶2∶4 T8 IBA 500 浸泡1 h 3∶3∶4 T9 IBA 1 000 速蘸10 s 4∶3∶3 1.2.2 指标观测与数据处理
春季扦插80 d后统计相关生根指标。观测指标包括:插穗存活率(%)、生根率(%)、生根数量(单个处理的单株平均不定根数量,条)、最长不定根长(单个处理的单株平均最长不定根长,cm)、平均不定根长(单个处理的单株平均根长,cm),并对插条生根部位和特征进行观察记录。计算插穗存活率=存活插穗数/总插穗数×100%;生根率=生根插穗数/总插穗数×100%;根系效果指数=(平均根长×根系数量)/总插穗数[7]。数据采用Excel 2003整理,并用SPSS 24.0软件进行方差分析及多重比较。
1.2.3 外部形态观察
插穗扦插前用1 000 mg·L−1的NAA溶液速蘸插穗10 s,扦插基质为珍珠岩,每处理30根插穗,重复3次。自扦插当天开始取样,以后每隔14 d取样1次,每次随机取3根插穗,共取样6次(0 、14、28、42、56、70 d)。观察扦插生根过程中插穗基部形态变化,愈伤组织和不定根的发生情况,并拍照记录,拍照记录后的插穗用于后期解剖学观察。
1.2.4 解剖学观察
观察‘长叶阿尔塔’插穗茎段的横切面结构及其在扦插过程中的变化;通过扫描电镜、透射电镜观察扦插过程中各类型愈伤组织的表面形态及内部细胞结构的变化。①石蜡切片。参照周乃富等[8]的方法,对插穗基部1 cm左右的茎段进行切片,并用OLYMPUS显微镜观察并拍照,分析插穗内部不定根的发生发育过程。②扫描电镜。参照FOWKE等[9]的方法,对插穗基部愈伤组织的结构进行扫描电镜观察并拍照(Quanta 200)。③透射电镜。参照WU等[10]的方法,对新鲜愈伤组织材料(0.5 cm3)进行透射电镜观察并拍照(JEM 1400)。
2. 结果与分析
2.1 不同处理对插穗生根的影响
由表2可知:不同处理‘长叶阿尔塔’插穗存活率、生根率、最长根长、根系效果指数4个指标差异极显著(P<0.01)。其中,T9处理插穗存活率达63.98%、生根率达48.83%、最长根长达5.15 cm、根系效果指数达4.90,均极显著高于其他处理(P<0.01)。从表3可知:植物生长调节剂的种类和质量浓度、处理方法水平3的生根率极显著高于水平1与水平2(P<0.01);基质类型水平1与水平2的生根率极显著高于水平3(P<0.01)。综合表2和表3可知:‘长叶阿尔塔’插穗经1 000 mg·L−1 IBA溶液速蘸10 s,扦插在V(草炭)∶V(蛭石)∶V(珍珠岩)=3∶3∶4或4∶3∶3的基质中可获得较高的生根率。
表 2 不同处理对‘长叶阿尔塔’插穗生根的影响Table 2 Effects of different treatments on rooting of I.× altaclerensis ‘Belgica Aurea’处理号 插穗存活率/% 生根率/% 最长根长/cm 根系效果指数 T1 22.11±2.25 Bbc 12.74±1.37 Dd 2.69±0.70 Bbc 1.92±0.14 Bbc T2 11.37±1.20 De 8.68±0.71 DEde 1.31±0.70 BCc 1.04±0.19 BCc T3 34.18±3.14 Bc 23.62±2.47 Cc 2.65±0.75 Bbc 2.06±0.16 Bbc T4 5.42±4.72 Def 4.25±3.68 Ee 1.71±1.61 BCbc 1.07±0.96 BCc T5 0.00±0.00 Ef 0.00±0.00 Ee 0.00±0.00 Cc 0.00±0.00 Cc T6 41.61±2.67 Bb 36.09±2.94 Bb 3.09±1.20 ABb 2.55±1.07 Bb T7 16.16±3.12 Ce 8.88±1.70 DEde 2.66±0.46 Bbc 1.81±0.71 Bbc T8 23.67±3.63 Cd 12.74±2.21 Dd 2.91±0.84 ABbc 2.33±0.66 Bbc T9 63.98±6.71 Aa 48.83±7.35 Aa 5.15±1.02 Aa 4.90±0.87 Aa 说明:同列不同小写字母表示差异显著(P<0.05),同列不同大写字母表示差异极显著(P<0.01) 表 3 正交试验各因素对插穗生根率的多重比较Table 3 Multiple comparison of rooting rate on different fators of orthogonal test水平 植物生长调节剂 处理方法 基质类型 1 15.01±1.51 Bb 8.62±1.51 Bb 20.52±1.51 Aa 2 13.45±1.51 Bb 7.14±1.51 Bb 20.59±1.51 Aa 3 23.48±1.51 Aa 36.18±1.51 Aa 10.83±1.51 Bb 说明:同列不同小写字母表示差异显著(P<0.05),同列不
同大写字母表示差异极显著(P<0.01)2.2 插穗生根过程的外部形态观察
与扦插前(图1A)相比,扦插14 d时,插穗切口边缘能够观察到少量浅绿色的愈伤组织(图1B);扦插28 d时,插穗切口处表皮开裂,并与木质化部分分离(图1C);扦插42 d时,插穗切口上方1 cm左右的部位出现条状开裂,此时愈伤组织较多,沿着表皮与木质化部分的界限呈环状分布(图1D);扦插56 d时,大部分插穗切口处均形成点状、浅黄色的愈伤组织,少量不定根突破皮层,开始皮外伸长生长(图1E);扦插70 d时,多数插穗基部均能明显观察到不定根,其生长部位在距插穗下切口上部2 cm内,有些不定根可生长至2 cm左右(图1G);扦插90 d时(不在取样周期内,仅用于外部形态观察),有大量不定根形成,其长度超过5 cm(图1H)。同时,扦插过程中也发现有些插穗基部形成发达的愈伤组织,将切口全部包住(图1F),但并未观察到愈伤组织内长出不定根(图1I)。此外,有些插穗既不长出愈伤组织,也没有形成不定根,也不死亡,出现“假活”现象;也有部分插穗自顶端开始发黑褐化,最终死亡(图1J)。
2.3 插穗生根过程的解剖结构观察
2.3.1 插穗扦插前的解剖结构
扦插前‘长叶阿尔塔’嫩枝插穗的横切面由表皮(Ep)、皮层(Co)、维管柱3部分组成(图2A)。维管柱包括韧皮部(Ph)、维管形成层(Vc)、木质部(Xy)、髓(Pi)等部分;在皮层与韧皮部之间存在由一层或多层纤维细胞组成的环状厚壁组织(Ps),呈连续或不连续的环状排列,被染成红色(图2B)。试验中大量切片观察并未发现插穗茎段横切面内存在潜伏根原基,表明‘长叶阿尔塔’的根原基是在扦插后诱导产生的。
2.3.2 不定根的发生过程
根据解剖观察结果,‘长叶阿尔塔’插穗生根过程可划分为3个时期,即形成层细胞活跃期、不定根原基形成期和不定根形成期。①形成层细胞活跃期:由于植物生长调节剂的诱导,形成层细胞在28 d左右开始旺盛分裂,连续平周分裂产生胞质浓、细胞核大、染色深的薄壁细胞,并有向外扩张的趋势。②不定根原基形成期:根诱导42 d左右,髓射线正对的形成层细胞分裂最旺盛,在髓射线加宽部位和紧靠韧皮部的部位形成一团大小相当、细胞核较大、核仁明显、细胞质较浓的根原基细胞团(图2C)。随后,根原基细胞团不断分裂冲破连续的厚壁组织,并向皮层方向生长,突破皮层的根原基细胞团受到挤压分化形成楔形的根原基(图2D)。③不定根形成期:根原基形成后 (约56 d),朝向表皮一端的细胞团转化为不定根的顶端分生组织,顶端分生组织细胞不断分裂、生长,逐渐突破皮层细胞和表皮(图2E);同时,位于不定根根尖后端的细胞从外向内逐渐分化形成根的维管系统,最终与茎的维管系统相连形成幼根(图2F)。
2.4 扦插生根过程中愈伤组织的细胞形态学观察
2.4.1 扫描电镜观察
图3A显示同一插穗上2种不同类型的愈伤组织,①为白色、透明、块状的愈伤组织,②为浅黄色、不透明、点状的愈伤组织。白色块状愈伤组织表面有很多凸出且大小均一的球形细胞,细胞间间隙较小,为胚性愈伤组织细胞(图3B和图3C),多以细胞团的形式存在(图3D),表面黏液较多,且带有少量絮状附着物(图3E)。从图3F发现:浅黄色点状愈伤组织表面粗糙,细胞大多死亡破裂(图3G),细胞表面有附着物(图3H),在死亡破裂的细胞之间存在间隙,表面存在凹陷(图3I)。
2.4.2 透射电镜观察
同一愈伤组织中既有胚性愈伤组织细胞也有非胚性愈伤组织细胞。胚性愈伤组织细胞质浓厚、细胞器较明显(图4A);非胚性愈伤组织细胞质稀薄,有明显的中央大液泡,几乎观察不到细胞器(图4B)。胚性愈伤组织细胞核大,核仁明显,在靠近细胞膜的胞质区域里有较多的淀粉粒和线粒体,还可观察到内含淀粉粒的叶绿体。淀粉可以为插穗生根提供充足的营养,线粒体较多说明其呼吸作用较强,代谢旺盛(图4C、4D、4E、4F)。同时,仍有部分胚性愈伤组织细胞出现轻微的质壁分离现象(图4G),这可能是老化愈伤组织中的衰老细胞。非胚性愈伤组织细胞的细胞质受到液泡挤压,细胞核等仅分布于细胞壁附近,但仍可观察到明显的核仁(图4H)。
3. 讨论
3.1 植物生长调节剂与生根
选择最优的植物生长调节剂种类和质量浓度、处理时间等因素组合可以有效提高植物扦插生根率和生根数[11]。研究[12]表明:植物生长调节剂可以促进插穗基部细胞的分生与分化,加速插穗内可溶性糖、淀粉及可溶性蛋白的水解和代谢,使下切口成为营养物质的中心吸收区域;使用植物生长调节剂还可以提高插穗内过氧化物酶(POD)、多酚氧化酶(PPO)、吲哚乙酸氧化酶(IAAO)的活性,调节内源激素水平,活化形成层,促进根原基的形成[13-16]。IBA在促进难生根树种的生根及改善根系品质方面取得了较好的效果[17-18]。本研究中,IBA促进插穗生根效果显著优于ABT1和NAA,这可能是由于IBA被氧化分解的速度慢、传导扩散性能差,作用于插穗基部的时间长,有利于促进不定根的发生[19]。本试验最佳处理的生根率仅为48.83%,今后可结合其生根过程的激素调控、酶活性变化等方面对‘长叶阿尔塔’的生根机制开展更深入探究。
3.2 ‘长叶阿尔塔’插穗生根类型
根据不定根在插穗上的形成部位不同,木本植物插穗生根类型分为皮部生根型、愈伤组织生根型和混合生根型[20]。本研究发现:‘长叶阿尔塔’插穗生根部位多在插穗切口上方2 cm左右的皮部,切口处无愈伤组织或仅有少量愈伤组织,也有少数插穗基部的愈伤组织发达,但仍然从切口上方的皮部形成多条不定根,与金建邦等[21]对欧洲鹅耳枥Carpinus betulus扦插不定根的发生发育研究结果类似。同时,观察‘长叶阿尔塔’插穗茎段的横切面切片后,并未发现潜伏根原基的存在,推测不定根是从扦插后诱导产生的诱生根原基发育而来,与山木通Clematis finetiana[22]、红花槭Acer rubrum[23]等的根原基来源相同。因此,‘长叶阿尔塔’插穗生根类型属于皮部诱导生根型。
3.3 茎段解剖结构与生根的关系
插穗茎段结构是影响不定根发生、发育的“解剖学原因”[24]。对于难生根树种而言,插穗内部的机械组织(包括厚角组织与厚壁组织2类)是根原基形成和发育的阻碍因子[25-26]。树木扦插生根的难易程度与皮层和韧皮部之间的厚壁组织关系密切。多数难生根树种厚壁组织连续且呈环状,如珙桐Davidia involucrata[27]等。若插穗皮层中没有这种组织,或虽有但并不连续,则插穗生根相对容易,如喜树Camptotheca acuminata[28]等。本研究发现‘长叶阿尔塔’1年生插穗茎段皮层与韧皮部之间,存在1~2层由纤维细胞组成的环状厚壁组织,呈连续或不连续状,可能与插穗的发育程度有关;进一步观察发现仅少数根原基能突破连续的环状厚壁组织。此外,‘长叶阿尔塔’插穗生根需经历较长时间,春季56 d左右才能观察到突破表皮的不定根。由于生根进程缓慢,在此过程中插穗新叶、芽的生长消耗了大量的养分,且较长的时间容易导致插穗因病原菌侵害而褐化死亡,降低生根率。因此,为提高插穗生根率,应选择1年生、木质化程度较弱的枝条进行扦插,以减少厚壁组织对插穗生根率的影响。
3.4 愈伤组织与生根的关系
扦插后,通常会在插穗基部表皮或表皮与木质化部分交接处形成愈伤组织,可由插穗茎段中的皮层、韧皮部、维管形成层、髓等多个部位的细胞快速分裂而来。插穗愈伤组织与不定根发生发育的关系可概括为以下3种:①愈伤组织的形成是不定根生长发育的物质基础。此类愈伤组织中可以分化形成根原基细胞,在一定条件下可发育形成不定根[29],如洒金柏Platycladus orientalis[30]等多数针叶树种均属于此类。②愈伤组织的产生与不定根形成无直接因果关系、彼此独立[31]。这类愈伤组织通常不能形成根原基,只能分化形成独立的维管束、输导组织等,在插穗与基质之间无机盐、水分等物质交换过程中起着中介作用,如灰毡毛忍冬Lonicera macranthoides[32]等属于此类。③愈伤组织的产生不利于不定根的发生、发育[33]。如高度发达的愈伤组织抑制了白桦Betula platyphylla嫩枝插穗根原基细胞的分化,进而阻碍了不定根的形成[34]。本研究发现:‘长叶阿尔塔’插穗愈伤组织产生与不定根发生、发育彼此独立,适度分化的愈伤组织能够保护切口免受外界病菌侵入,防止插穗内有效物质的流失,还可以充当水分等物质交换的桥梁。但过度分化的愈伤组织会占用插穗内部的营养物质,抑制不定根的形成。
4. 结论
冬青‘长叶阿尔塔’插穗经1 000 mg·L−1 IBA溶液速蘸10 s,扦插在V(草炭)∶V(蛭石)∶V(珍珠岩)=3∶3∶4或4∶3∶3的基质中可获得较高的生根率,其插穗生根类型属于皮部诱导生根型,根原基起源于髓射线与维管形成层交叉处,环状厚壁组织是阻碍其插穗生根的机械原因。‘长叶阿尔塔’插穗愈伤组织中并未观察到根原基发端细胞,其产生与不定根发生、发育彼此独立,可分为胚性愈伤组织和非胚性愈伤组织,胚性愈伤组织多为白色,其表面细胞体积较小且排列紧密,常成团分布,细胞核大质浓,细胞器丰富;非胚性愈伤组织细胞多为黄色,其表面细胞大多死亡破裂,空泡化明显,几乎没有细胞器。
-
表 1 因素水平表
Table 1. Factors and levels
水平 A. 甲醇体积
分数/%B. 超声
时间/minC. 液料比/
(mL·g−1)−1 70 20 12(60∶5) 0 80 30 20(100∶5) 1 90 40 28(140∶5) 表 2 Box-Behnken设计实验和结果
Table 2. Box-Behnken Design tests and results
实验号 A. 甲醇体积分数 B. 超声时间 C. 液料比 提取率R1/% 1 1 −1 0 0.043 2 0 0 0 0.108 3 −1 −1 0 0.062 4 0 −1 −1 0.057 5 0 0 0 0.113 6 0 1 −1 0.043 7 −1 0 −1 0.045 8 1 0 1 0.029 9 1 0 −1 0.043 10 0 1 1 0.078 11 0 −1 1 0.031 12 0 0 0 0.105 13 0 0 0 0.103 14 −1 1 0 0.056 15 0 0 0 0.106 16 −1 0 1 0.085 17 1 1 0 0.065 表 3 响应面回归模型ANOVA分析结果
Table 3. Response surface regression model ANOVA analysis results
方差来源 平方和 自由度 均方 F P 显著性 模型 0.013 9 1.469×10−3 24.59 0.000 2 *** A 5.780×10−4 1 5.780×10−4 9.67 0.017 1 * B 3.001×10−4 1 3.001×10−4 5.02 0.060 0 C 1.531×10−4 1 1.531×10−4 2.56 0.153 4 AB 1.960×10−4 1 1.960×10−4 3.28 0.113 0 AC 7.290×10−4 1 7.290×10−4 12.20 0.010 1 * BC 9.303×10−4 1 9.303×10−4 15.57 0.005 6 ** A2 2.874×10−3 1 2.874×10−3 48.10 0.000 2 *** B2 2.502×10−3 1 2.502×10−3 41.87 0.000 3 *** C2 3.885×10−3 1 3.885×10−3 65.02 <0.000 1 *** 残差 4.183×10−4 7 5.975×10−5 失拟项 3.603×10−4 3 1.201×10−4 8.28 0.034 3 误差 5.800×10−5 4 1.450×10−5 总和 0.014 16 说明:A. 甲醇体积分数;B. 超声时间;C. 液料比。*表示P<0.05;**表示P<0.01;***表示P<0.001 -
[1] WALL M E, WANI M C, COOK C E, et al. Plant antitumor agents, the isolation and structure of Camptothecin, a novel alkaloidal leukaemia and tumor inhibitor from Camptotheca acuminata [J]. J Am Chem Soc, 1966, 88(16): 3888 − 3890. [2] 曾庆钱, 郑海, 黄意成, 等. 喜树采后生理调控对喜树碱次生代谢的影响[J]. 广东化工, 2017, 44(16): 69 − 70. ZENG Qingqian, ZHENG Hai, HUANG Yicheng, et al. Effects of post-harvest physiological regulation on secondary metabolism of Camptothecin [J]. Guangdong Chem Ind, 2017, 44(16): 69 − 70. [3] 吴海霞, 洪仁辉, 苟志辉, 等. 喜树碱在喜树体内分布及在有害生物防治上的应用[J]. 热带林业, 2014, 42(4): 39 − 42. WU Haixia, HONG Renhui, GOU Zhihui, et al. The distribution of camptothecin in Camptotheca acuminata Decaisne and its usage in pest control [J]. Trop For, 2014, 42(4): 39 − 42. [4] 毛胜凤, 周湘, 范闻春, 等. 喜树碱对番茄灰霉病菌的毒理效应[J]. 浙江农林大学学报, 2015, 32(4): 585 − 589. MAO Shengfeng, ZHOU Xiang, FAN Wenchun, et al. Toxicological effects of camptothecin on Botrytis cinerea [J]. J Zhejiang A&F Univ, 2015, 32(4): 585 − 589. [5] 陈旭, 雷帮星, 文庭池, 等. 1株马比木植物内生真菌Trichoderma sp. 抗癌活性研究[J]. 时珍国医国药, 2017, 28(3): 522 − 525. CHEN XU, LEI Bangxing, WEN Tingchi, et al. Anticancer activity of an endophytic fungus Trichoderma sp. [J]. Lishizhen Med Mater Med Res, 2017, 28(3): 522 − 525. [6] 白永花, 宋启示. 马比木根的化学成分研究[J]. 天然产物研究与开发, 2014, 26(2): 197 − 201. BAI Yonghua, SONG Qishi. Chemical constituents from the roots of Nothapodytes pittosporoides [J]. Nat Prod Res Dev, 2014, 26(2): 197 − 201. [7] 杨艳, 王道平, 李齐激, 等. SPME-GC-MS分析马比木中挥发性成分[J]. 信阳师范学院学报(自然科学版), 2016, 29(3): 435 − 438. YANG Yan, WANG Daoping, LI Qiji, et al. Analysis natural volatile constituents of Nothapodytes pittosporoides with SPME-GC-MS [J]. J Xinyang Norm Univ Nat Sci Ed, 2016, 29(3): 435 − 438. [8] 白永花, 宋启示. 马比木根中喜树碱和9-甲氧基喜树碱的HPLC分析[J]. 药物分析杂志, 2014, 34(1): 100 − 103. BAI Yonghua, SONG Qishi. HPLC analysis of camptothecin and 9-methoxycamptothecin in the roots of Nothapodytes pittosporoides [J]. Chin J Pharm Anal, 2014, 34(1): 100 − 103. [9] 周翔, 林森, 罗娅君, 等. 喜树果和马比木中喜树碱含量的比较[J]. 食品与发酵科技, 2014, 50(2): 89 − 91. ZHOU Xiang, LIN Sen, LUO Yajun, et al. Comparison of camptothecin content in Camptotheca acuminata fruit and mappia foetida [J]. Food Ferment Technol, 2014, 50(2): 89 − 91. [10] 刘盛权, 于敬亮, 刘振德, 等. 马比木根中喜树碱提取液稳定剂的优化[J]. 中药材, 2016, 39(3): 603 − 605. LIU Shengquan, YU Jingliang, LIU Zhende, et al. Optimization of stabilizing agent of camptothecin extraction from Nothapodytes pittosporoides roots [J]. J Chin Med Mater, 2016, 39(3): 603 − 605. [11] 高渐飞, 张凡, 杨艳, 等. 马比木不同部位喜树碱含量测试分析[J]. 绿色科技, 2018(1): 1 − 5. GAO Jianfei, ZHANG Fan, YANG Yan, et al. Camptothecin contents and transfer process in different parts of Nothapodytes pittosporoides [J]. J Green Sci Technol, 2018(1): 1 − 5. [12] 罗娅君, 边清泉, 罗英, 等. 大孔树脂吸附马比木中喜树碱的工艺[J]. 中成药, 2015, 37(8): 1859 − 1862. LUO Yajun, BIAN Qingquan, LUO Ying, et al. Process for adsorbing camptothecin in macrobiporous resin [J]. Chin Tradit Pat Med, 2015, 37(8): 1859 − 1862. [13] 卞赛男, 常鹏杰, 王宁杭, 等. 氮素形态对喜树叶片生长、叶绿素荧光参数及叶绿体相关基因表达的影响[J]. 浙江农林大学学报, 2019, 36(5): 908 − 916. BIAN Sainan, CHANG Pengjie, WANG Ninghang, et al. Leaf growth, chlorophyll fluorescence characteristics, and expression of photosystem-related genes in Camptotheca acuminata with different N forms’ fertilization [J]. J Zhejiang A&F Univ, 2019, 36(5): 908 − 916. 期刊类型引用(7)
1. 杨鸿玉,孙茂理,陈涛,冯士令,周莉君,丁春邦. 芽苗砧嫁接与扦插油茶营养器官显微结构的比较. 植物资源与环境学报. 2025(01): 42-51 . 百度学术
2. 谢言兰,宋晓慧,丁婷,李霞,李魁印. 不同激素处理对小果荨麻扦插生根及相关生理指标的影响. 湖南农业科学. 2025(01): 21-27 . 百度学术
3. 袁振安,杜文婷,刘国华,毛霞,洑香香. 东京四照花嫩枝扦插繁殖及生根过程中生理指标的动态变化. 浙江农林大学学报. 2024(03): 624-633 . 本站查看
4. 钱家连,李迎超,许慧慧,王茜,秦爱丽,任俊杰,王利兵,于海燕. 不同年龄栓皮栎嫩枝扦插生根及解剖学分析和酶活性变化. 浙江农林大学学报. 2023(01): 107-114 . 本站查看
5. 樊靖,孙丽娜,张俊林,彭志声,彭悠悠,袁虎威. 金橡树叶冬青组织培养和快速繁殖. 中南农业科技. 2023(07): 30-34 . 百度学术
6. 王因花,燕丽萍,孔雨光,吴德军,任飞,梁静. 绒毛白蜡嫩枝扦插生根的解剖学特征与内源激素变化. 中南林业科技大学学报. 2023(11): 28-35+52 . 百度学术
7. 陈霞,蒋淑磊,党风梅,白霄霞,赵玉芬. 生根剂和插条部位对挪威槭‘缤纷秋色’不定根形成的影响. 黑龙江农业科学. 2023(12): 44-49 . 百度学术
其他类型引用(2)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190533