-
森林地上生物量(AGB)是表征森林生产力和陆地生态碳循环的重要指标,对研究全球气候变化、人类经营活动等对森林生态系统的影响具有重要意义[1]。精确估算森林地上生物量对森林可持续发展、增加森林碳汇能力及减缓全球气候变暖具有关键作用[2]。样地调查是精确获取森林地上生物量的主要手段[3-5],但该方法耗时费力[6],难以实现大范围时空动态监测。近年来,众多研究者利用遥感变量信息(如光谱特征、植被指数、冠层结构参数、纹理等),结合样地调查构建遥感估算模型,实现了对地上生物量的时空估算。森林地上生物量遥感估算有参数和非参数模型[7-12],其中,以支持向量回归(SVR)模型为代表的非参数模型被广泛应用于森林地上生物量时空估算研究[13-15]。LI等[16]比较了不同模型(如最小二乘法模型、广义加性模型、随机森林、SVR等)在估算地上生物量上的效果后发现,SVR模型估算效果最好;FENG等[14]发现随机森林、SVR模型等非参数模型估算的地上生物量精度要高于参数模型(线性模型和乘数模型),且SVR模型估算精度最高。
竹林具有“爆发式生长”的特点。在生长和抽枝展叶期,竹林叶面积指数(LAI)逐渐增加,地上生物量快速积累[16-17]。LAI时间序列上的变化趋势能够反映森林的季节性变化,并常作为森林生态系统碳水循环和地上生物量估算等研究的重要参数之一[18-20]。相较于归一化植被指数(NDVI),增强型植被指数(EVI)对高生物量区域的敏感性更高,受土壤背景和大气效应的影响更小[21-22]。比值指数(RVI)是绿色植被的灵敏指示参数,能够反映叶干生物量和叶绿素含量的动态变化。目前,对竹林地上生物量的遥感估算研究多是基于单一时相遥感植被指数、光谱信息、纹理等特征进行,估算精度较低[23-24],且不能表征竹林快速生长过程中地上生物量快速积累的动态变化[6]。本研究以浙江省竹林资源为研究对象,以2014年浙江省中分辨率成像光谱仪(MODIS)的LAI、EVI、RVI时间序列产品为数据源,结合2014年竹林地上生物量调查数据,构建SVR模型,估算浙江省竹林地上生物量,以期为竹林碳汇遥感监测提供参考。
-
浙江省(27°06′~31°11′N,118°01′~123°10′E)位于中国东南沿海、长江三角洲南翼,是中国竹林面积最大的省份之一,竹资源十分丰富,竹产业发达,素有“世界竹子看中国,中国竹子看浙江”的美誉。目前,浙江省竹林面积为94万 hm2,其中毛竹Phyllostachys edulis林83万 hm2,竹林面积占全省森林面积约15%。
-
MODIS LAI (MOD15A2H)、地表反射率(MOD09A1)和MODIS NDVI (MOD13Q1)数据产品在美国国家航空航天局(NASA)官网下载。MODIS LAI和地表反射率的时间和空间分辨率分别为8 d和500 m,MODIS NDVI的时空分辨率分别为16 d和250 m。数据利用重投影软件MRT (MODIS Reprojection Tools)投影,采用最近邻域法将空间分辨率统一重采样为500 m×500 m。基于MODIS NDVI时间序列产品和地表反射率数据提取浙江省竹林丰度信息。首先,利用NDVI数据和最大似然法提取林地专题信息;其次,掩膜提取林地的地表反射率,并进行最小噪声变换;然后,利用影像端元法提取竹林、针叶林和阔叶林端元光谱曲线;最后,利用完全约束最小二乘混合像元分解法,得到浙江省竹林丰度图。竹林丰度提取方法参考LI等[25]和MAO等[26]。
-
调查和收集182个不同立竹密度、立地质量和经营条件的标准竹林样地(30 m×30 m)。调查因子包括胸径(DBH)和年龄(0~1年生的竹子是1度竹,2~3年生是2度竹,4~5年生是3度竹),记录样地中心坐标。基于样地竹林胸径和年龄,分别计算毛竹和雷竹Ph. praecox单竹的地上生物量[19]。
$$\begin{split} {M}_{\mathrm{毛}}=\;&747.787{{D}_{\mathrm{B}\mathrm{H}}}^{2.771}\left(\frac{0.148A}{0.028+A}\right)^{5.555}+3.772 \text{;} \\ {M}_{\mathrm{雷}}=\;&0.193\;9{{D}_{\mathrm{B}\mathrm{H}}}^{1.565\;4} 。 \end{split}$$ 其中:M毛和M雷分别表示毛竹和雷竹单竹地上生物量;DBH和A分别为胸径和竹龄。为与MODIS遥感数据匹配,本研究将样地竹林面积线性扩大为500 m×500 m [11]。
-
设置141个遥感变量,其中LAI、EVI和RVI时间序列数据各46个,各序列年均值各1个。由于MODIS产品易受大气、气溶胶、雪覆盖等因素影响,数据存在误差大、不连续等问题[20],本研究利用粒子滤波同化算法提高MODIS LAI时间序列数据的精度,主要步骤为:①利用3次样条帽盖平滑算法对MODIS LAI产品进行平滑处理[27];②将平滑的MODIS LAI输入到LAI动态模型,模拟叶面积指数;③将MODIS地表反射率的红光和近红外反射率、PROSAIL模型模拟冠层反射率、模拟LAI值输入到粒子滤波同化算法,得到叶面积指数同化结果。粒子滤波同化算法详细参考LI等[17]和MAO等[26]。增强型植被指数和比值指数利用MODIS地表反射率的第1 (red)、第2 (nir)和第3 (blue)波段分别计算。
$$ \begin{split} {I}_{\mathrm{E}\mathrm{V}\mathrm{I}}=\;&2.5\times \frac{{\rho }_{\mathrm{n}\mathrm{i}\mathrm{r}}-{\rho }_{\mathrm{r}\mathrm{e}\mathrm{d}}}{{\rho }_{\mathrm{n}\mathrm{i}\mathrm{r}}+6.0\times {\rho }_{\mathrm{r}\mathrm{e}\mathrm{d}}-7.5\times {\rho }_{\mathrm{b}\mathrm{l}\mathrm{u}\mathrm{e}}+1} \text{;}\\ {I}_{\mathrm{R}\mathrm{V}\mathrm{I}}=\;&\frac{{\rho }_{\mathrm{n}\mathrm{i}\mathrm{r}}}{{\rho }_{\mathrm{r}\mathrm{e}\mathrm{d}}} 。 \end{split}$$ 其中:IEVI、IRVI分别表示增强型植被指数(EVI)和比值指数(RVI),ρnir为近红外波段反射率,ρred为红光波段反射率,ρblue为蓝光波段反射率。利用mSG平滑算法对EVI和RVI进行处理,以减少噪声影响[28]。
-
变量数量的增加可能会导致“维数灾难”,造成运算复杂,处理速度下降[19]。为充分利用模型输入变量的特征,需要选择最优变量特征构建SVR模型。随机森林算法预测能力强,鲁棒性较好,适合处理高维数据集,计算自变量对因变量的相对重要性[29]。因此,可采用随机森林算法选择SVR模型的输入变量,即通过计算均方差增量百分数来度量和评估各变量特征对竹林地上生物量的相对重要性。随机森林参数的最优ntree值为2 000,mtry采用模型默认值,即变量个数的1/3[25]。
SVR通过选择合适的核函数将样本数据从低维空间转换到高维空间,使得低维空间内的非线性问题可在高维空间中线性处理,并保证其良好的泛化能力。本研究设置radial、linear、polynomial和sigmoid等4种核函数[30],比较分析后选择最优核函数构建竹林地上生物量估算模型。采用随机不重复抽样法从182个竹林样本中抽取50%作为训练样本,剩余的50%作为验证样本。
-
利用决定系数(R)、均方根误差(RMSE)和P (t检验)评价SVR模型模拟地上生物量的精度、误差和显著性水平,R较高且RMSE较低,说明模型估算结果较好。计算公式如下:
$$ \begin{split} \;& R=\sqrt{1-\frac{\displaystyle \sum _{i=1}^{N}({y}_{{\rm{m}}}-{y}_{{\rm{o}}}{)}_{i}^{2}}{\displaystyle \sum _{i=1}^{N}({y}_{{\rm{o}}}-{\bar{y}_{{\rm{o}}}}{)}_{i}^{2}}} \text{;}\\ \;& R_{\rm{MSE}}=\sqrt{\frac{1}{N}\sum _{i=1}^{N}{\left|{y}_{{\rm{m}}}-{y}_{{\rm{o}}}\right|}_{i}^{2}} 。 \end{split}$$ 其中:N为样本个数,i=1, 2
$, \;\cdots , $ N;ym表示模型模拟值,yo表示实测值;$ {\bar{y}}_{{\rm{o}}} $ 为N个实测值的平均值。 -
基于随机森林算法得到EVI、RVI、LAI等141个输入变量对竹林AGB影响的重要性得分,由图1可知:不同时间的叶面积指数、增强型植被指数和比值指数对竹林地上生物量影响存在较大的差异,其中LAI时间序列变量占比最大,RVI变量占比最小。在前50个影响较大的变量中,有43个对竹林地上生物量影响的重要性得分大于0.10%,LAI年均值(LAI_Ann)重要性得分最大(2.29%),LAI时间序列变量中,LAI_153(第153天LAI值)最大,为1.44%,LAI_113最小,为0.10%。因此选取变量重要性得分大于0.10%的43个变量作为SVR模型输入变量,构建竹林地上生物量估算模型。
-
利用筛选的变量,分别以radial、linear、polynomial和sigmoid等4种核函数构建竹林地上生物量估算模型。由图2可知:基于radial函数的SVR模型的训练和测试精度(R)均最高,RMSE最低,估算地上生物量和实测地上生物量的精度(R)分别为0.76和0.72,RMSE分别为5.15和8.03 Mg·hm−2;其次是linear函数,训练和测试精度(R)分别为0.64和0.60,RMSE分别为5.95和8.38 Mg·hm−2;sigmoid函数训练和测试精度(R)最低,均<0.15,RMSE最大,均>9 Mg·hm−2。polynomial函数构建的SVR模型在估算竹林地上生物量的训练和测试精度均较高,但测试样本中估算地上生物量时出现负值,因此本研究选择基于radial核函数构建的SVR模型估算浙江省竹林地上生物量。
图 2 不同核函数构建的SVR模型估算竹林地上生物量的精度
Figure 2. Estimating accuracy of 4 kernel functions in SVR model for aboveground biomass of bamboo forest
基于radial核函数构建SVR模型,分别利用单一变量时间序列数据和植被指数组合(EVI+RVI)测试模型精度。由图3可见:利用单一变量(EVI或RVI)时间序列数据构建的SVR模型估算竹林地上生物量,精度较低(R<0.65),RMSE较大;利用单一变量LAI时间序列数据和植被指数组合(EVI+RVI)模拟的AGB的精度(R>0.65)较高,RMSE较小。结合图2A可知:基于radial核函数的SVR模型,利用LAI、EVI和RVI时间序列数据估算竹林地上生物量,训练精度和测试精度均最高,误差均最低。即利用LAI、EVI、RVI时间序列数据,基于radial核函数构建SVR模型,可有效模拟竹林地上生物量的时空分布。
-
基于radial核函数构建的SVR模型,结合竹林丰度信息,估算得到浙江省竹林地上生物量统计变化值,由表1可知:浙江省全省竹林地上生物量均值为7.85 Mg·hm−2,总地上生物量为3.31×107 Mg;浙江省竹林地上生物量在各市具有明显的差异性,其中:湖州市、杭州市、金华市、绍兴市和宁波市的竹林地上生物量均值均大于全省均值;湖州市竹林地上生物量均值最大为13.56 Mg·hm−2,总地上生物量为2.13×106 Mg,占全省总地上生物量的6.44%,但其竹林面积仅占3.73%;杭州市地上生物量均值为9.86 Mg·hm−2,总地上生物量为8.48×106 Mg,占全省总地上生物量的25.42%,竹林面积占20.24%;舟山市地上生物量均值最低,为5.72 Mg·hm−2,总地上生物量为6.89×104 Mg,占全省总地上生物量的0.21%,竹林面积占0.29%。
表 1 基于SVR模型模拟的浙江省竹林地上生物量统计值
Table 1. Statistical values of aboveground biomass of bamboo forest in Zhejiang Province based on SVR model
区域 地上生物量/(Mg·hm−2) 总地上生物量/Mg 竹林面积占比/% 总地上生物量占比/% 最小值 最大值 均值 标准差 全省 0.001 30.39 7.85 5.04 3.31×107 丽水市 0.001 26.29 6.52 4.14 6.18×106 22.46 18.66 杭州市 0.001 28.45 9.86 5.63 8.42×106 20.24 25.42 金华市 0.003 27.26 8.10 4.39 4.04×106 11.82 12.20 温州市 0.001 27.54 6.13 3.83 3.06×106 11.81 9.23 衢州市 0.001 30.06 6.89 5.05 2.66×106 9.15 8.03 台州市 0.004 25.19 6.84 4.06 2.44×106 8.45 7.36 绍兴市 0.003 30.39 8.18 5.09 2.11×106 6.10 6.36 宁波市 0.006 25.63 8.08 4.81 2.02×106 5.91 6.09 湖州市 0.027 29.80 13.56 6.31 2.13×106 3.73 6.44 舟山市 0.051 14.19 5.72 3.38 6.89×104 0.29 0.21 嘉兴市 0.260 11.75 7.14 2.51 9.64×103 0.03 0.03 -
本研究基于叶面积指数、增强型植被指数和比值指数等多变量,构建并优选SVR模型,实现浙江省竹林地上生物量较高精度的估算。SVR模型耦合LAI、EVI、RVI时间序列数据估算竹林地上生物量与实测值间仍存在一定的误差。当实测值较小时(<20 Mg·hm−2),估算值高于实测值,即低值高估;而实测值较高时(>30 Mg·hm−2),估算的地上生物量低于实测数据,即高值低估。可见本研究构建的SVR模型并不能完全消除地上生物量估算的饱和现象。
本研究发现:基于单一变量的SVR模型模拟竹林地上生物量效果较差,而多变量的参与尤其是LAI的参与有效提高了模型预测精度。本研究中,植被指数(EVI+RVI)构建的SVR模型模拟竹林地上生物量的精度分别为0.68和0.71,RMSE分别为5.79和8.13 Mg·hm−2,而加入LAI后,R分别提高了11.76%和1.41%,而RMSE分别降低了11.05%和1.23%,模型预测能力明显增加。一方面,叶面积指数是反映植被固碳能力的重要参数,能够体现竹林观测结构及时间动态;另一方面,本研究采用粒子滤波同化算法对MODIS LAI时间序列数据进行同化[17, 26],使得叶面积指数年际动态变化趋势与竹林生长特征相吻合[31],减弱了信号饱和对地上生物量估算的影响。
已有研究[7, 11]认为:调查样地与遥感影像尺度匹配的差异会加大SVR模型的估算误差。为与MODIS数据匹配,本研究将30 m×30 m竹林样地进行了线性转换,但由于没有考虑混合像元的影响,样地尺度转换出现误差,并由此加大了模型估算误差。相关研究[6, 25]表明:在大尺度森林地上生物量估算中利用森林丰度数据能够减少估算的不确定性。因此,本研究采用混合像元分解方法提取了竹林丰度信息,并乘以模型模拟的竹林地上生物量,进而得到浙江省竹林地上生物量时空分布,尽可能地降低了混合像元对生物量空间估算的影响。
-
本研究基于MODIS LAI、EVI、RVI时间序列数据,采用支持向量回归模型结合随机森林算法,在变量筛选和模型优选的基础上,实现了浙江省竹林地上生物量较高精度的估算。结果表明:①基于随机森林模型筛选出43个对竹林地上生物量影响最大的变量,其中LAI时间序列数据的贡献最大;②基于radial核函数耦合LAI、EVI、RVI时间序列数据,构建的SVR模型训练和测试精度均最高(R分别为0.76和0.72),均方根误差均最低(分别为5.15和8.03 Mg·hm−2);③由SVR模型估算得到浙江省竹林地上生物量,全省竹林地上生物量均值为7.85 Mg·hm−2,总地上生物量为3.31×107 Mg;浙江省竹林地上生物量在各市具有明显的差异性,其中,湖州市、杭州市、金华市、绍兴市和宁波市的竹林地上生物量均值均大于全省均值,表明其竹林经营效果相对较好。研究结果为大范围竹林碳汇遥感精准监测提供了较好的方法。
Estimating bamboo forest aboveground biomass based on MODIS time series data
-
摘要:
目的 基于浙江省中分辨率成像光谱仪(MODIS)时间序列数据,对浙江省竹林地上生物量进行估算,为竹林碳汇遥感监测提供参考。 方法 以MODIS叶面积指数(LAI)、增强型植被指数(EVI)和比值指数(RVI)时间序列数据为变量,利用随机森林模型筛选变量,采用支持向量回归(SVR)模型估算研究区竹林地上生物量。 结果 随机森林模型共筛选出43个对竹林地上生物量影响最大的变量;基于43个变量,采用radial核函数构建的SVR模型预测能力最强,模型训练精度和测试精度分别为0.76和0.72,均方根误差分别为5.15和8.03 Mg·hm−2。浙江省全省竹林地上生物量均值为7.85 Mg·hm−2,总地上生物量为3.31×107 Mg;浙江省竹林地上生物量在各市具有明显的差异性,其中,湖州市、杭州市、金华市、绍兴市和宁波市的竹林地上生物量均值均大于全省均值,湖州市竹林地上生物量均值最大,为13.56 Mg·hm−2,舟山市地上生物量均值最小,为5.72 Mg·hm−2。 结论 耦合了MODIS LAI、EVI、RVI时间序列数据的SVR模型可实现浙江省竹林地上生物量较高精度的估算。图3表1参31 Abstract:Objective This study, based on the time series data of moderate resolution imaging spectrometer (MODIS) in Zhejiang Province, is aimed to estimate the aboveground biomass (AGB) of bamboo forest in Zhejiang Province to provide reference for remote sensing monitoring of bamboo carbon sink. Method The time series data of MODIS leaf area index (LAI), enhanced vegetation index (EVI) and ratio vegetation index (RVI) were taken as variables before they were screened by random forest model, and then the AGB of bamboo forest in the study area was estimated employing support vector regression (SVR) model. Result Of all the variables screened by random forest model, 43 had the greatest impact on bamboo forest AGB, and the SVR model constructed by radial kernel function based on them has the strongest prediction ability with its training accuracy and test accuracy being 0.76 and 0.72 while the root mean squared error (RMSE) being 5.15 and 8.03 Mg·hm−2 respectively. The average aboveground biomass of bamboo forest in Zhejiang Province was 7.85 Mg·hm−2 whereas the total aboveground biomass was 3.31×107 Mg. There was an evident diversity in the aboveground biomass of bamboo forest among the cities across Zhejiang Province among which the average aboveground biomass of bamboo forest in Huzhou City, Hangzhou City, Jinhua City, Shaoxing City and Ningbo City was greater than the provincial average value, with that of Huzhou City being the largest (13.56 Mg·hm−2) while that of Zhoushan City being the smallest (5.72 Mg·hm−2). Conclusion The SVR Model coupled with MODIS LAI, EVI, RVI time series data could serve to realize the high-precision estimation of bamboo forest AGB in Zhejiang Province. [Ch, 3 fig. 1 tab. 31 ref.] -
Key words:
- bamboo forest /
- aboveground biomass (AGB) /
- SVR model /
- Random Forest Model /
- MODIS dataset
-
山核桃Carya cathayensis为落叶乔木,是含油率极高的胡桃科Juglandaceae高档干果,其果实为世界四大名优坚果之一[1-2]。因其口味独特、营养价值高而受到人们的广泛喜爱。浙江省杭州市临安区是中国山核桃主产区之一,种植历史悠久[3]。近几十年来,临安山核桃产业迅猛发展,现有种植面积已达5.3万 hm2,已成为当地林农重要的经济来源[4]。山核桃在临安广泛种植,但由于各镇林地有着不同的土壤特征,导致经济效益存在较大差异,即使在同一乡镇,产量大小年份的情况也依然存在[5]。这些问题在一定程度上限制了山核桃产业的发展。国内对于山核桃生长规律、规范施肥、产量提升等方面多有研究。杨慧思等[6]发现:山核桃产地土壤中大量及微量元素的空间分布特征与变异规律有着对应关系;张红桔等[7]揭示了山核桃产区主要养分因子和产量的关系以及空间分布特征;丁立忠等[8]研究结果指出:近10 a临安7 个山核桃主产镇的林地土壤有机碳含量总体呈升高趋势,而土壤碱解氮、有效磷和速效钾含量下降明显,养分现状不容乐观。但是有关水解酶活性与土壤肥力的关系,以及在山核桃产区空间上的分布特点还没有详细的报道和深入研究。水解酶与土壤中营养物质循环、能量转化以及环境质量等密切相关,并参与了土壤环境中重要的生物化学过程[9]。水解酶活性的空间分布特点可以灵敏地反映不同区域土壤中物质循环的速率,这种速率极大程度影响着林地土壤生态系统的功能。同时,水解酶活性能表征土壤养分转化的潜力,度量土壤污染程度和生产力,是人们评价土壤质量和土壤健康的重要经验指标之一[10],因此,对土壤水解酶活性空间分布特点的研究十分重要。
本研究分析山核桃林土壤水解酶活性的空间分布特点,并通过地统计方法揭示土壤养分与水解酶的空间异质性及其影响因子,为林农掌握土壤肥力特性及养分转化潜力,合理经营山核桃林提供理论依据和技术支撑,对山核桃产业可持续发展具有重要的指导意义。
1. 材料与方法
1.1 研究区概况与样品采集
研究区位于浙江省杭州市临安区(31°14′N,119°42′E),是中国山核桃的核心产区,属亚热带季风气候,年平均气温为16.0 ℃,极端最高和最低气温分别为41.7和−13.3 ℃。山核桃产区土壤以红壤土类分布最广,多发育于泥岩、页岩、砂岩、凝灰岩、花岗岩、流纹岩以及第四世纪红土[11]。山核桃是该地重要的经济树种,主要分布在海拔50~1100 m的丘陵和山地。林农一般在每年5月上旬和9月上旬将氮肥、复合肥与微肥配合施用。
样地按1 km×1 km网格在全市范围内布设,与临安区森林资源分布图相叠加,有山核桃分布的网格点即为山核桃林样地。根据均匀分布原则,2019年7—8月在山核桃分布较集中的岛石、龙岗、清凉峰、昌化、河桥、湍口、太阳等7个镇,共选取259个样地。在选定的区域内,采集0~20 cm的5个样点土壤样品后,混合,并在样地中心以全球定位系统(GPS)定位,记录经纬度。土壤样品带回实验室,去除石块、植物残体等异物,用木棒碾碎后过2 mm筛。将土壤样品分成2份,一份置于4 ℃冰箱保存,尽快测定土壤酶活性;另一份摊开后在室内自然风干,用于测定土壤养分指标和pH。
1.2 样品测定方法
测定涉及与土壤碳、氮、磷循环的α-葡萄糖苷酶(AG)、β-葡萄糖苷酶(BG)、纤维二糖水解酶(CBH)、木糖苷酶(XYL)、亮氨酸氨基肽酶(LAP)、N-乙酰-β-氨基葡萄糖苷酶(NAG)、酸性磷酸酶(PHOS)等7种土壤水解酶。土壤酶活性测定参照SAIYA-CORK等[12]的荧光微孔板检测技术。具体操作为:称取2 g鲜土于离心管中,加入30 mL提前配置好的pH为5.0的醋酸铵缓冲液,在25 ℃ 180 r·min−1摇床上震荡30 min,再用70 mL醋酸铵缓冲液冲洗至烧杯中,用磁力搅拌器搅拌1 min,用排枪取200 μL土壤悬液于96孔板中,并立即加入50 μL反应底物,放入25 ℃培养箱中避光培养3 h,取出后迅速加入15 μL 0.5 mol·L−1的氢氧化钠结束反应,用多功能酶标仪检测吸光值并计算土壤酶活性。土壤养分指标和pH参照鲁如坤[13]方法测定:土壤pH采用土水比(质量比)为1.0∶2.5的悬浊液,微电极法测定;土壤有机质采用浓硫酸-重铬酸钾外加热法测定;土壤碱解氮采用碱解扩散法测定;土壤有效磷采用盐酸-氟化铵(HCl-NH4F)浸提,钼锑抗比色法测定;土壤速效钾采用醋酸铵浸提,火焰光度计测定。
1.3 数据处理
1.3.1 空间自相关水平
水解酶活性的空间分布特征采用地统计分析方法。半方差变异函数是研究区域化变量模型,其公式为:
$$ y=\frac{1}{2 N} \sum_{i=1}^{N}[Z(x_i)-Z(x_i+h)]^{2} 。 $$ 其中:y表示间隔距离为h点的半方差值,h为空间间隔点的距离,即步长;N为样点观测数值成对的数目;Z(xi+h)和Z(xi)为样点测定值[14]。常用的半方差变异函数模型有球状(Spherical)、高斯(Gaussian)、指数(Exponential)[15]模型。模型中,C0代表块金值,C+C0代表基台值,当块基比C0/(C+C0)<25%时,表明变量具有强烈的空间自相关,即主要受到结构性变异的影响;当C0/(C+C0)为25%~75%时,变量属于中等程度空间自相关;当C0/(C+C0)>75%的,变量空间自相关程度较弱,即主要受随机因素影响[16-17]。
采用全局莫兰指数(Ig)来体现研究区域土壤水解酶的空间自相关水平。使用GeoDa软件对样点构建空间权重矩阵,可以根据局部莫兰指数(IL)绘制局部空间自相关聚类图[18],采用Canoco 5.0对酶活性高、低聚集样点间总体差异采用999次的蒙特卡罗排列检验(Monte Carlo permutation test,999 permutations,full model),然后找出土壤酶活性关系密切的环境因子进行冗余分析(RDA)。
$$ {I_{\rm{g}}} = {\frac{{N\displaystyle \sum\limits_{i = 1}^N {{W_{ij}}({Z_i} - \overline Z )({Z_j} - \overline Z )} }}{{\displaystyle \sum\limits_{i = 1}^N {\displaystyle \sum\limits_{j = 1}^N {{W_{ij}}{{({Z_i} - \overline Z )}^2}} } }}_{}} ; $$ $$ {I_{\rm{L}}} = \frac{{{Z_i} - \overline Z }}{{{\sigma ^2}}}\sum\limits_{i = 1}^N {[{W_{ij}}({Z_i} - \overline Z )]} 。 $$ 其中:
$\overline Z$ 为变量Z的平均值;Zi、Zj分别是变量Z在空间i、j处的数值(i≠j);σ2是变量Z的方差;Wij是Zi与Zj之间的空间权重函数,在选定尺度内时赋予权重值为1,超过尺度时权重值为0。当Ig>0,表示目标样点与邻近样点有空间结构上的相似性,存在空间集聚区;当Ig<0,表示空间区域异常[19]。1.3.2 土壤肥力分值
用SPSS 22.0对土壤水解酶活性与土壤性质数据进行描述性统计分析,计算变异系数,Pearson相关性分析设置显著水平为0.05。在Excel 2007中进行数据的对数转化。采用因子分析中的主成分分析法(PCA)和系统聚类分析,对山核桃林地土壤肥力情况进行评价[20]。通过因子分析确定参评土壤指标主成分特征值和特征向量,选取特征值较高的关键主成分,计算各主成分得分,再利用得分公式求出各样点土壤肥力分值(IIF)[21],采用类平均法对分值进行系统聚类。肥力分值计算采用肥力指数和法。公式为:
$$ I_{\rm{IF}} = \frac{{{x_1}}}{{\displaystyle \sum\limits_{i = 1}^m {{x_i}} }}{F_1} + \frac{{{x_2}}}{{\displaystyle \sum\limits_{i = 1}^m {{x_i}} }}{F_2} + \frac{{{x_3}}}{{\displaystyle \sum\limits_{i = 1}^m {{x_i}} }}{F_3}+ \cdots + \frac{{{x_n}}}{{\displaystyle \sum\limits_{i = 1}^m {{x_i}} }}{F_n} 。 $$ 可简化为:IIF=λ1F1+λ2F2+λ3F3
$+\cdots+ $ λnFn。其中:Fi表示单个主成分得分;λi表示对应主成分解释的总变异。2. 结果与讨论
2.1 土壤性质描述性统计分析
土壤pH平均为5.76,最小为4.50,说明山核桃林地土壤主要为酸性土壤,且酸化较为严重。土壤有机质为5.41~98.08 g·kg−1,平均为37.39 g·kg−1;土壤有效磷为0.52~22.43 mg·g−1;土壤速效钾为22.06~466.07 mg·g−1;土壤碱解氮为28.62~192.53 mg·g−1。研究区域土壤变异系数从大到小依次为有效磷、速效钾、有机质、碱解氮、pH。土壤酶活性变异系数从大到小依次为CBH、XYL、AG、NAG、LAP、BG、PHOS,其中CBH、XYL为高度变异,AG、NAG、LAP、BG、PHOS为中等变异(表1)。根据ZHANG等[22]对变异系数的划分,当变异系数<10%时为弱变异,在10%~90%时为中等变异,>90%时则为高度变异。研究区域有效磷质量分数变异系数>90%,具有明显的变异性,为高度变异。这可能是由于山核桃产区地势起伏较大,在雨水冲刷后有效磷极易流失,且林农施用磷肥量不均匀,土壤利用率较低,常年累积造成。土壤pH变异系数为10.28%,变异较小,与张红桔等[7]研究结果基本一致,说明山核桃林地土壤总体pH比较接近。
表 1 土壤性质描述性统计分析Table 1 Descriptive statistics of soil properties项目 有机质/
(g·kg−1)有效磷/
(mg·kg−1)速效钾/
(mg·kg−1)碱解氮/
(mg·kg−1)pH AG/
(mol·g−1·h−1)最小值 5.41 0.52 22.06 28.62 4.50 0.12 最大值 98.08 22.43 466.07 192.53 7.48 1.67 平均值 37.39 4.23 113.77 132.40 5.76 0.35 标准差 15.38 3.90 72.58 43.47 0.59 0.30 变异系数/% 41.15 92.20 63.80 32.83 10.28 88.12 项目 BG/
(mol·g−1·h−1)CBH/
(mol·g−1·h−1)XYL/
(mol·g−1·h−1)LAP/
(mol·g−1·h−1)NAG/
(mol·g−1·h−1)PHOS/
(mol·g−1·h−1)最小值 4.58 0.04 0.17 0.10 0.15 18.31 最大值 192.62 63.06 62.91 32.95 93.60 1042.63 平均值 47.06 8.14 7.44 4.44 17.75 160.43 标准差 31.50 8.09 6.91 3.62 15.27 89.10 变异系数/% 66.95 99.48 92.98 81.54 86.07 55.54 2.2 土壤水解酶活性与土壤肥力指标及pH相关性分析
土壤有机质和碱解氮与7种水解酶均呈极显著正相关(P<0.01);有效磷与BG 、NAG呈极显著正相关,与CBH呈显著正相关(P<0.05);pH与CBH呈极显著正相关(P<0.01),与BG呈显著正相关(P<0.05),与PHOS、XYL呈极显著负相关(P<0.01);速效钾与7种水解酶均没有表现出明显的相关性(表2)。土壤酶主要来源于土壤微生物、土壤动物和植物根系的分泌,土壤养分质量分数可以直接影响土壤动植物长势、微生物的活性与分布,整合了土壤理化条件的信息[23],因此土壤水解酶活性与土壤养分因子密切相关,水解酶活性也通常被作为土壤质量的生物活性指标[24]。对土壤水解酶活性与土壤肥力指标及pH的相关性分析发现:土壤有机质和碱解氮与7种酶存在极显著正相关(P<0.01)。土壤有机质是评价土壤肥力的重要指标,土壤有机质的形成与分解都与酶的作用有关[25]。水解酶可以吸附在土壤有机质上,以酶-腐殖质复合物的形式从土壤中提取出来,并仍可保留有活性。土壤碱解氮主要集中在土壤表层,其含量受人为施肥的影响较大[26]。山核桃林农为提高产量大量撒施氮肥。氮素供应的增加可以使植物细胞原生质合成加快,细胞数量增多,有了更多的水解酶产出渠道。此外,土壤微生物也会通过分泌多种水解酶固定氮素[27]。PHOS与有效磷质量分数和pH之间存在显著正相关和极显著负相关。由于PHOS会参加土壤磷的矿化作用过程,使土壤有机态磷转化为植物可吸收的无机态磷,有效磷质量分数增加。pH是控制土壤中磷有效性和PHOS活性的关键因子,在山核桃林地土壤酸化的环境下,pH小幅降低可能有利于植物对有效磷的吸收,PHOS参与矿化作用的活性增强[28]。
表 2 土壤水解酶与养分因子及pH相关性分析表Table 2 Correlation coefficients of soil hydrolase activities and soil nutrient factors and pH水解酶 有机质 有效磷 速效钾 碱解氮 pH AG 0.355** 0.061 0.060 0.419** 0.102 BG 0.406** 0.172** 0.066 0.354** 0.147* CBH 0.356** 0.158* 0.060 0.275** 0.196** XYL 0.302** 0.088 −0.090 0.278** −0.283** LAP 0.170** 0.042 −0.015 0.230** −0.028 NAG 0.431** 0.267** 0.114 0.357** 0.109 PHOS 0.272** 0.123* 0.007 0.346** −0.286** 说明:*P<0.05, **P<0.01 2.3 不同土壤水解酶活性空间变异特征及聚集效应
7种土壤水解酶活性在山核桃林地表现出不同的空间异质性(表3)。在GS+ 9.0中进行方差变异函数拟合,分别选用最优模型。不同水解酶拟合模型的差异,表示相应的酶在土壤中的空间变化规律不同。本研究中,AG、BG、CBH、LAP、NAG、XYL活性具有中等空间自相关性,活性均呈现斑块状分布;不同水解酶活性区域分布呈现差异性,块基比分别为55%、42%、56%、49%、66%、47%、78%,说明它们的变异情况主要受到人为因素和结构性因素共同影响。PHOS块基比为78%,具有较弱的空间自相关,其活性空间分布主要受随机因素如施肥方式和耕作强度的影响[29]。本研究中, 虽然各酶活性的空间自相关性存在差异,但变程均大于最小采样距离,因此,本研究所选择的采样距离能够反映土壤水解酶活性在研究区域最小尺度下的空间变异特征。从土壤水解酶活性的空间分布情况来看(图1):活性较高的区域位于临安区西北方向的岛石镇。该镇有中国“山核桃第一镇”的美称,这可能与当地特色生态化经营方式有关,如:林下种植茶Camellia sinensis、黑麦草Lolium perenne、油菜Brassica napus等适生植物,丰富林下土壤生态结构的同时起到涵养水肥、改良酸性土质的作用;林间饲养家禽吃掉害虫、消灭虫卵,产生的鸡粪也可作为有机肥为山核桃树生长提供养分。这些特色经营方式都为植物根系发育、土壤微生物的快速新陈代谢提供了有利的条件,从而提高了相关水解酶参与复杂生化反应的活性。
表 3 土壤水解酶活性半方差函数理论模型及其相关参数Table 3 Theoretical model of semi-variance function of soil hydrolase activities and its related parameters水解酶 函数模型 块金值(C0) 基台值(C+C0) 块基比[C0/(C+C0)] 变程 决定系数 AG 球状模型 0.050 0.090 0.55 9.63 0.46 BG 指数模型 136.800 324.400 0.42 8.76 0.65 CBH 指数模型 0.140 0.250 0.56 1.60 0.43 XYL 高斯模型 0.080 0.170 0.47 2.12 0.37 LAP 高斯模型 10.970 21.960 0.49 11.20 0.73 NAG 高斯模型 197.150 294.260 0.66 27.30 0.45 PHOS 球状模型 0.032 0.041 0.78 14.60 0.54 根据全局莫兰指数,AG、BG、CBH、XYL、LAP、NAG、PHOS等7种水解酶活性在空间分布上都存在相关性(Ig>0),且存在高低值聚集区域。在本研究中,7种水解酶活性在高低值聚类上呈现出了相似的特点,岛石镇为水解酶活性高值聚集(high-high)区域,部分水解酶(如AG)在太阳镇北部也有高值聚集的现象;低值聚集(low-low)区域多位于清凉峰以及河桥、龙岗、昌化三镇交界处附近(图2)。在冗余分析结果中,高低值聚集区域样点的水解酶活性在第1轴有明显的分离,第1轴和第2轴分别有82.92%和14.42%的贡献度(图3)。结果显示:碱解氮、有机质、pH与水解酶活性有极显著正相关(P<0.01)。水解酶活性高低值聚类结果和土壤肥力分值高低值聚类情况相似,说明土壤水解酶活性大小和周围可利用的营养物质关系十分密切。由于山核桃林地土壤常年受到不同程度的人为经营干扰,造成这种现象的原因多为当地经营方式的不同,如氮肥、有机肥的投入是增加土壤肥力较为直接的方式,因此各区域出现高低值聚集的现象可以一定程度反映当地肥力水平以及施肥情况。岛石镇高值聚集,一方面可能是由于岛石镇山核桃林氮肥、有机肥常年投入量高于清凉峰等区域,同时岛石镇明确规定当地所有山核桃林地禁用除草剂,防止除草剂的不合理使用破坏产区生态平衡,影响山核桃产量。另一方面,岛石镇相对其他镇海拔较高,大部分产区山高树茂,年降水量充沛,林下、林间生态系统的结构与功能较为完整,因此土壤微生物活动旺盛,作物根系发达,从而成为水解酶活性的高值聚集区。而清凉峰以及河桥、龙岗、昌化交界处的冒尖山、石柱山、云台山、鸡哺山等区域地势极为陡峭,当地山核桃林水土流失现象严重,养分较为贫乏,相对其他区域处于较低的水平,水解酶活性受到影响,产生低值聚集。杭瑞高速经过清凉峰镇与龙岗镇南部,该区域交通便利,人类活动造成了一定程度的干扰。当地存在铅锌矿、钨钼矿以及铜矿等正在开发的金属矿[30]。采矿活动产生的粉尘、废水和尾矿渣可能会对土壤水解酶活性和分布造成一定影响[31]。
2.4 土壤肥力状况
据浙江省地方标准,山核桃林地土壤样地中碱解氮、有效磷、速效钾、有机质位于丰富等级的样地分别占64%、56%、23%、45%,绝大部分样点各养分指标等级处于中等以上(表4),能够满足山核桃的生长发育需求,但是由于各区域土壤中养分比例以及酸碱度的不同,综合肥力状况也有所差异。在主成分分析结果中,IIF均值为91.67,变幅为35.29~277.05,变异系数为42.73%。第1主成分解释了48.39%的总变异,第2主成分解释了26.50%的总变异,第3主成分解释了17.12%的总变异(表5)。采用类平均法对土壤肥力分值(IIF)进行系统聚类,将259个样本分为4类,即第Ⅰ类IIF≥146.83,第Ⅱ类87.11≤IIF<146.83,第Ⅲ类59.72≤IIF<87.11,第Ⅳ类IIF<59.72,分别对应土壤肥力高、较高、中、低4个等级。结果显示:IIF变异系数为42.73%,属于中等变异,但其中有174个样本处于中低水平,肥力相对较差。从采样区域土壤肥力分值所占比例来看,山核桃林地有58.7%的样地土壤肥力低于平均水平,有32.7%的样地土壤肥力为Ⅰ和Ⅱ等级,大部分样地土壤肥力处于Ⅲ、Ⅳ等级,说明大部分山核桃林地土壤肥力还有提高的空间。从使用IIF绘制的空间分布图来看,岛石镇山核桃林地土壤肥力在所有山核桃产区中最高,该区域的土壤管理方法值得借鉴。沈一凡等[32]研究了近10 a山核桃林地主要分布区域的土壤养分变化情况,发现林地土壤酸化的现象一直在加重,肥力也有不断下降的趋势。这是由于大多数山核桃林农缺乏相关技术指导和对立地环境的认知,长期施用以氮素为主的化学肥料造成的。而且从20世纪80年代开始,山核桃林地不断扩张,但大多数新兴产区酸化严重,土壤宜肥、宜种性较差。针对这一现象,还需要增施有机肥,并施用一定量的石灰,逐渐改善各地土壤酸化的情况,规范林地生草管理和生态化采收技术,以稳步提升山核桃林地的土壤肥力。
表 4 山核桃土壤肥力指标丰缺等级及各等级占比Table 4 Level of soil fertility indexs and the proportion of each level项目 碱解氮 有效磷 速效钾 有机质 质量分数/(mg·kg−1) 占比/% 质量分数/(mg·kg−1) 占比/% 质量分数/(mg·kg−1) 占比/% 质量分数/(g·kg−1) 占比/% 缺乏 <80 6 <5 12 <80 34 <10 7 中等 80~120 30 5~10 32 80~110 43 10~40 48 丰富 >120 64 >10 56 >110 23 >40 45 说明:土壤肥力指标丰缺等级参考浙江省地方标准 DB33/T 2205—2019《山核桃分区施肥技术规范》 表 5 主成分贡献率与各因子得分Table 5 Principal component contribution rates and each factor score因子 主成分得分 第1主成分(48.39%) 第2主成分(26.50%) 第3主成分(17.12%) 有机质 0.144 0.268 0.225 有效磷 0.071 0.451 0.116 速效钾 0.027 0.481 0.046 碱解氮 0.061 0.040 0.652 AG 0.160 −0.058 0.039 BG 0.205 0.017 −0.299 CB 0.182 0.064 −0.393 XYL 0.177 −0.240 0.042 LAP 0.122 −0.238 0.345 NAG 0.179 0.111 −0.130 PHOS 0.184 −0.219 0.100 3. 结论
研究区山核桃林土壤水解酶活性均具有较好的空间变异结构和空间分布格局,结构性变异占总变异的比例较小。研究区山核桃林土壤受到人为因素的干扰较多,人为施肥与经营强度是影响其空间格局形成的最直接因素。土壤水解酶活性空间分布和养分分布联系密切,在养分质量分数较高的区域有高值聚集的现象,低值聚集区域多位于清凉峰等区域。特色的生态经营方式可以使土壤水解酶活性处于相对较高的水平,从而提高山核桃的宜种性。
研究区山核桃林土壤酸化较为普遍,平均pH为5.76,严重限制了山核桃的生长。岛石镇、太阳镇北部土壤肥力得分较高。从总体来看,大部分区域土壤各肥力指标等级处于中等以上,但有过半土壤综合肥力未达到平均水平。产区内部各镇土壤肥力也有着明显差异,大部分区域土壤肥力还有待提高;土壤水解酶活性变异系数较高,且与有机质、碱解氮、pH、有效磷等肥力因子有较强的相关性。
-
表 1 基于SVR模型模拟的浙江省竹林地上生物量统计值
Table 1. Statistical values of aboveground biomass of bamboo forest in Zhejiang Province based on SVR model
区域 地上生物量/(Mg·hm−2) 总地上生物量/Mg 竹林面积占比/% 总地上生物量占比/% 最小值 最大值 均值 标准差 全省 0.001 30.39 7.85 5.04 3.31×107 丽水市 0.001 26.29 6.52 4.14 6.18×106 22.46 18.66 杭州市 0.001 28.45 9.86 5.63 8.42×106 20.24 25.42 金华市 0.003 27.26 8.10 4.39 4.04×106 11.82 12.20 温州市 0.001 27.54 6.13 3.83 3.06×106 11.81 9.23 衢州市 0.001 30.06 6.89 5.05 2.66×106 9.15 8.03 台州市 0.004 25.19 6.84 4.06 2.44×106 8.45 7.36 绍兴市 0.003 30.39 8.18 5.09 2.11×106 6.10 6.36 宁波市 0.006 25.63 8.08 4.81 2.02×106 5.91 6.09 湖州市 0.027 29.80 13.56 6.31 2.13×106 3.73 6.44 舟山市 0.051 14.19 5.72 3.38 6.89×104 0.29 0.21 嘉兴市 0.260 11.75 7.14 2.51 9.64×103 0.03 0.03 -
[1] HU Huifeng, WANG G G. Changes in forest biomass carbon storage in the South Carolina Piedmont between 1936 and 2005 [J]. For Ecol Manage, 2008, 255: 1400 − 1408. [2] HAN Ning, DU Huaqiang, ZHOU Guomo, et al. Spatiotemporal heterogeneity of Moso bamboo aboveground carbon storage with Landsat Thematic Mapper images: a case study from Anji County, China [J]. Int J Remote Sensing, 2013, 34(14): 4917 − 4932. [3] FANG Jingyun, CHEN Anping, PENG Changhui, et al. Changes in forest biomass carbon storage in China between 1949 and 1998 [J]. Science, 2001, 292(5525): 2320 − 2322. [4] 黄兴召, 王泽夫, 徐小牛. 生物量转换因子连续函数的拟合方法比较[J]. 浙江农林大学学报, 2017, 34(5): 775 − 781. HUANG Xingzhao, WANG Zefu, XU Xiaoniu. Comparison of fitting approaches with biomass expansion factor equations [J]. J Zhejiang A&F Univ, 2017, 34(5): 775 − 781. [5] 续珊珊, 姚顺波. 基于生物量转换因子法的我国森林碳储量区域差异分析[J]. 北京林业大学学报(社会科学版), 2009, 8(3): 109 − 114. XU Shanshan, YAO Shunbo. Analysis on regional differences of forest carbon storage in China based on biomass expansion factor [J]. J Beijing For Univ Soc Sci, 2009, 8(3): 109 − 114. [6] ZHU Xiaolin, LIU Desheng. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series [J]. ISPRS J Photogramm Remote Sensing, 2015, 102: 222 − 231. [7] DONG Taifeng, LIU Jiangui, QIAN Budong, et al. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data [J]. Int J Appl Earth Obs Geoinf, 2016, 49: 63 − 74. [8] DU Huaqiang, ZHOU Guomo, GE Hongli, et al. Satellite-based carbon stock estimation for bamboo forest with a non-linear partial least square regression technique [J]. Int J Remote Sensing, 2012, 33(6): 1917 − 1933. [9] LU Dengsheng. The potential and challenge of remote sensing-based biomass estimation [J]. Int J Remote Sensing, 2006, 27(7): 1297 − 1328. [10] PHAM L T H, BRABYN L. Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms [J]. ISPRS J Photogramm Remote Sensing, 2017, 128: 86 − 97. [11] SHANG Zhenzhen, ZHOU Guomo, DU Huaqiang, et al. Moso bamboo forest extraction and aboveground carbon storage estimation based on multi-source remotely sensed images [J]. Int J Remote Sensing, 2013, 34(15): 5351 − 5368. [12] YAN Feng, WU Bo, WANG Yanjiao. Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China [J]. Agric For Meteorol, 2015, 200: 119 − 128. [13] TIAN Xin, LI Zengyuan, SU Zhongbo, et al. Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data [J]. Int J Remote Sensing, 2014, 35(21): 7339 − 7362. [14] FENG Yunyun, LU Dengsheng, CHEN Qi, et al. Examining effective use of data sources and modeling algorithms for improving biomass estimation in a moist tropical forest of the Brazilian Amazon [J]. Int J Digit Earth, 2017, 10(10): 996 − 1016. [15] 丁志丹, 孙玉军, 孙钊. 基于GF-2的乔木生物量估测模型研究[J]. 北京师范大学学报(自然科学版), 2021, 57(1): 135 − 141. DING Zhidan, SUN Yujun, SUN Zhao. Estimation of tree biomass with GF-2 [J]. J Beijing Norm Univ Nat Sci, 2021, 57(1): 135 − 141. [16] LI Manqi, IM J, QUACKENBUSH L J, et al. Forest biomass and carbon stock quantification using Airborne LiDAR data: a case study over Huntington Wildlife Forest in the Adirondack Park [J]. IEEE J Sel Topics Appl Earth Obs Remote Sensing, 2017, 7(7): 3143 − 3156. [17] LI Xuejian, DU Huaqiang, ZHOU Guomo, et al. Phenology estimation of subtropical bamboo forests based on assimilated MODIS LAI time series data [J]. ISPRS J Photogramm Remote Sensing, 2021, 173(6): 262 − 277. [18] MAO Fangjie, DU Huaqiang, ZHOU Guomo, et al. Coupled LAI assimilation and BEPS model for analyzing the spatiotemporal pattern and heterogeneity of carbon fluxes of the bamboo forest in Zhejiang Province, China [J]. Agric For Meteorol, 2017, 242: 96 − 108. [19] DU Huaqiang, MAO Fangjie, ZHOU Guomo, et al. Estimating and analyzing the spatiotemporal pattern of aboveground carbon in bamboo forest by combining remote sensing data and improved BIOME-BGC Model [J]. IEEE J Sel Topics Appl Earth Obs Remote Sensing, 2018, 11(7): 2282 − 2295. [20] 李喜佳, 肖志强, 王锦地, 等. 双集合卡尔曼滤波估算时间序列LAI[J]. 遥感学报, 2014, 18(1): 27 − 44. LI Xijia, XIAO Zhiqiang, WANG Jindi, et al. Dual ensemble kalman filter assimilation method for estimating time series LAI [J]. J Remote Sensing, 2014, 18(1): 27 − 44. [21] HE Binbin, LI Xing, QUAN Xingwen, et al. Estimating the aboveground dry biomass of grass by assimilation of retrieved LAI into a crop growth model [J]. IEEE J Sel Topics Appl Earth Obs Remote Sensing, 2015, 8(2): 550 − 561. [22] JONCKHEERE I, FLECK S, NACKAERTS K, et al. Review of methods for in situ leaf area index determination: Part Ⅰ. theories, sensors and hemispherical photography [J]. Agric For Meteorol, 2004, 121(1/2): 19 − 35. [23] LI Yangguang, HAN Ning, LI Xuejian, et al. Spatiotemporal estimation of bamboo forest aboveground carbon storagebased on landsat data in Zhejiang, China [J/OL]. Remote Sensing, 2018, 10(6): 898[2021-06-15]. doi: 10.3390/rs10060898. [24] SARKER L R, NICHOL J E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices [J]. Remote Sensing Environ, 2011, 115(4): 968 − 977. [25] LI Xuejian, DU Huaqiang, MAO Fangjie, et al. Estimating bamboo forest aboveground biomass using EnKF-assimilated MODIS LAI spatiotemporal data and machine learning algorithms [J]. Agric For Meteorol, 2018, 256/257: 445 − 457. [26] MAO Fangjie, LI Xuejian, DU Huaqiang, et al. Comparison of two data assimilation methods for improving MODIS LAItime series for bamboo forests [J/OL]. Remote Sensing, 2017, 9(5): 401[2021-06-12]. doi: 10.3390/rs9050401. [27] CHEN Jingming, DENG Feng, CHEN Mingzhen. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter [J]. IEEE Trans Geosci Remote Sensing, 2006, 44(8): 2230 − 2238. [28] CHEN Jin, JÖNSSON P, TAMURA M, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter [J]. Remote Sensing Environ, 2004, 91(3/4): 332 − 344. [29] BREIMAN L. Random forests [J]. Mach Learn, 2001, 45: 5 − 32. [30] FAN R E, CHEN P H, LIN C J. Working set selection using second order information for training Support Vector Machine [J]. J Mach Learn Res, 2005, 6: 1889 − 1918. [31] 陆国富, 杜华强, 周国模, 等. 毛竹笋快速生长过程中冠层参数动态及其与光合有效辐射的关系[J]. 浙江农林大学学报, 2012, 29(6): 844 − 850. LU Guofu, DU Huaqiang, ZHOU Guomo, et al. Dynamic change of Phyllostachys edulis forest canopy parameters and their relationships with photosynthetic active radiation in the bamboo shooting growth phase [J]. J Zhejiang A&F Univ, 2012, 29(6): 844 − 850. 期刊类型引用(7)
1. 戴梦婷,杨士杰,张艳梅,秦华,彭丽媛. 6株不同来源外生菌根真菌的生物量、养分吸收能力及酶活性. 福建农林大学学报(自然科学版). 2025(01): 135-144 . 百度学术
2. 饶盈,王江铭,朱先富,夏国华. 不同海拔的大别山山核桃林地土壤性质和叶片营养元素分析. 安徽农业大学学报. 2024(01): 96-101 . 百度学术
3. 徐雅雯,吴文丰,王其竹,王代全,徐朝煜,陈万胜,徐永杰. 基于地统计分析的核桃园土壤养分空间特征研究. 果树学报. 2024(05): 968-979 . 百度学术
4. 张艳梅,郑梦杰,杨士杰,吴权杰,黄坚钦,彭丽媛,秦华. 山核桃根际解磷及水解复杂有机物细菌的分离. 微生物学报. 2024(10): 3809-3824 . 百度学术
5. 潘昱伶,璩向宁,李琴,王磊,王筱平,谭鹏,崔庚,安雨,佟守正. 黄河宁夏段典型滩涂湿地土壤理化因子空间分布特征及其对微地形的响应. 生态环境学报. 2023(04): 668-677 . 百度学术
6. 姚熠涵,代英超,王卫国,朱先富,陈涛梅,周鑫洋,夏国华. 大别山山核桃林地土壤养分特征及肥力评价. 林业科学研究. 2023(05): 180-188 . 百度学术
7. 刘丽丽,任涛. 核桃嫁接繁殖苗木技术. 中国林副特产. 2022(06): 55-56 . 百度学术
其他类型引用(2)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210431