Volume 31 Issue 1
Jan.  2014
Turn off MathJax
Article Contents

HU Yangyong, MA Jiawei, YE Zhengqian, LIU Dan, ZHAO Keli. Research progress on using Sedum alfredii for remediation of heavy metal-contaminated soil[J]. Journal of Zhejiang A&F University, 2014, 31(1): 136-144. doi: 10.11833/j.issn.2095-0756.2014.01.021
Citation: HU Yangyong, MA Jiawei, YE Zhengqian, LIU Dan, ZHAO Keli. Research progress on using Sedum alfredii for remediation of heavy metal-contaminated soil[J]. Journal of Zhejiang A&F University, 2014, 31(1): 136-144. doi: 10.11833/j.issn.2095-0756.2014.01.021

Research progress on using Sedum alfredii for remediation of heavy metal-contaminated soil

doi: 10.11833/j.issn.2095-0756.2014.01.021
  • Received Date: 2012-08-18
  • Rev Recd Date: 2012-11-29
  • Publish Date: 2014-02-20
  • Phytoremediation is an in situ potential strategy for cleanup of soil contaminated by heavy metals. Proper selection of plant materials is a key to successful phytoremediation in the field. A number of identified hyperaccumulators possess different physiological characteristics. Sedum alfredii plants typically have high heavy metal(e.g. Zn and Cd) accumulation capacity with fast growth rate as well. This paper reviewed the mechanisms of tolerance,absorption,transport and detoxification to heavy metals of this plant species, pointed out the existing problems in its research and finally made prospects of Sedum alfredii study,aiming to provide some references for better remediation of heavy metal contaminated soil in the future.
  • [1] SUN Jingyu, SUN Xiangyang, LI Suyan, WANG Chenchen, YUE Zongwei.  Sources and contamination assessment of heavy metals in the green land soils in Tongzhou District, Beijing . Journal of Zhejiang A&F University, 2024, 41(): 1-9. doi: 10.11833/j.issn.2095-0756.20230435
    [2] WANG Lu, LI Lele, LAI Mengxia, DU Changxia, FAN Huaifu.  Research progress on the causes of spatial heterogeneity of soil salinity and its effects on plants’ growth . Journal of Zhejiang A&F University, 2022, 39(6): 1369-1377. doi: 10.11833/j.issn.2095-0756.20220155
    [3] SHAO Han, WANG Hu, WANG Yan, XU Hongfeng, SU Qian, LIU Yungen.  Effects of different land use modes on soil fertility and heavy metal contents in karst rocky desertification area . Journal of Zhejiang A&F University, 2022, 39(3): 635-643. doi: 10.11833/j.issn.2095-0756.20210437
    [4] LIU Bo, CHEN Ji, MA Jiawei, FANG Xianzhi, ZHAO Keli, LIU Dan, YE Zhengqian.  Effects of AC electric field and soil moisture on phytoremediation of cadmium contaminated soil by mixed planting of Salix discolor and Sedum alfredii . Journal of Zhejiang A&F University, 2021, 38(6): 1238-1244. doi: 10.11833/j.issn.2095-0756.20200725
    [5] ZHANG Jie, YIN Dejie, GUAN Haiyan, QU Qiqi, DONG Li.  An overview of Sedum spp. Research . Journal of Zhejiang A&F University, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [6] YE Chaojun, WU Jiasheng, ZHONG Bin, CHEN Junren, GUO Jia, XU Meizhen, LIU Dan.  Effects of EDTA and organic acid on phytoremediation of heavy metal contaminated soil by Phyllostachys edulis . Journal of Zhejiang A&F University, 2018, 35(3): 431-439. doi: 10.11833/j.issn.2095-0756.2018.03.006
    [7] LIANG Licheng, YU Shuquan, ZHANG Chao, QIAN Li, QI Peng.  Spatial distribution and ecological risk assessment of heavy metals in Yongkang City . Journal of Zhejiang A&F University, 2017, 34(6): 972-982. doi: 10.11833/j.issn.2095-0756.2017.06.002
    [8] JIN Wenjiang, HOU Ping, ZHANG Wei, LIANG Licheng, YU Fei.  Spatial distributions and ecological risks of heavy metals in surface sediments and riparian soils of the Aojiang River Basin, Wenzhou . Journal of Zhejiang A&F University, 2017, 34(6): 963-971. doi: 10.11833/j.issn.2095-0756.2017.06.001
    [9] ZHANG Su, LIANG Peng, WU Shengchun, ZHANG Jin, CAO Zhihong.  Temporal and spatial distribution of heavy metal contamination in Gaohong, Lin'an, Zhejiang Province . Journal of Zhejiang A&F University, 2017, 34(3): 484-490. doi: 10.11833/j.issn.2095-0756.2017.03.014
    [10] ZHANG Jianyun, GAO Caihui, ZHU Hui, ZHONG Shuigen, YANG Wenyan, ZHENG Junlong, WU Shengchun, SHAN Shengdao, WANG Zhirong, ZHANG Jin, CAO Zhihong, Peter CHRISTIE.  Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil . Journal of Zhejiang A&F University, 2017, 34(3): 543-551. doi: 10.11833/j.issn.2095-0756.2017.03.021
    [11] XU Weijie, GUO Jia, ZHAO Min, WANG Renyuan, HOU Shuzhen, YANG Yun, ZHONG Bin, GUO Hua, LIU Chen, SHEN Ying, LIU Dan.  Research progress of soil plant root exudates in heavy metal contaminated soil . Journal of Zhejiang A&F University, 2017, 34(6): 1137-1148. doi: 10.11833/j.issn.2095-0756.2017.06.023
    [12] XIAO Jiujin, LIN Honggui, ZHOU Xin, YOU Hua, LI Yun, ZHANG Jian.  Soil fauna community structure in Cryptomeria fortunei artificial stands at different slope elevations in summer . Journal of Zhejiang A&F University, 2016, 33(2): 257-264. doi: 10.11833/j.issn.2095-0756.2016.02.010
    [13] LIU Shenshen, ZHANG Zhen, HE Jinling, MA Youhua, HU Hongxiang, ZHANG Chunge.  Purification effect of aquatic plants on nitrogen, phosphorus and heavy metal polluted water . Journal of Zhejiang A&F University, 2016, 33(5): 910-919. doi: 10.11833/j.issn.2095-0756.2016.05.025
    [14] ZHONG Bin, CHEN Junren, PENG Danli, LIU Chen, GUO Hua, WU Jiasen, YE Zhengqian, LIU Dan.  Research progress of heavy metal phytoremediation technology of fast-growing forest trees in soil . Journal of Zhejiang A&F University, 2016, 33(5): 899-909. doi: 10.11833/j.issn.2095-0756.2016.05.024
    [15] SUN Tao, LU Kouping, WANG Hailong.  Advance in washing technology for remediation of heavy metal contaminated soils: effects of eluants and washing conditions . Journal of Zhejiang A&F University, 2015, 32(1): 140-149. doi: 10.11833/j.issn.2095-0756.2015.01.021
    [16] YAN Wenbo, LIU Dan, PENG Danli, LI Song, CHEN Junren, YE Zhengqian, WU Jiasen, WANG Hailong.  Technology advances of ecological restoration and environmental remediation of heavy metal mines . Journal of Zhejiang A&F University, 2015, 32(3): 467-477. doi: 10.11833/j.issn.2095-0756.2015.03.021
    [17] ZHANG Yuan-yuan, DOU Chun-ying, YAO Fang1, YE Zheng-qian.  Nitrogen application to enhance zinc and cadmium uptake by the hyperaccumulator Sedum alfredii . Journal of Zhejiang A&F University, 2010, 27(6): 831-838. doi: 10.11833/j.issn.2095-0756.2010.06.005
    [18] LI Dong-lin, JIN Ya-qin, ZHANG Ji-lin, RUAN Hong-hua.  Heavy metal soil pollution in the Qinhuai River riparian zone . Journal of Zhejiang A&F University, 2008, 25(2): 228-234.
    [19] JIANGPei-kun, XU Qiu-fang, LUO Xu-qin, WANGJun-qi.  Changes in heavy metal amount of bamboo shoots of Phyllostachys praecox responsive to nitrogen rate . Journal of Zhejiang A&F University, 2004, 21(4): 424-427.
    [20] JIANG Pei-kun, XU Qiu-fang, YANG Fang.  Relationship between water soluble organic carbon and heavy metal elements in the soil under Phyllostachy praecox stands . Journal of Zhejiang A&F University, 2003, 20(1): 8-11.
  • [2]
    RASCIO N,NAVARI-IZZO F. Heavy metal hyperaccumulating plants:how and why do they do it and what makes them so interesting[J]. Plant Sci,2011,180(2):169-181.
    [3]
    YANG Xiao'e,LONG Xinxian,NI Wuzhong,et al. Zinc tolerance and hyperaccumulation in a new ecotype of Sedum alfredii Hance[J]. Chin J Plant Ecol,2001,25(6):665-672.
    [4]
    LIU Yongjun,FENG Ying,YANG Xiao'e. Tissue culture and rapid propagation of Sedum alfredii Hance[J]. Plant Physiol Commun,2007,43(3):514.
    [5]
    LIU Fengjie,TANG Yetao,DU Ruijun,et al. Root foraging for zinc and cadmium requirement in the Zn/Cd hyperaccumulator plant Sedum alfredii[J]. Plant Soil,2010,327(1/2):365-375.
    [6]
    YANG Xiao'e,LONG Xinxian,NI Wuzhong,et al. Sedum alfredii:a new Zn hyperaccumulating plant first found in China[J]. Chin Sci Bull,2002,47(13):1003-1006.
    [7]
    XIONG Yuhui, YANG Xiao'e,YE Zhengqian,et al. Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance[J]. J Environ Sci Health, 2005,39(11/12):2925-2940.
    [8]
    HE Bing,YANG Xiao'e,NI Wuzhong,et al. Sedum alfredii:a new lead-accumulating ecotype[J]. Acta Bot Sin, 2002,44(11):1365-1370.
    [9]
    YE Haibo,YANG Xiao'e,HE Bing,et al. Response of Sedum alfredii Hance towards Cd/Zn complex-pollution and accumulation of the heavy metals[J]. J Agro-Environ Sci,2003,22(5):513-518.
    [10]
    ZHAO Zhongqiu,ZHU Yongguan,CAI Yunlong. Transport and transformation of cadmium in soil-plant systems and the influence factors[J]. Ecol Environ,2005,14(2):282-286.
    [11]
    LONG Xinxian,ZHANG Yugang,DAI Jun,et al. Zinc,cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions[J]. Bull Environ Contam Toxicol,2009,82:460-467.
    [12]
    WANG Yanhong,LONG Xinxian,WU Qitang. Differences of root exudates between two ecotypes of Sedum alfredii Hance[J]. Ecol Environ,2008,17(2):751-757.
    [13]
    LI Tingqiang,ZHU En,YANG Xiao'e,et al. Effects of dissolved organic matter derived from hyperaccumulator Sedum alfredii Hance rhizosphere on Zn adsorption and desorption in soil[J]. Chin J Appl Ecol,2008,19(4):838-844.
    [14]
    PENG Guixiang, CAI Jing, LIN Chuxia. Microbial characteristics of a Zn and Cd contaminated soil chemically amended for growth of a heavy metal-hyperaccumulating plant[J]. Ecol Environ,2005,14(5):654-657.
    [15]
    LI Tingqiang, SHU Qinhong,YANG Xiao'e. Effects of heavy metal contaminated soils at different levels on rhizosphere microorganisms of Sedum alfredii Hance[J]. J Zhejiang Univ Agric & Life Sci,2008,34(6):692-698.
    [16]
    LONG Xinxian,LIU Hongyan,DAI Jun,et al. Difference between two ecotypes of Sedum alfredii Hance in microbial characteristics of the rhizospheric and non-rhizospheric soils[J]. Acta Pedol Sin,2009,46(3):547-552.
    [17]
    LI Wen,YE Zhihong,WONG M H. Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii[J]. Plant Soil,2010,326(1/2):453-467.
    [18]
    WU F Y,YE Zhihong,WU S C,et al. Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance[J]. Planta,2007,226(6):1363-1378.
    [19]
    LU Lingli,TIAN Shengke,YANG Xiao'e,et al. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii[J]. J Exper Bot,2008,59(11):3203-3213.
    [20]
    LU Lingli,TIAN Shengke,YANG Xiao'e,et al. Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii[J]. J Plant Physiol,2009,166(6):579-587.
    [21]
    ZHU Yanxia. The Relation of Organic Acids and Cd Aecumulation in Sedum alfredii Hance[D]. Hangzhou:Zhejiang University,2006.
    [22]
    XIONG Yuhui,YANG Xiao'e,YE Zhengqian,et al. Study on zinc uptake and distribution in zinc hyperaccumulatin and non-hyperaccumulating ecotypes of Sedum alfredii Hance[J]. J Zhejiang Univ Agric & Life Sci,2003,29(6):614-620.
    [23]
    TIAN Shengke. Mechanisms Behind Detoxification of Heavy Metals (Zn/Cd/Pb) in the Hyperaccumulator Sedum alfredii Hance[D]. Hangzhou:Zhejiang University,2010.
    [24]
    NI Tianhua,WEI Youzhang. Subcellular distribution of cadmium in mining ecotype Sedum alfredii[J]. Acta Bot Sin,2003,45(8):925-928.
    [25]
    SUN Tao,ZHANG Yuxiu,CHAI Tuanyao. Research progress on tolerance of Indian mustard (Brassica juncea L.) to heavy metal[J]. Chin J Eco-Agric,2011,19(1):226-234.
    [26]
    CHAO Yue'en,ZHANG Min,LU Lingli,et al. Role of reduced glutathione in Zn and Cd hyperaccumulation in Sedum alfredii H.[J]. J Zhejiang Univ Agric & Life Sci,2007,33(6):597-601.
    [27]
    LI Huihe. Effects of sulfur and cadmium interactions on antioxidant enzyme activity in hyperaccumulator-Sedum alfredii Hance[J]. J Soil Water Conserv,2011,25(5):103-106.
    [28]
    GUO Weidong,LIANG Jun,YANG Xiao'e,et al. Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance[J]. J Zhejiang Univ Sci B,2009,10(4):251-257.
    [29]
    JIN Xiaofen,YANG Xiao'e,ISLAM E,et al. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance[J]. J Hazard Mat,2008,156(1/3):387-397.
    [30]
    TIAN Shengke,LU Lingli,ZHANG Jie. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress[J]. Chemosphere,2011,84(1):63-69.
    [31]
    GUPTA D K, HUANG Huagang,YANG Xiao'e,et al. The detoxification of lead in Sedum alfredii H. is not related to phytochelatins butthe glutathione[J]. J Hazard Mat,2010, 177:437-444.
    [32]
    ZHANG Zhongchun,CHEN Boxia,QIU Baosheng. Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants[J]. Plant Cell & Environ,2010,33(8):1248-1255.
    [33]
    ZHANG Zhongchun,GAO Xiang,QIU Baosheng. Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead[J]. Phytochemistry,2008,69(4):911-918.
    [34]
    LI Tingqiang,YANG Xiaoe,LU Lingli,et al. Uptake kinetics of zinc in hyper-accumulating species of Sedum alfredii Hance at the leaf cellular level[J]. Plant Nutr Fert Sci,2008, 14(4):706-712.
    [35]
    LONG Xinxian, CHEN Xuemei,CHEN Yagang,et al. Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil[J]. World J Microbiol Biotechnol,2011,27:1197-1207.
    [36]
    LONG Xinxian,NI Wuzhong,YE Zhengqian,et al. Effect of organic acids application on zinc uptake and accumulation by two ecotypes of Sedum alfredii Hance[J]. Plant Nutr Fert Sci, 2002,8(4):467-472.
    [37]
    WANG Xin,WANG Ying,MAHMOOD Q,et al. The effect of EDDS addition on the phytoextraction efficiency from Pb contaminated soil by Sedum alfredii Hance[J]. J Hazard Mat,2009,168(1):530-535.
    [38]
    KARIMZADEHA L,HEILMEIERB H,MERKEL B J. Effect of microbial siderophore DFO-B on Cd accumulation by Thlaspi caerulescens hyperaccumulator in the presence of zeolite[J]. Chemosphere,2012,88(6):683-687.
    [39]
    DENG Jinchuan,WU Qitang,LONG Xinxian,et al. Effects of organic chelates onzinc uptake andaccumulation by Thlaspi caerulescens and Sedum alfredii[J]. Acta Ecol Sin,2005,25(10):2562-2568.
    [40]
    CHEN Aisheng,LIN Chuxia,LONG Xinxian,et al. Effects of soil treatments on the extraction of zinc and cadmium from contaminated soil by Sedum alfredii Hance[J]. Ecol Environ,2004,13(4):556-559,564.
    [41]
    WANG Yikun,ZHANG Huanchao,HAO Xiuzhen,et al. A review on application of organic materials to the remediation of heavy metal contaminated soils[J]. Chin J Soil Sci,2010,41(5):1275-1279.
    [42]
    LI Jiguang,LI Tingqiang,ZHU En,et al. Effects of different nitrogen forms on cadmium accumulation of Sedum alfredii Hance[J]. J Zhejiang Univ Agric & Life Sci,2008,34(3):327-333.
    [43]
    ZHANG Yuanyuan,DOU Chunying,YAO Fang,et al. Nitrogen application to enhance zinc and cadium uptake by the hyperaccumulator Sedum alfredii[J]. J Zhejiang For Coll,2010,27(6):831-838.
    [44]
    LI Jiguang,LIN Guolin,YANG Chunwen,et al. Effects of organic and inorganic nitrogen on growth and cadmium accumulation of Sedum alfredii Hance[J]. J Agro-Environ Sci,2007,27(1):99-104.
    [45]
    SHEN Libo,WU Longhua,HAN Xiaori,et al. Effects of nutrient regulation and control on plant growth and Zn/Cd uptake by hyperaccumulator Sedum plumbizincicola[J]. Soils,2011,43(2):221-225.
    [46]
    LI Tingqiang,DI Zhenzhen,HAN Xuan,et al. Elevated CO2 improves root growth and cadmium accumulation in the hyperaccumulator Sedum alfredii[J]. Plant Soil,2012,354(1/2):325-334.
    [47]
    WANG Yanhong,LONG Xinxian,LIU Hongyan,et al. Effects of intercropping of two ecotypes of Sedum alfredii on their plant growth and zinc uptake from soils[J]. J South China Agric Univ,2007,28(3):6-10.
    [48]
    LIU Xiaomei,WU Qitang,BANKS M K. Effect of simultaneous establishment of Sedum alfredii and Zea mays on heavy metal accumulation in plants[J]. Int J Phytor,2005,7(1):43-53.
    [49]
    HEI Liang,WU Qitang,LONG Xinxian,et al. Effect of co-planting of Sedum alfredii and Zea mays on Zn-contaminated sewage sludge[J]. Environl Sci,2007,28(4):852-858.
    [50]
    JIANG Cheng'ai,WU Qitang,WU Shunhui,et al. Effect of co-cropping Sedum alfredii with different plants on metal uptake[J]. China Environ Sci,2009,29(9):985-990.
    [51]
    GUO Junkang,TANG Shirong,JU Xuehai,et al. Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil[J]. Chem Mat Sci,2011,27(12):2835-2844.
    [52]
    XIAO Wendan,WANG Huan,LI Tingqiang,et al. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains[J]. Environ Sci Pollut Res Int,2013,20(1):380-389.
    [53]
    LI Tingqiang,DONG Zengshi,JIANG Hong,et al. Remediation efficiency of Cd-B[a]P combined polluted soil by Sedum alfredii[J]. J Zhejiang Univ Agric & Life Sci,2011,37(4):465-472.
    [54]
    WANG Kai, ZHU Zhiqiang,HUANG Huagang. Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii[J]. Soils Sed,2012,12:556-564.
    [55]
    WANG Lin,ZHOU Qixing. Strengthening phytoremediation of heavy-metal contaminated soils by agronomic management practices[J]. Chin J Eco-Agric,2008,16(3):772-776.
    [56]
    CHAO Yue'en,ZHANG Min,FENG Ying,et al. cDNA-AFLP analysis of inducible gene expression in zinc hyperaccumulator Sedum alfredii Hance under zinc induction[J]. Environ Exp Bot,2010,68(2):107-112.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(4666) PDF downloads(1006) Cited by()

Related
Proportional views

Research progress on using Sedum alfredii for remediation of heavy metal-contaminated soil

doi: 10.11833/j.issn.2095-0756.2014.01.021

Abstract: Phytoremediation is an in situ potential strategy for cleanup of soil contaminated by heavy metals. Proper selection of plant materials is a key to successful phytoremediation in the field. A number of identified hyperaccumulators possess different physiological characteristics. Sedum alfredii plants typically have high heavy metal(e.g. Zn and Cd) accumulation capacity with fast growth rate as well. This paper reviewed the mechanisms of tolerance,absorption,transport and detoxification to heavy metals of this plant species, pointed out the existing problems in its research and finally made prospects of Sedum alfredii study,aiming to provide some references for better remediation of heavy metal contaminated soil in the future.

HU Yangyong, MA Jiawei, YE Zhengqian, LIU Dan, ZHAO Keli. Research progress on using Sedum alfredii for remediation of heavy metal-contaminated soil[J]. Journal of Zhejiang A&F University, 2014, 31(1): 136-144. doi: 10.11833/j.issn.2095-0756.2014.01.021
Citation: HU Yangyong, MA Jiawei, YE Zhengqian, LIU Dan, ZHAO Keli. Research progress on using Sedum alfredii for remediation of heavy metal-contaminated soil[J]. Journal of Zhejiang A&F University, 2014, 31(1): 136-144. doi: 10.11833/j.issn.2095-0756.2014.01.021
  • 重金属污染物排放和扩散进入环境而造成日趋严重的污染问题,如何有效地消除环境中重金属污染物已成为世界性难题。植物修复是利用植物及其根际圈微生物体系的吸收、挥发和转化、降解等作用来清除污染环境中的污染物质,与物理和化学途径相比,植物修复手段更廉价高效,且对环境的副作用更少,其修复模式包括植物提取、植物挥发、植物稳定和植物降解等4种,其中植物提取是利用植物对重金属的吸收,通过收获地上部来达到降低土壤重金属浓度的目的,是解决重金属污染问题的理想途径之一,已在学术界及相应的应用领域得到广泛认可[1-2]。植物长期生长在重金属污染的生境中,面临非生物胁迫,逐渐进化成不同的生态型,可筛选其中适应性强的生态型作为植物修复材料。杨肖娥等[3]通过调查中国东南部古老铅锌(Pb/Zn)矿和非矿山生境中的植物种群,发现生长在古老铅锌矿的东南景天Sedum alfredii 是一种新的锌镉(Zn/Cd)超积累植物。这一发现为植物修复提供了一种很有潜力的候选材料。不同地域的东南景天在重金属积累性上存在显著差异,可分为超积累(HE)和非超积累(NHE)等2种生态型(下文都以HE-东南景天、NHE-东南景天表示)。东南景天易于繁殖,采用东南景天叶片为外植体,可诱导愈合组织并再生完整植株[4]。目前,东南景天的研究不仅受到了国内研究者的重视,也引起了国外科学家的关注,已展开其对重金属的吸收富集机制及重金属污染修复效果等一系列研究。

  • 东南景天的进化形成了根对重金属的觅食机制,对锌、隔具有较大的需求[5]。田间条件下生长的大多数植物体内锌质量分数一般为10~100 mg·kg-1,而HE-东南景天地上部锌为4 134~5 000 mg·kg-1,富集系数为1.25~1.94。营养液培养试验中,在锌质量浓度高达240 mg·L-1时植株仍生长,当锌质量浓度为80 mg·L-1时,地上部锌质量分数达到最高值19 674 mg·kg-1[6],可见它们不仅对环境中高量的锌具有很强的耐性,且体内可以积累超量的锌。对于镉而言,HE-东南景天比NHE-东南景天也更具耐性,富集系数也大于1.00,在400 mg·kg-1 镉处理下,地上部镉质量分数接近3 000 mg·kg-1。HE-东南景天中镉进入根部、转运到地上部的速率分别是NHE-东南景天的5倍和13倍,镉积累的冠根比高于后者10倍,两者体内镉质量浓度随外部镉质量浓度和培养时间的增加而提高[7]

    此外,HE-东南景天也是一种铅(Pb)富集植物,其地上部铅最高浓度可达514 mg·kg-1,根部最高可达13 922 mg·kg-1,分别是NHE-东南景天的2.27倍和2.62倍[8]。HE-东南景天用于对锌、镉、铅的修复,发现三者无论单一还是复合出现,都具有优良的修复表现[9]。吸收过程中重金属元素之间存在交互作用,镉-锌交互作用复杂多样,土壤性质、锌背景值、植物品种以及环境的变化等都会导致不同的作用结果[10]

  • 重金属在土壤中一般以多种形式存在,不同的化学形态对植物的有效性不同,只有具有生物可给性的重金属元素才能被植物吸收。植物根系分泌物与土壤微生物分泌物都会改变根际环境,进而影响土壤中重金属的生物有效性。与非根际土壤相比,东南景天根际土壤的有机质,总氮、磷质量分数,阳离子交换量(CEC)及可提取锌、镉、铅质量分数都显著提高,微生物更具多样性[11]

  • 2种生态型东南景天的根系分泌物均能够活化土壤中难溶态的氧化锌(ZnO),碳酸锌(ZnCO3)和磷酸锌[Zn3(PO42],而对硫化锌(ZnS)没有明显的活化作用[12],说明重金属自身形态会影响东南景天对其活化吸收。HE-东南景天在高锌条件下,减少草酸的分泌,增加苹果酸的分泌,从而促进根系对生长介质中锌的吸收;而苹果酸和草酸抑制NHE-东南景天根系对锌的吸收和转运,从而起到降低锌的毒性作用。铅/锌矿山土壤种植东南景天后,根际土壤pH值降低,有机质含量提高。有机质对土壤锌吸附解吸的影响与土壤类型有关,增加东南景天根际溶解性有机质(DOM)可以促进吸附态锌的解吸,减少土壤对锌的吸附,提高根际锌的生物有效性,是东南景天活化根际重金属的机制之一[13]

  • 根际微生物通过释放螯合剂、酸化、氧化还原等作用对重金属的迁移性和生物可利用性产生影响,因而可以提升植物修复效率。细菌、真菌和放线菌数量与土壤锌、镉的去除率,东南景天植株干物质量两两之间都呈现极显著正相关关系[14]。在轻度污染土壤中,2种生态型东南景天的根际土壤微生物区系和主要生理类群没有显著差异,而在矿山土壤和重度污染土中,HE-东南景天根际土壤中细菌和真菌的数量、主要细菌生理类群数量及微生物生物量碳显著高于NHE-东南景天。前者对微生物生长和代谢活性的促进作用显著高于后者,这可能由于HE-东南景天具有很强地吸收和向地上部转运锌的能力,导致其根际土壤中锌有效性降低,从而缓减锌对微生物的毒害作用[15]。HE-东南景天根际土壤中的耐锌细菌和产酸细菌的数量均显著大于其对应的非根际土壤[16]。Li等[7]从铅/锌矿区生长的东南景天根际分离出的伯克霍尔德菌具有较高溶解氧化锌(ZnO),碳酸锌(ZnCO3)和碳酸镉(CdCO3)的能力,在培养基中接种培养7 d显示,随着培养时间的延长溶解态锌、镉质量浓度迅速提高,pH值显著下降,经一周培养,含氧化锌(ZnO),碳酸锌(ZnCO3)和碳酸镉(CdCO3)培养基处理的溶解态锌、镉从10.0 mg·L-1左右,分别提高到70.0,100.0 (锌)和100.0 (镉) mg·L-1左右,而pH 7下降至pH 3;同时分析培养基中菌渣产生的小分子有机酸质量分数,发现镉、锌迁移都与其有显著相关性[17]。说明特种细菌可以提高土壤镉、锌的生物有效性,显著提升超积累植物对重金属吸收,从而有利于加速土壤重金属污染的植物修复。此外,2种东南景天根部丛枝菌根(AM)比例总体而言都位于中低水平(8.5%~45.8%),其中聚丛球囊霉Glomus aggregatum,摩西球囊霉G. mosseae,布氏球囊霉G. brohutii,地球囊霉G. geosporum最为常见[18],至于AM是否参与了超积累植物吸收和积累重金属的过程有待进一步研究。

  • 金属离子被活化后,首先被东南景天根部细胞壁捕获吸附,转运系统及细胞内高亲和性结合位点介导和驱动金属离子的跨膜运输,金属离子可能通过刺激转运蛋白如通道蛋白、H+-耦联的载体蛋白进行吸收。根细胞捕获金属离子,在共质体内转运到中柱以及释放进入木质部,有机酸配体可增加金属离子向木质部的转运[20]。东南景天主要通过共质体运输完成对镉根部吸收、木质部装载、转运至地上部这个过程。低温会显著影响镉在HE-东南景天体内的这一过程,10 μmol·L-1镉条件下,4 ℃时向地上部输镉量比25 ℃时减少9倍,而NHE-东南景天无此现象。镉在HE-东南景天的木质部汁液中浓度是外部吸收液的3~4倍,添加代谢抑制剂羰基氰化间氯苯腙(CCCP)和2,4-二硝基酚(DNP)后,其木质部汁液中镉质量浓度显著降低。根冠运输速率提高的关键是木质部装载,而不是根部吸收[19-20]

  • 不同重金属在不同生态型植株体内分布不同,HE-东南景天不同部位锌表现为茎>叶>根,镉表现为叶>茎>根,铅表现为根>茎>叶;而锌、镉、铅在NHE-东南景天不同部位都表现为根>茎>叶[21, 23]。细胞中,NHE-东南景天细胞壁和细胞可溶部分中的重金属质量分数差异不显著,而在HE-东南景天细胞壁中最高,其次是细胞的可溶部分[22]。田生科[23]对东南景天细胞水平上重金属元素分布特征做了系统的研究,认为表皮层可能是HE-东南景天重要的锌储存库之一。2种生态型的东南景天中,锌主要集中在茎叶的表皮层,维管组织的分布次之,且在HE-东南景天叶片中这种趋势则更为明显。与NHE-东南景天相比,HE-东南景天茎中锌在维管束中分布的比例要高于其他组织,间接表明其向上的运输能力较强。随着锌处理时间的延长,HE-东南景天茎叶表皮中锌的质量分数也随之增加,且增幅较大,而其叶肉细胞和维管束中的锌则趋向于饱和,NHE-东南景天则无此效应。同时,锌、镉、铅在HE-东南景天体内分布特点不同[23]。在叶片中,镉在叶的主脉中最高,叶片边缘较低;而锌则在叶片的边缘较高。镉在维管组织和上皮层较高,而下表皮的分布相对较低;锌则主要分布在上下表皮细胞中。叶片横切面中,铅主要积累在叶脉中,其次则是表皮;而叶肉海绵组织和栅栏组织中铅质量分数则较低。在植物茎部,90%以上的铅积累于维管束中,与硫的分布呈正相关,在东南景天植株体内运移过程中大部分停留在细胞壁上,进一步形成铅细胞壁化合物。尽管锌在茎部也集中分布于维管束中,但较均匀地分布于组织内,与铅的相关性并不明显[23-24]

  • 植物在受到重金属胁迫时,生长状况由正常代谢转变为防御代谢。一方面,植物体内产生一些修复蛋白、运载蛋白和螯合蛋白,对重金属胁迫造成的伤害进行修复和解毒;另一方面,植物体内会产生一些有机小分子溶质、氨基酸、肽和蛋白质等,用以维持细胞的正常渗透压[25]

    细胞质中配体与重金属离子的螯合作用是重金属解毒、提高植物重金属耐性的重要机制。晁岳恩等[26]研究表明:含硫有机物不是HE-东南景天锌/镉超积累的主要配体,硫供应过多时,会导致积累能力逐渐下降。然而,增硫处理会提高HE-东南景天叶片抗氧化酶活性和丙二醛(MDA)质量分数,缓解铅对HE-东南景天的危害并提高它们对铅的耐受性[27]。有研究表明,随着铅胁迫的增加,HE-东南景天中硫同化酶活性的增加可能有助于植株对铅的积累[28],增硫处理或许也有利于提高硫同化酶活性。HE-东南景天在铅胁迫下根部和地上部谷胱甘肽(gsh)的诱导合成,可能是其耐铅机制之一。谷胱甘肽合成抑制会导致HE-东南景天体内产生过量过氧化氢和超氧自由基,钙能通过减轻金属诱导的氧化应激和促进谷胱甘肽合成保护东南景天根部抵制铅毒害[29-30]。2种生态型东南景天在高量铅条件下,组织中都诱导合成谷胱甘肽而非植物络合素,酶类和非酶类抗氧化剂在东南景天铅解毒过程中都起着重要作用[31]

    植物螯合肽(PCs)在一些高等植物和真菌体内通过螯合作用对重金属解毒的过程中扮演重要角色,它的合成与外界重金属浓度有密切关系。当HE-东南景天暴露于400 μmol·L-1镉中,叶、茎、根部都会诱导产生植物螯合肽;暴露于700 μmol·L-1铅中时,只有茎和根中会产生植物螯合肽;暴露于1 600 μmol·L-1锌中任何部位都没有植物螯合肽产生[32]。Zhang等[33]发现植物螯合肽在叶中最多,茎次之,根部几乎没有,认为植物螯合肽不在HE-东南景天根部起镉解毒作用,而在地上部分的胞内镉解毒机制中起重要作用。

    此外,重金属离子在细胞内的区室化也是植物内部解毒的重要途径之一,HE-东南景天叶片细胞膜上存在锌载体调控体系,能够促进锌跨叶细胞膜运输并储藏到液泡中,降低对细胞的毒害[34]。内生菌也能加强HE-东南景天耐性,龙新宪等[35]从HE-东南景天的根茎叶分离出14种植物内生菌,都可以分泌萘乙酸(IAA),对锌、镉具较强耐性。

  • 调控措施选用的关键是明确该措施是否能够提高超积累植物的生物量及其吸收转运重金属的能力,同时还需尽量避免或减少二次污染。根据调查结果估计,东南景天的单季干物质产量达1 800 kg·hm-2,在大田条件下,东南景天地上部能长到30~40 cm,便于机械化收割。理想改良剂的添加可以活化土壤重金属诱导植物吸收,改善植株根际环境,也有利于微生物的繁殖,对东南景天修复效用的发挥起到积极的作用。再者,促进植株生长,提高植株对重金属的总积累量是强化植物修复的另一条思路。

  • 许多外源小分子有机酸的添加会导致东南景天根际的pH值降低,与金属离子络合,从而影响土壤对金属离子的吸附和植株对金属离子的吸收。NHE-东南景天在0. 5 mmol·L-1锌处理条件下生长受抑制,HE-东南景天能正常生长,HE-东南景天的叶片和茎中锌质量浓度分别约是NHE-东南景天的17和8倍。柠檬酸和草酸处理后,NHE-东南景天的根茎叶中钾(K)和锰(Mn)等营养元素含量提高,有助于减轻锌对NHE-东南景天的毒害作用,根系活力和蒸腾作用加强,间接促进了锌的吸收和运输;柠檬酸和草酸作为锌的配基并与其结合,通过离子通道或载体进入根细胞,从而导致根系锌质量浓度增加,进一步促进锌从根系细胞向木质部的装载,导致茎和叶片锌质量浓度增加。这2种有机酸能促进HE-东南景天根系对锌的吸收,但0.5 mmol·L-1锌处理基础上是否添加柠檬酸或草酸,其叶片和茎锌质量浓度均没有显著变化,推测柠檬酸和草酸可能参与HE-东南景天根系对锌的吸收、运输及锌在根液泡内的储藏过程[36]。Wang等[37]用乙二胺二琥珀酸(EDDS)处理铅污染土壤后发现土壤中生物可利用铅和可溶性有机碳显著高于对照,又随着时间逐渐减少,认为螯合辅助植物修复适用于轻度污染土壤。去铁胺(DFO-B)是一种铁络合剂,Karimzadeh等[38]通过盆栽试验表明去铁胺能显著提高HE-东南景天根部对铅的吸收和向地上部分的转运能力。在6 mmol·kg-1 乙二胺四乙酸(EDTA)和10.0 mmol·kg-1混合试剂(柠檬酸∶味精废液∶EDTA∶氯化钾= 10∶1∶2∶3)处理下,HE-东南景天对锌的提取效率分别为2.96%和2.41%,高于对照的2.21%,但混合试剂对地下水污染的风险明显小于EDTA[39]

    那些通过废弃物回收改良得到、又对环境副作用小的添加剂更具有研究和推广价值。有机物料对东南景天地上部锌的影响效应因土壤类型不同而不同,污染土壤添加菜籽饼或矿山土壤添加水稻秸秆后,东南景天地上部锌显著增加[40]。这可能与有机物料矿化或腐殖化过程中的释放物质有关,酚类物质可显著提高土壤中重金属的有效性,而磷酸盐及其他盐分会与重金属形成不溶性的盐,含磷量高的畜禽粪可将土壤中大量的锌、铅由有机结合形态转变为残留态[41]

  • 适当提高供氮水平有利于提高东南景天的各项根系形态指标以及对镉的吸收积累。不同氮形态对东南景天镉积累的促进顺序为:铵态氮(NH4+-N)>硝态氮(NO3--N),供氮2.50~5.00 mmol·L-1时,东南景天地上部生长和重金属吸收、积累最佳[42-43]。低量镉(10.00 μmol·L-1)条件下,外加有机形态氮(精氨酸)能显著提高2种生态型东南景天体内镉质量分数;高量镉(100.00 μmol·L-1)条件下,外加有机形态氮对2种生态型东南景天体内质量分数没有显著影响[44]。沈丽波等[45]认为低量氮肥配施磷肥不仅可提高HE-东南景天地上部生物量,且对锌、镉的积累量有明显的协同作用。除了增氮措施,增硫处理显著提高HE-东南景天根、茎和叶的镉质量分数、累积量及整株累积总量。Li等[46]研究二氧化碳浓度对东南景天生长、根系形态及镉积累的影响,发现HE-东南景天在350.00 μL ·L-1和800.00 μL ·L-1的二氧化碳条件下,地上部和根系的生物量分别比在大气二氧化碳体积分数下生长的植株高24.6%~36.7%和 35.0%~52.1%,升高二氧化碳体积分数或许是提HE-高东南景天对重金属污染土壤修复效率的一种有效措施。

    除了肥力因素,栽植模式对发挥东南景天的修复潜力也有重要作用。2种生态型东南景天套作时,NHE-东南景天地上部干质量显著增加,其地上部锌积累量也显著增加。原因可能在于HE-东南景天能快速地耗竭土壤中有效态锌库,减缓了土壤锌对植物的胁迫作用,从而促进NHE-东南景天的生长;HE-东南景天又能活化土壤中难利用态锌,促进NHE-东南景天的根系锌的增加。2根系完全互作与隔膜处理相比,虽然HE-东南景天的地上部干质量和锌没有显著增加,但其地上部锌积累量却显著提高[47]。2种生态型东南景天套作既使景天种质资源得到充分利用,也使两者的修复潜力得到提升。与玉米Zea mays单作相比,东南景天+玉米混作时玉米对重金属的积累量显著降低,而且有助于提高2种植物的生物量[48]。黑亮等[49]对东南景天和玉米进行套作,发现玉米促进东南景天对重金属的吸收,认为玉米根系降低溶液pH值和提高脱氧皮质酮(DOC)以及锌/铅质量分数,从而向超富集东南景天一侧输送更多的水溶态锌/铅。蒋成爱等[50]将HE-东南景天与具有不同根系特征的玉米+黑麦草Lolium perenne+大豆Glycine max混作,得出了类似结论。因此,可以认为与超积累植物混作或许是降低粮食作物污染风险的有效途径。

  • 重金属污染土壤植物-微生物联合修复越来越受到重视,微生物可与重金属相互作用或与根系分泌物协同作用,影响土壤中重金属的活性。研究表明,D54菌株能够产生吲哚乙酸、铁载体等,具有溶解无机磷和矿物态金属元素的作用。接种D54菌株有助于东南景天在重金属污染地上生长,可以提升东南景天的生物量和对重金属的吸收量[51]。重金属与有机复合污染土壤的修复中,如多菌灵与镉的复合污染,接种多菌灵降解菌能强化HE-东南景天对镉的移除作用,土壤中的镉去除率提高32.1%~42.5%。同时微生物量、脱氢酶活性和微生物多样性得到提升,增幅分别达46.2% ~121.3%,64.2%~143.4% 和2.4%~24.7%[52],这可能是由于低毒性的多菌灵能作为碳源,促进多菌灵降解菌等微生物的繁殖,微生物代谢产物有利于镉的活化,从而促进HE-东南景天对镉的吸收。

  • 东南景天对污染土壤的修复作用不仅局限于单纯的无机污染,近年来对其研究又涉及到无机有机复合污染方面。李廷强等[53]研究了2种生态型东南景天对镉-苯并[a]芘(Cd-B[a]P)复合污染土壤的修复效果,在低镉处理条件下,5.0 mg·kg-1苯并[a]芘能促进2种生态型东南景天根系的生长,HE-东南景天地上部镉质量分数远远大于NHE-东南景天;高质量分数苯并[a]芘(25.0 mg·kg-1)处理条件下,镉的去除效果明显降低。可能由于低量苯并[a]芘可以作为微生物的碳源,利于微生物生长繁殖。东南景天的栽植可以提高并[a]芘的去除率,从43.7%升高至58.2%。镉-多环芳烃(Cd-PAHs)复合污染土壤中,PAHs的存在不利于HE-东南景天对镉的吸收,同时高量镉不利于PAHs的降解,可能是对微生物产生毒害作用所致[54]。可见,HE-东南景天对中轻度有机无机复合污染土壤具有较好的修复效果,且只对重金属有吸收作用,有机污染的减少主要依靠微生物的降解作用。

  • HE-东南景天无性繁殖速率很快,在较短的生长期内即可形成良好的地面覆盖,适于刈割,耐锌、镉胁迫能力强,适于用作锌、镉污染的修复材料,对铅的吸收能力则须通过其他辅助措施才有可能得以发挥。东南景天的重金属修复研究目前大多尚停留在盆栽和田间试验阶段,从技术走向实用需要一整套面向大规模商业化应用的农艺管理措施,应加强在该方面的系统化大田试验研究[55]。其机制研究多停留在细胞水平,修复效果的改良多局限于外源物质的添加。随着现代分子生物学和生物技术的快速发展,从分子水平来阐明植物对重金属离子的吸收、积累和耐性机制成为可能。Chao等[56]运用互补DNA扩增片段长度多态性(cDNA-AFLP)分析技术已在HE-东南景天中鉴定出22个锌响应转录衍生片段(TDFs);用反转录-聚合酶链式反应(RT-PCR)和RACE(rapid-amplification of cDNA ends)法已从2种生态型东南景天中克隆出肌动蛋白的完整序列。今后需进一步研究单个转运蛋白的功能和各个转运蛋白之间的相互关系,进而利用基因工程手段改造植物,促进它们对重金属的富集修复能力。

Reference (56)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return