-
随着纳米技术的快速发展,碳纳米管在材料、催化、光学器件、分子开关、生物医学、环境修复等各领域都有了广泛的研究和应用[1],同时碳纳米管对人类健康和生态环境的潜在风险也引起了世界范围内的广泛关注[2-6]。进入环境中的碳纳米管将不可避免地与其他化学物质共存,碳纳米管对共存污染物毒性的影响及复合毒性也越来越多地受到了研究者的关注。碳纳米管可以通过吸附共存污染物,降低或增强共存污染物对生物的毒性。如刘信勇等[7]发现实验用多壁碳纳米管本身对斑马鱼Danio rerio没有毒性,但却由于吸附了铅(Pb)和锌(Zn),导致重金属在斑马鱼体内的积累,毒性剧增。YU等[8]发现表面未处理的单壁和多壁碳纳米管抑制了大型蚤Daphnia magna对重金属的吸收,但由于单壁和多壁碳纳米管表面富有含氧官能团,能吸附大量重金属,因此大型蚤内重金属积累增强。WANG等[9]发现铜(Cu)和铬(Cr)增强了碳纳米管对微生物种群的影响,以羧基化和羟基化碳纳米管毒性更强。碳纳米管与重金属的复合毒性是协同、叠加还是拮抗,不仅取决于碳纳米管和重金属的相互作用,还取决两者与生物体的相互作用。具有不同表面官能团的多壁碳纳米管性质差异较大,影响其与重金属和生物体的相互作用,从而影响复合毒性;开展不同官能团多壁碳纳米管对重金属的吸附及生物效应的研究十分必要。细菌是单细胞原核微生物,结构简单,与其他生物相比,对污染物的毒性更敏感。大肠埃希菌Escherichia coli在自然界中普遍存在,常被用作毒性实验模型微生物;重金属镉(Cd)毒性较大,在污染水体中常见。因此,本研究以大肠埃希菌为模型细菌,研究3种多壁碳纳米管(短、短羟基和短羧基多壁碳纳米管)和Cd的复合细菌毒性,从多壁碳纳米管、重金属、细菌相互作用的角度阐述了复合毒性机制,试图为水体中多壁碳纳米管和重金属的复合毒性效应评价提供依据。
-
如图 1所示:随多壁碳纳米管质量浓度升高,大肠埃希菌存活率下降,即多壁碳纳米管的细菌毒性增强。毒性从强到弱依次为短多壁碳纳米管、短羧基多壁碳纳米管、短羟基多壁碳纳米管。当多壁碳纳米管质量浓度达200 mg·L-1时,大肠埃希菌存活率分别降至70%、80%和90%。
-
由图 2A可知:Cd2+的细菌毒性(对照)随着质量浓度增加而增强,当Cd2+质量浓度达10 mg·L-1时,大肠埃希菌的存活率为45%。100 mg·L-1的多壁碳纳米管与不同质量浓度Cd2+混合,大肠埃希菌的存活率随Cd2+质量浓度增加而降低;3种多壁碳纳米管-Cd2+混合物的复合细菌毒性从强到弱依次为短多壁碳纳米管-Cd2+、短羧基多壁碳纳米管-Cd2+、短羟基多壁碳纳米管-Cd2+。就短羧基多壁碳纳米管而言,当Cd2+质量浓度低于4 mg·L-1时,混合物的细菌毒性与Cd2+的单独毒性几乎一样;随Cd2+质量浓度升高,复合细菌毒性明显低于Cd2+的细菌毒性。而短羟基多壁碳纳米管-Cd2+的复合细菌毒性明显低于Cd2+的细菌毒性。比较多壁碳纳米管-Cd2+的复合细菌毒性和叠加毒性可知:复合细菌毒性小于两者叠加毒性,即复合细菌毒性是拮抗效应(图 2A)。实际水体环境中,Cd2+质量浓度可能较小,为了进一步明确多壁碳纳米管吸附低质量浓度Cd2+后的细菌毒性,固定Cd2+质量浓度至1 mg·L-1。从图 2B可以看出:随多壁碳纳米管质量浓度上升,Cd2+-多壁碳纳米管混合物细菌毒性逐渐减弱的,短多壁碳纳米管-Cd2+、短羧基多壁碳纳米管-Cd2+和短羟基多壁碳纳米管-Cd2+的细菌存活率分别从50%、55%和60%变化为70%、80%和85%。相同条件下,复合细菌毒性由大到小依次为短多壁碳纳米管-Cd2+、短羧基多壁碳纳米管-Cd2+、短羟基多壁碳纳米管-Cd2+。多壁碳纳米管本身细菌毒性较弱,因此认为多壁碳纳米管吸附低质量浓度Cd2+能明显降低细菌毒性。
-
从表 1可以看出:3种多壁碳纳米管的zeta电位相差不多,在超纯水中均带负电荷;而加入Cd2+后,3种多壁碳纳米管的负电荷部分被中和,以短多壁碳纳米管表面的负电荷降低最多。
表 1 多壁碳纳米管颗粒及多壁碳纳米管吸附Cd2+后混合物的zeta电位
Table 1. Zeta potentials of MWCNTs and its compounds
类型 zeta电位/mV 短多壁碳纳米管 -13.34 短多壁碳纳米管-Cd2+ -4.52 短羧基多壁碳纳米管 -12.97 短羧基多壁碳纳米管-Cd2+ -6.37 短羟基多壁碳纳米管 -12.92 短羟基多壁碳纳米管-Cd2+ -6.12 -
如图 3A所示:多壁碳纳米管在前30 min沉降速度较快,1 h后沉降基本稳定,悬浮浓度基本保持不变。相比之下,短多壁碳纳米管稳定性最差,3 h沉降率约90%,短羟基和短羧基多壁碳纳米管稳定性较好,3 h沉降率分别达45%和20%。吸附Cd2+后,短羧基多壁碳纳米管-Cd2+混合物的3 h沉降率达50%,略高于短羧基多壁碳纳米管。短羧基多壁碳纳米管-Cd2+和短羟基多壁碳纳米管-Cd2+的沉降率与纳米管溶液沉降率几乎一样。大肠埃希菌悬液本身不沉降,当在大肠埃希菌悬液中混入多壁碳纳米管及其吸附混合物后(图 3B),混合悬液前30 min共沉降速度较快,1 h后沉降基本稳定。3种多壁碳纳米管与大肠埃希菌3 h共沉降率分别约40%(短多壁碳纳米管)、45%(短羟基多壁碳纳米管)和20%(短羧基多壁碳纳米管);3种吸附Cd2+的多壁碳纳米管与大肠埃希菌3 h共沉降率分别约45%(短多壁碳纳米管)、60%(短羟基多壁碳纳米管)和40%(短羧基多壁碳纳米管)。
-
如图 4所示:当Cd2+质量浓度低于4 mg·L-1时,短多壁碳纳米管对Cd2+的吸附量随着Cd2+的质量浓度增加而增多。当Cd2+的质量浓度大于4 mg·L-1时,吸附量几乎不变。短羧基和短羟基多壁碳纳米管对Cd2+的吸附量随着Cd2+的质量浓度增加而增多。相同条件下,3种多壁碳纳米管对Cd2+的吸附量从大到小依次为短羧基多壁碳纳米管、短羟基多壁碳纳米管、短多壁碳纳米管。
Effects and mechanism of multi-walled carbon nanotubes on the bacterial toxicity of cadmium
-
摘要:
目的 探讨多壁碳纳米管和重金属的相互作用,对复合生态毒性评价具有重要意义。 方法 测定3种不同官能团多壁碳纳米管(短、短羟基和短羧基)与镉离子(Cd2+)对大肠埃希菌Escherichia coli的单独及复合毒性,并通过碳纳米管zeta电位测定、沉降和吸附实验揭示短多壁碳纳米管-Cd2+混合物的细菌毒性及影响机制。 结果 3种多壁碳纳米管细菌毒性从强到弱依次为短多壁碳纳米管、短羧基多壁碳纳米管、短羟基多壁碳纳米管。100 mg·L-1短多壁碳纳米管混合不同质量浓度(0、1、2、4、8、10 mg·L-1)Cd2+,复合毒性从强到弱依次为短多壁碳纳米管-Cd2+、短羧基多壁碳纳米管-Cd2+、短羟基多壁碳纳米管-Cd2+,且复合毒性都小于两者叠加毒性。不同质量浓度(10、20、50、100、200 mg·L-1)多壁碳纳米管混合1 mg·L-1Cd2+,复合毒性从强到弱依次为短多壁碳纳米管-Cd2+、短羧基多壁碳纳米管-Cd2+、短羟基多壁碳纳米管-Cd2+。 结论 多壁碳纳米管-Cd2+混合物的细菌毒性主要取决于多壁碳纳米管对Cd2+的吸附状况。 Abstract:Objective This study aims to explore the combined toxicity of multi-walled carbon nanotubes(MWCNTs) and heavy metals. Method Three types of MWCNTs[Short-MWCNTs(S-M), Short-carboxyl-MWCNTs(SC-M), Short-hydroxyl-MWCNTs(SO-M)]were selected to conduct the toxicity tests. Single and combined toxicity of MWCNTs and Cd2+ to Escherichia coli with different mass concentrations was studied, and the underlying toxicity and its influencing mechanism were revealed by zeta potential determination, sedimentation and adsorption experiments. Result Under the same conditions the bacterial toxicity of the three types of MWCNTs ranging from strong to weak was S-M, SC-M and SO-M. In the presence of MWCNTs (100 mg·L-1) and Cd2+(0, 1, 2, 4, 8, 10 mg·L-1), the combined toxicity ranging from strong to weak was S-M + Cd2+, SC-M + Cd2+ and SO-M + Cd2+. All the combined toxicity was lower than additive toxicity accordingly. In the presence of MWCNTs (10, 20, 50, 100, 200 mg·L-1) and Cd2+(1 mg·L-1), the combined toxicity ranging from strong to weak was S-M + Cd2+, SC-M + Cd2+ and SO-M + Cd2+. Conclusion The influence of MWCNTs on the bacterial toxicity of Cd2+ mainly depends on the adsorption capacity of MWCNTs to Cd2+. -
表 1 多壁碳纳米管颗粒及多壁碳纳米管吸附Cd2+后混合物的zeta电位
Table 1. Zeta potentials of MWCNTs and its compounds
类型 zeta电位/mV 短多壁碳纳米管 -13.34 短多壁碳纳米管-Cd2+ -4.52 短羧基多壁碳纳米管 -12.97 短羧基多壁碳纳米管-Cd2+ -6.37 短羟基多壁碳纳米管 -12.92 短羟基多壁碳纳米管-Cd2+ -6.12 -
[1] COLVIN V L. The potential environmental impact of engineered nanomaterials[J]. Nat Biotechnol, 2003, 21(10):1166-1170. [2] SERVICE R F. Nanomaterials show signs of toxicity[J]. Science, 2003, 300(5617):243. doi:10.1126/science.300.5617.243a. [3] BRUMFIEL G. Nanotechnology:a little knowledge[J]. Nature, 2003, 424(6946):246-248. [4] NEL A, XIA Tian, MÄDLER L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622-627. [5] HANDY R D, OWEN R, VALSAMI-JONES E. The ecotoxicology of nanoparticles and nanomaterials:current status, knowledge gaps, challenges, and future needs[J]. Ecotoxicology, 2008, 17(5):315-325. [6] SCOWN T M, van AERLE R, TYLER C R. Review:do engineered nanoparticles pose a significant threat to the aquatic environment?[J]. Crit Rev Toxicol, 2010, 40(7):653-670. [7] 刘信勇, 朱琳.多壁碳纳米管存在环境下Pb、Zn对斑马鱼毒性的变化[J].生态毒理学报, 2009, 4(6):829-833. LIU Xinyong, ZHU Lin. The change of the toxicity of Pb and Zn on zebrafish in the case of the existence of muti-walled carbon nanotubes[J]. Asian J Ecotoxic, 2009, 4(6):829-833. [8] YU Zhiguo, WANG Wenxiong. Influences of ambient carbon nanotubes on toxic metals accumulation in Daphnia magna[J]. Water Res, 2013, 47(12):4179-4187. [9] WANG Fei, YAO Jun, LIU Haijun, et al. Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in an aquatic environment[J]. J Hazardous Mater, 2015, 292:137-145. [10] LI Mei, PEI Jianchuan, TANG Xiaomen, et al. Effects of surfactants on the combined toxicity of TiO2 nanoparticles and cadmium to Escherichia coli[J]. J Environ Sci, 2018, 74:126-133. [11] BENNETT S W, ADELEYE A, JI Zhaoxia, et al. Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes[J]. Water Res, 2013, 47(12):4074-4085. [12] RAJAVEL K, GOMATHI R, MANIAN S, et al. In vitro bacterial cytotoxicity of CNTs:reactive oxygen species mediate cell damage edges over direct physical puncturing[J]. Langmuir, 2014, 30(2):592-601. [13] RAMOS P, SCHMITZ M, FILGUEIRA D, et al. Interaction of single-walled carbon nanotubes and saxitoxin:ab initio simulations and biological responses in hippocampal cell line HT-22[J]. Environ Toxicol Chem, 2016, 36(17):1728-1737. [14] LU Chungsying, CHIU Huantsung. Adsorption of zinc (Ⅱ) from water with purified carbon nanotubes[J]. Chem Eng Sci, 2006, 61(4):1138-1145. [15] XU Yijun, RORA A, LIU Xi, et al. Characterization and use of functionalized carbon nanotubes for the adsorption of heavy metal anions[J]. New Carbon Mater, 2011, 26(1):57-62. [16] TOFIGHY M A, MOHAMMAD T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets[J]. J Hazardous Mater, 2011, 185(1):140-147. [17] GUPTA V K, MORADI O, TYAGI I, et al. Study on the removal of heavy metal ions from industry waste by carbon nanotubes:effect of the surface modification:a review[J]. Crit Rev Environ Sci Technol, 2015, 46(2):93-118. [18] ANITHA K, NAMSANI S, SINGH J K. Removal of heavy metal ions using a functionalized single-walled carbon nanotube:a molecular dynamics study[J]. J Phys Chem A, 2015, 119(30):8349-8358. doi:10.1021/acs.jpca.5b03352. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2020.02.017