WANG Shuang, DONG Bin, WANG Yiguang, et al. Analysis and evaluation of flower and fruit characteristics of different Prunus mume cultivars[J]. Journal of Zhejiang A&F University, 2024, 41(1): 113-123. DOI: 10.11833/j.issn.2095-0756.20230213
Citation: GAO Peijun, QIU Yonghua, ZHOU Ziqiu, et al. Productivity and photosynthetic ability of Phyllostachys edulis with nitrogen fertilization[J]. Journal of Zhejiang A&F University, 2014, 31(5): 697-703. DOI: 10.11833/j.issn.2095-0756.2014.05.006

Productivity and photosynthetic ability of Phyllostachys edulis with nitrogen fertilization

DOI: 10.11833/j.issn.2095-0756.2014.05.006
  • Received Date: 2013-10-06
  • Rev Recd Date: 2014-01-13
  • Publish Date: 2014-10-20
  • Fertilization is an important intensive operation for improving economic benefits of a Phyllostachys edulis stand. To determine the amount of N fertilizer needed from practical and theoretical aspects, the effects of N fertilization (at 100, 250, and 400 kg·hm-2) on the production of winter shoots, spring shoots, bamboo stems, and diameter at breast height (DBH) of a Ph. edulis stand from 2006-2011 were measured using complete randomized design (CRD). The Ph. edulis stand without addition of N fertilizer was the control. Each treatment and the control had 3 replicates, and Duncan test was used to analyze the difference. The photosynthetic pigment content and photosynthesis of bamboo leaves were also calculated. Results showed that 250 kg·hm-2 N fertilization significantly increased (P < 0.01) new bamboo production of winter shoots, 6.8 fold; spring shoots, 2.0 fold; bamboo stems, 1.1 fold; and DBH 33.3%. However, no significant differences were found for the 100 and 400 kg·hm-2 treatments. After fertilization, the photosynthetic pigment content, light saturation point, and net photosynthetic rate increased; whereas, the light compensation point and intercellular CO2 concentrations (Ci) decreased, indicating that N fertilization raised photosynthetic ability. Among the three fertilization level, 250 kg·hm-2 had the best effect on promoting Ph. edulis photosynthesis. Therefore, 250 kg·hm-2 was the best fertilization rate for Ph. edulis stands.
  • [1] ZHAO Nannan, WAN Qi, ZHANG Mingru, LI Qingxiang, ZHANG Tingyu, CAI Yihang.  Effects of light intensity and nitrogen application on photosynthetic physiological parameters of Styrax obassia seedlings . Journal of Zhejiang A&F University, 2022, 39(5): 1037-1044. doi: 10.11833/j.issn.2095-0756.20210605
    [2] ZHANG Tingyu, ZHANG Mingru, LI Qingxiang, ZHAO Nannan, WAN Qi, CAI Yihang.  Effects of light intensity and nitrogen treatments on photosynthetic characteristics of Stewartia sinensis seedlings . Journal of Zhejiang A&F University, 2022, 39(6): 1247-1256. doi: 10.11833/j.issn.2095-0756.20210771
    [3] WANG Lingjie, LI Qingli, GAO Peijun, WEI Saijun, LÜ Jiaxin, GAO Yan, ZHANG Rumin.  Activities of key enzymes involved in photosynthesis and expression patterns of corresponding genes during rapid growth of Phyllostachys edulis . Journal of Zhejiang A&F University, 2021, 38(1): 84-92. doi: 10.11833/j.issn.2095-0756.20200277
    [4] HU Ce, LIANG Xie'en, WANG Haixiang, XU Chao, ZHOU Zheyu, ZHU Li'na, HUANG Haonan, ZHANG Rumin, WEN Guosheng.  Diurnal variation of Phyllostachys edulis photosynthesis and transpiration during its rapid growth period . Journal of Zhejiang A&F University, 2018, 35(2): 277-283. doi: 10.11833/j.issn.2095-0756.2018.02.011
    [5] XU Linyu, LIU Shouzan, BAI Yan, DING Heng, HU Xiaotian, WU Xueqian, XU Haishun, ZHENG Bingsong.  Effects of light intensity treatments on photosynthetic characteristics in Tetrastigma hemsleyanum . Journal of Zhejiang A&F University, 2018, 35(3): 467-475. doi: 10.11833/j.issn.2095-0756.2018.03.010
    [6] WEN Xing, CHENG Luyun, LI Dandan, XU Xinlu, GAO Yan, ZHANG Rumin.  Photosynthetic characteristics in the development process of Phyllostachys edulis . Journal of Zhejiang A&F University, 2017, 34(3): 437-442. doi: 10.11833/j.issn.2095-0756.2017.03.008
    [7] WANG Jinping, ZHANG Jinchi, YUE Jianmin, YOU Yanhuang, ZHANG Liang.  BRs, photosynthetic pigments, and chlorophyll fluorescence parameters in Cinnamomum camphora seedlings with NaCl stress . Journal of Zhejiang A&F University, 2017, 34(1): 20-27. doi: 10.11833/j.issn.2095-0756.2017.01.004
    [8] ZHANG Lei, XIE Jinzhong, ZHANG Wei, JI Linke, CHEN Sheng, DING Zhongwen.  Physiological responses of Phyllostachys edulis to water storage in their stumps with a simulated drought environment . Journal of Zhejiang A&F University, 2017, 34(4): 620-628. doi: 10.11833/j.issn.2095-0756.2017.04.007
    [9] LI Hongji, CAI Xianfeng, YUAN Jiali, ZENG Yingying, YU Xiaopeng, WEN Guosheng.  Photosynthetic carbon fixation in Phyllostachys edulis during its fast growth period . Journal of Zhejiang A&F University, 2016, 33(1): 11-16. doi: 10.11833/j.issn.2095-0756.2016.01.002
    [10] WU Xingbo, CHEN Dengju, MA Yuandan, GAO Yan, WEN Guosheng, ZHANG Rumin.  Chloromycetin effects on pigment content and chlorophyll fluorescence in Phyllostachys edulis seedlings . Journal of Zhejiang A&F University, 2016, 33(2): 209-215. doi: 10.11833/j.issn.2095-0756.2016.02.004
    [11] XU Gaiping, LIU Fang, WU Xingbo, WEN Guosheng, WANG Yukui, GAO Yan, GAO Rongfu, ZHANG Rumin.  Pigment content correlated to reflectance spectrums in Phyllostachys edulis leaves stressed by low temperature . Journal of Zhejiang A&F University, 2014, 31(1): 28-36. doi: 10.11833/j.issn.2095-0756.2014.01.005
    [12] LU Guo-fu, DU Hua-qiang, ZHOU Guo-mo, Lü Yu-long, GU Cheng-yan, SHANG Zhen-zhen.  Dynamic change of Phyllostachys edulis forest canopy parameters and their relationships with photosynthetic active radiation in the bamboo shooting growth phase . Journal of Zhejiang A&F University, 2012, 29(6): 844-850. doi: 10.11833/j.issn.2095-0756.2012.06.007
    [13] YU Bao, ZHANG Qiu-liang, WANG Li-ming, WU Jisiguleng.  Characteristics of biomass and productivity in Larix gmelinii natural forests with different stand structures . Journal of Zhejiang A&F University, 2011, 28(1): 52-58. doi: 10.11833/j.issn.2095-0756.2011.01.009
    [14] ZHANG Li-yang, WEN Guo-sheng, ZHANG Ru-min, WANG Dian-jie, ZHANG Jun.  Climate change response using a simulation study of photosynthetic physiology on Phyllostachys pubescens . Journal of Zhejiang A&F University, 2011, 28(4): 555-561. doi: 10.11833/j.issn.2095-0756.2011.04.006
    [15] JIN Xiao-chun, JIN Ai-wu, SONG Yan-dong, LOU Jin-fei, MEI Shu-min.  Canopy development and photosynthesis with fertilization during leaf-expansion period of Phyllostachys pubescens . Journal of Zhejiang A&F University, 2010, 27(1): 57-62. doi: 10.11833/j.issn.2095-0756.2010.01.009
    [16] SUN Jun-wei, LI Su-fang, JIN Song-heng.  Photosynthetic and chlorophyll fluorescence characteristics with five Rubus species . Journal of Zhejiang A&F University, 2010, 27(6): 950-955. doi: 10.11833/j.issn.2095-0756.2010.06.025
    [17] SONG Yan-dong, JIN Ai-wu, JIN Xiao-chun, HU Yuan-bin, DU Liang-liang, JIANG Zhi-you.  Physiology of leaf photosynthesis with fertilization in Phyllostachys pubescens . Journal of Zhejiang A&F University, 2010, 27(3): 334-339. doi: 10.11833/j.issn.2095-0756.2010.03.003
    [18] LIU Hai-xing, ZHANG De-shun, SHANG Kan-kan, CHEN Xiang-bo, DA Liang-jun.  Chlorophyll differences in chlorotic Cinnamomum camphora leaves . Journal of Zhejiang A&F University, 2009, 26(4): 479-484.
    [19] XIE Jin-sheng, HUANG Rong-zhen, CHEN Yin-xiu, YANG Yu-sheng, WANG Wei-ming.  Change of biomass and productivity of Pinus massoniana community after closing of hillsides and management in serious eroded red soil . Journal of Zhejiang A&F University, 2001, 18(4): 354-358.
    [20] QIAN Guo-qin.  Productivity and ecological characteristics of mixed forest of Chinese sweet gum and Chinese fir . Journal of Zhejiang A&F University, 2000, 17(3): 289-293.
  • [1]
    van DELDEN A. Yield and growth components of potato and wheat under organic nitrogen management[J]. Agron J, 2001, 93(6):1370-1385.
    [2]
    ZHAO Duli, REDDY K R, KAKANI V G, et al. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply[J]. Plant Soil, 2003, 257(1):205-217.
    [3]
    da SILVA A F, LOURENCE S O, CHALOUB R M. Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae)[J]. Aquat Bot, 2009, 91(4):291-297.
    [4]
    LONG Jirui, MA Guohui, WAN Yizheng, et al. Effects of nitrogen fertilizer level on chlorophyll fluorescence characteristics in flag leaf of super hybrid rice at late growth stage[J]. Rice Sci, 2013, 20(3):220-228.
    [5]
    DEV S P, BHARDWAJ K K R. Effect of crop wastes and nitrogen levels of biomass production and nitrogen uptake in wheat-maize sequence[J]. Ann Agric Res, 1995, 16:264-267.
    [6]
    DOMAGALSKI J, LIN Chao, LUO Yang, et al. Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People's Republic of China:Chlorophyll-a model and sources of phosphorus and nitrogen[J]. Agr Water Manage, 2007, 94(1):43-53.
    [7]
    XIE Yingxing, XIONG Zhengqin, XING Guangxi, et al. An assessment of nitrogen pollutant sources in surface water in Taihu region[J]. Pedosphere, 2007, 17(2):200-208.
    [8]
    BOWESA M J, SMITHB J T, JARVIEA H P, et al. Modelling of phosphorus inputs to rivers from diffuse and point sources[J]. Sci Total Environ, 2008, 395(2/3):125-138.
    [9]
    JU Xiaotang, KOU C L, CHRISTIE P, et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain[J]. Environ Pollut, 2007, 45(2):497-506.
    [10]
    HU Jirui. Effects of the fertilizer application on the bamboo shoot yield and bamboo shooting law of Phyllostachys pubescens[J]. J Fujian For Sci Technol, 2000, 27(1):34-35.
    [11]
    LI Rui, WERGER M J A, ZHONG Zhangcheng. Influence of fertilization on the clonal growth of bamboo shoots in Phyllostachys pubescens[J]. Acta Phytoecol Sin, 1997, 21(1):19-26.
    [12]
    WANG Hong, JIN Xiaochun, JIN Aaiwu, et al. Growth and culm form of Phyllostachys pubescens with fertilization[J]. J Zhejiang A & F Univ, 2011, 28(5):741-746.
    [13]
    JIN Xiaochun, JIN Aiwu, SONG Yandong, et al. Canopy development and photosynthesis with fertilization during leaf expansion period of Phyllostachys pubescens[J]. J Zhejiang For Coll, 2010, 27(1):57-62.
    [14]
    SONG Yandong, JIN Aiwu, JIN Xiaomei, et al. Physiology of leaf photosynthesis with fertilization in Phyllostachys pubescens[J]. J Zhejiang For Coll, 2010, 27(3):334-339.
    [15]
    LICHTENTHALER H K, WELBURN A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochem Soc Transac, 1983, 603:142-196.
    [16]
    ANDERSON J M, GOODCHILD D J, BOARDMAN N V. Composition of the photosystems and chloroplast structure in extreme shade plants[J]. Biochem Biophys Acta, 1973, 325(3):573-585.
    [17]
    FENG Yulong, LIU Ligang, WANG Wenzhang, et al. Study on the mechanism of production increasing of mixed Larix olgensis Henry and Fraxinus mandshurica stand (Ⅱ) Study on physiological characteristics of mixed L. olgensis Henry and F. mandshurica stand[J]. J Northeast For Univ, 1996, 24(3):1-7.
    [18]
    HUANG Gaiqun, WEI Ling, TONG Wanhong, et al. Effects of N, P and K fertilizers on photosynthetic characteristics of mulberry[J]. Agric Sci Technol, 2012, 13(12):2562-2568.
    [19]
    HEITHOLT J J, JOHNSON R C, FERRIS D M. Stomatal limitation to carbon dioxide assimilation in nitrogen and drought stressed wheat[J]. Crop Sci, 1991, 31(1):135-139.
    [20]
    ELRILI I R, HOLMES J J, WEGER H G, et al. RuBP limitation of photosynthetic carbon fixation during NH3 assimilation. Interactions between photosynthesis, respiration and ammonium assimilation in N-limited green algae[J]. Plant Physiol, 1988, 87(2):395-401.
    [21]
    FOYER C H, NOCTOR G, LELANDAIS M, et al. Short-term effects of nitrate, nitrite and ammonium assimilation on chlorophyll a fluorescence, thylakoid protein phosphorylation, net CO2 assimilation and amino acid biosynthesis in maize[J]. Planta, 1994, 192(21):211-220.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.1 %FULLTEXT: 27.1 %META: 67.5 %META: 67.5 %PDF: 5.4 %PDF: 5.4 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.8 %其他: 16.8 %其他: 0.1 %其他: 0.1 %Clemmons: 0.4 %Clemmons: 0.4 %Kao-sung: 0.1 %Kao-sung: 0.1 %Wixom: 0.1 %Wixom: 0.1 %三明: 0.1 %三明: 0.1 %上海: 2.2 %上海: 2.2 %东莞: 0.4 %东莞: 0.4 %丽水: 0.6 %丽水: 0.6 %九江: 0.5 %九江: 0.5 %光州广域: 0.7 %光州广域: 0.7 %兰辛: 0.1 %兰辛: 0.1 %北京: 0.4 %北京: 0.4 %北伯根: 0.1 %北伯根: 0.1 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南昌: 0.2 %南昌: 0.2 %南通: 0.2 %南通: 0.2 %台北: 0.4 %台北: 0.4 %台州: 1.5 %台州: 1.5 %合肥: 0.2 %合肥: 0.2 %呵叻: 0.4 %呵叻: 0.4 %呼和浩特: 1.1 %呼和浩特: 1.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %圣克拉拉: 0.1 %圣克拉拉: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %孝感: 0.1 %孝感: 0.1 %宁波: 0.2 %宁波: 0.2 %宣城: 0.2 %宣城: 0.2 %巴特洪堡: 0.2 %巴特洪堡: 0.2 %广安: 0.1 %广安: 0.1 %广州: 0.4 %广州: 0.4 %弗吉尼亚州: 0.1 %弗吉尼亚州: 0.1 %张家口: 6.0 %张家口: 6.0 %悉尼: 0.3 %悉尼: 0.3 %成都: 0.2 %成都: 0.2 %扬州: 0.5 %扬州: 0.5 %拉雷多: 0.6 %拉雷多: 0.6 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.8 %杭州: 0.8 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %洛阳: 0.2 %洛阳: 0.2 %淄博: 0.1 %淄博: 0.1 %深圳: 0.6 %深圳: 0.6 %温州: 1.0 %温州: 1.0 %湖州: 0.5 %湖州: 0.5 %漯河: 2.3 %漯河: 2.3 %濮阳: 0.3 %濮阳: 0.3 %盐城: 0.1 %盐城: 0.1 %石家庄: 2.9 %石家庄: 2.9 %福州: 0.1 %福州: 0.1 %纽瓦克: 0.1 %纽瓦克: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.3 %绍兴: 0.3 %芒廷维尤: 34.9 %芒廷维尤: 34.9 %芝加哥: 3.4 %芝加哥: 3.4 %苏州: 0.7 %苏州: 0.7 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 7.3 %西宁: 7.3 %西安: 0.2 %西安: 0.2 %西雅图: 0.2 %西雅图: 0.2 %贵阳: 0.7 %贵阳: 0.7 %运城: 1.2 %运城: 1.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %重庆: 0.1 %重庆: 0.1 %金华: 0.2 %金华: 0.2 %长沙: 0.8 %长沙: 0.8 %青岛: 0.1 %青岛: 0.1 %首尔特别: 0.7 %首尔特别: 0.7 %驻马店: 0.3 %驻马店: 0.3 %鹰潭: 0.1 %鹰潭: 0.1 %黄石: 0.3 %黄石: 0.3 %其他其他ClemmonsKao-sungWixom三明上海东莞丽水九江光州广域兰辛北京北伯根十堰南京南昌南通台北台州合肥呵叻呼和浩特哥伦布嘉兴圣克拉拉大连天津孝感宁波宣城巴特洪堡广安广州弗吉尼亚州张家口悉尼成都扬州拉雷多晋城朝阳杭州武汉沈阳沧州洛阳淄博深圳温州湖州漯河濮阳盐城石家庄福州纽瓦克纽约绍兴芒廷维尤芝加哥苏州衡阳衢州西宁西安西雅图贵阳运城遵义邯郸郑州重庆金华长沙青岛首尔特别驻马店鹰潭黄石Highcharts.com
  • Cited by

    Periodical cited type(7)

    1. 徐斌,陈新宇,廖焕琴,张卫华,杨会肖. 棱果花的花表型性状多样性分析. 林业与环境科学. 2025(01): 36-42 .
    2. 杜宏志,王福森,张强,杨春柳,刘晓萌,邢政华,毕宇,李树森. 黑龙江西部青杨派纸浆材综合评价. 防护林科技. 2025(02): 45-49 .
    3. 戚亚,王改萍,郑保砼,彭大庆,李硕民,曹福亮. 文冠果无性系花表型性状遗传变异分析. 经济林研究. 2024(01): 29-38 .
    4. 刘忠明,李阳,王文波,王守娟,刘梦茹,孔凡功. 三种木材纤维微细结构分析及制浆性能研究. 造纸科学与技术. 2024(03): 6-10 .
    5. 彭叶青. 皮用青檀优株评选研究. 新农民. 2024(24): 64-66 .
    6. 黄国伟,彭华兰,张亚东,马林江,张兴虎,张新叶. 江汉平原引种45年生黑杨派品种生长过程比较. 中国农学通报. 2024(31): 1-6 .
    7. 黄桂华,梁坤南,付强,王先棒,周再知,周强,张绍祥. 11年生柚木无性系遗传变异与优良无性系选择. 东北林业大学学报. 2023(08): 18-22+64 .

    Other cited types(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(6)

Article views(7876) PDF downloads(666) Cited by(10)

Related
Proportional views

Productivity and photosynthetic ability of Phyllostachys edulis with nitrogen fertilization

doi: 10.11833/j.issn.2095-0756.2014.05.006

Abstract: Fertilization is an important intensive operation for improving economic benefits of a Phyllostachys edulis stand. To determine the amount of N fertilizer needed from practical and theoretical aspects, the effects of N fertilization (at 100, 250, and 400 kg·hm-2) on the production of winter shoots, spring shoots, bamboo stems, and diameter at breast height (DBH) of a Ph. edulis stand from 2006-2011 were measured using complete randomized design (CRD). The Ph. edulis stand without addition of N fertilizer was the control. Each treatment and the control had 3 replicates, and Duncan test was used to analyze the difference. The photosynthetic pigment content and photosynthesis of bamboo leaves were also calculated. Results showed that 250 kg·hm-2 N fertilization significantly increased (P < 0.01) new bamboo production of winter shoots, 6.8 fold; spring shoots, 2.0 fold; bamboo stems, 1.1 fold; and DBH 33.3%. However, no significant differences were found for the 100 and 400 kg·hm-2 treatments. After fertilization, the photosynthetic pigment content, light saturation point, and net photosynthetic rate increased; whereas, the light compensation point and intercellular CO2 concentrations (Ci) decreased, indicating that N fertilization raised photosynthetic ability. Among the three fertilization level, 250 kg·hm-2 had the best effect on promoting Ph. edulis photosynthesis. Therefore, 250 kg·hm-2 was the best fertilization rate for Ph. edulis stands.

WANG Shuang, DONG Bin, WANG Yiguang, et al. Analysis and evaluation of flower and fruit characteristics of different Prunus mume cultivars[J]. Journal of Zhejiang A&F University, 2024, 41(1): 113-123. DOI: 10.11833/j.issn.2095-0756.20230213
Citation: GAO Peijun, QIU Yonghua, ZHOU Ziqiu, et al. Productivity and photosynthetic ability of Phyllostachys edulis with nitrogen fertilization[J]. Journal of Zhejiang A&F University, 2014, 31(5): 697-703. DOI: 10.11833/j.issn.2095-0756.2014.05.006
  • 肥料是植物生长发育所必需的矿物质营养来源,直接决定着作物产量。为了获得作物高产,施肥是农业生产的必需措施,其中最普遍的是施加氮肥。氮作为生命元素,作物缺乏后其叶面积减小[1-2]、光合速率降低[2-4]、植株发育受阻[2, 5],最终导致减产。在实际生产中,为了获得作物高产,往往会施加过量的氮肥,这不仅增加了生产成本,同时也会污染生态环境,尤其是水体环境[6-8]。研究表明:中国肥料的使用量持续增长,而氮肥的平均利用率却只有32%~45%,即使在有效的农田管理下也不超过50%[9]。由此可见,合理施肥对降低农业投入和保护生态环境均具有重要意义。毛竹Phyllostachys edulis是中国分布面积最大、范围最广、开发利用程度最高,对竹产区地方经济和竹农收入影响最为深远的集经济、生态和社会效益于一体的笋材两用竹种。施肥是集约经营毛竹林提高经济效益的重要手段之一。施肥后毛竹出笋提前,出笋期延长[10],出笋数和活笋数提高[11],同时胸径和林分密度增加[12]。在毛竹展叶期到绿叶期进行施肥处理,其中展叶期施肥更有利于提高新竹的光合能力,促进新竹生长[13]。宋艳冬等[14]通过研究5月和8月施肥对毛竹叶片光合色素含量以及光合速率的影响表明,5月施肥效果较好,然而8月施肥能延长叶片的光合能力,延缓叶片衰老。目前,关于毛竹林施肥的研究主要集中于提高毛竹林生产力以及施肥时期的确定,然而在毛竹林经营过程中如何进行合理施肥尚未见研究报道。因此,为了确定毛竹林准确的氮素施肥量以促进其集约经营,本研究通过长期调查氮素施肥对竹笋和竹材产量的影响以及氮素施肥对毛竹光合作用的影响,以期从实践和理论角度对毛竹林的合理施肥予以揭示。

  • 试验地位于浙江省遂昌县妙高镇,39°35′51.75″N,116°35′19.51″E。所用试验毛竹林为笋用林,坡向南坡,坡度22°~25°,土壤为山地红壤,土层厚度60 cm以上。土壤pH 5.3~6.0,有机质为4.10 g·kg-1,全氮、速效磷、速效钾分别为0.151 g·kg-1,5.40 mg·kg-1,80.20 mg·kg-1。竹林均采用中度经营,立竹密度为2 400~2 700株·hm-2,年龄结构1度:2度:3度竹为1:1:1,立竹分布、大小均匀,平均胸径为9~10 cm。

  • 选择立地条件相近的毛竹笋用林设置试验样地,每块样地面积为20 m×30 m。试验于2004-2011年进行,共设置4个氮素施肥水平,分别为对照(不施氮素, ck), N1(施氮素量100 kg·hm-2),N2(施氮素量250 kg·hm-2)和N3(施氮素量400 kg·hm-2),设样地3块·处理-1,共计样地12块,完全随机排列。施肥样地(包含对照)配施五氧化二磷(P2O5)125 kg·hm-2和氧化钾(K2O)40 kg·hm-2。肥料品种:氮肥为尿素(含氮46%),磷肥为过磷酸钙(含P2O512.1%),钾肥为氧化钾(含K2O 63%),施肥时间为每年的5月上旬,施肥方法采用竹蔸施肥法。

    2006-2011年连续3个生长周期内,在2006年、2008年和2010年11月至翌年2月记录冬笋产量;在2007年、2009年和2011年3-4月记录春笋产量,7月下旬测量新生竹胸径,10月上旬测定竹材产量。2011年7月下旬-8月上旬,在每块样地选取生长良好、高度(12~15 m)及胸径(9~10 cm)一致的1年生和3年生毛竹各3株作为测试样竹,取其阳面枝条顶端成熟、健康的叶片3片测量其光合色素质量分数和光合性能,测定9次·样地-1,取其平均值作为该样地的测量值。

  • 新生毛竹的胸径采用围径尺进行测量,冬笋、春笋和竹材产量采用称量法测量。

  • 毛竹叶片除去主脉后剪碎并混匀,称取0.1 g置于具塞试管中,加入体积分数为80%的丙酮10 mL,置于黑暗处室温下萃取24 h后(样品完全变白),分别测定663,645和470 nm处的吸光度Dλ)值,按Lichtenthaler等[15]修订的Arnon法计算叶绿素a,叶绿素b和类胡萝卜素质量分数。m叶绿素a=12.72D663-2.59D645, m叶绿素b=12.88D645-4.67D663, m类胡罗卜素=(10 000 D470-3.27 m叶绿素a-104 m叶绿素b)229。

  • 采用LI-6400便携式光合仪(美国Li-COR公司)测定毛竹的光响应曲线,光强设为0,20,50,100,150,200,250,300,400,600,800,1 000,1 200,1 400,1 600,1 800和2 000 μmol·m-2·s-1,数据采集时间为200 s,并计算光补偿点、光饱和点和最大光合速率。

  • 试验数据采用SPSS 13.0进行Duncan检验,采用Origin 8.0进行绘图。

  • 3 a的调查结果表明:氮素施肥能极显著提高毛竹冬笋和春笋产量。在N1, N2和N3施肥水平下,冬笋3 a产量的平均值分别比对照提高了3.7倍(P<0.01),6.8倍(P<0.01)和7.1倍(P<0.01);春笋3 a产量的平均值分别比对照提高了1.5倍(P<0.01),2.0倍(P<0.01)和1.9倍(P<0.01),其中N2和N3施肥水平对冬笋和春笋产量的影响没有明显差异(表 1, 表 2)。

    处理冬笋产量/ (kg·hm-2)
    2006年2008年2010年平均值
    ck397.5±55.8Cc468.0±47.1Cd526.5±63.8Cc464.0±64.6Cc
    N12 305.5±87.3Bb2 104.5±88.1Bc2 182.5±73.9Bb2 197.5±101.3Bb
    N23 672.0±99.4Aa3 451.5±156.2Ab3 681.0±78.2Aa3 601.5±130.0Aa
    N33 723.0±156.9Aa3 949.5±210.3Aa3 547.5±96.8Aa3 740.0±201.5Aa
    说明:小写字母表示差异在P < 0.05水平下差异显著;大写字母表示差异在P < 0.01水平下差异极显著。

    Table 1.  Yield of winter shoots at different nitrogen fertilization levels

    处理春笋产量/ (kg·hm-2)
    2007年2009年2011年平均值
    ck2 959.5±82.1 Cc3 159.0±102.3Cc3 046.5±79.8Cc3 055.0±100.0Cc
    N17 657.3±254.1 Bb7 448.7±213.8Bb8 001.2±195.2Bb7 702.4±279.0 Bb
    N28 980.5±246.2 Aa9 094.5±301.5Aa9 648.0±257.8 Aa9 241.0±357.1 Aa
    N38 605.5±269.4 Aa9 463.5±309.4 Aa8 953.0±400.2Aa9 007.3±431.6Aa
    说明:小写字母表示差异在P < 0.05水平下差异显著;大写字母表示差异在P < 0.01水平下差异极显著。

    Table 2.  Yield of spring shoots at different nitrogen fertilization levels

  • 2007年、2009年和2011年7月下旬对试验样地保留新竹进行调查表明,氮素施肥后新竹胸径显著增加。在N1,N2和N3施肥水平下,3 a调查结果的胸径平均值分别比对照增加了9.5%(P<0.05),33.3%(P<0.01)和34.5%(P<0.01),其中N2和N3施肥水平间没有明显差异(表 3)。

    处理胸径/cm
    2007年2009年2011年平均值
    ck8.71±1.32 Bb8.16±1.61 Bb8.43±1.31 Bc8.43±1.51 Bc
    N19.23±1.12 Bb8.83±1.34 Bb9.52±1.13 Bb9.23±1.21 Bb
    N211.23±0.92 Aa10.76±1.14 Aa11.63±1.22 Aa11.24±1.23 Aa
    N311.55±1.02 Aa11.11±1.32 Aa11.47±1.41 Aa11.34±1.43 Aa
    说明:小写字母表示差异在P < 0.05水平下差异显著;大写字母表示差异在P < 0.01水平下差异极显著。

    Table 3.  Diameter at breast height in new Phllostachys edulis at different nitrogen fertilization levels

  • 2007年、2009年和2011年的调查结果均表明,氮素施肥能显著提高毛竹的竹材产量。在N1,N2和N3施肥水平下,竹材3 a的平均产量分别比对照增加了0.7倍(P<0.01),1.1倍(P<0.01)和1.2倍(P<0.01),其中后2种施肥水平间无显著差异(表 4)。

    处理竹材产量/ (kg·hm-2)
    2007年2009年2011年平均值
    ck11 700±602 Cc10 200±719 Cd10 800±873 Cc10 900±755 Cc
    N118 563±568 Bb17 738±610 Bc18 975±710 Bb18 425±630 Bb
    N222 688±1 115 Aa21 450±1 007 Ab23 513±1 074 Aa22 550±1 038 Aa
    N323 513±416 Aa24 383±429 Aa23 925±402 Aa23 940±413 Aa
    说明:小写字母表示差异在P < 0.05水平下差异显著;大写字母表示差异在P < 0.01水平下差异极显著。

    Table 4.  Yield of bamboo timber at different nitrogen fertilization levels

  • 氮素施肥后,1年生和3年生毛竹光合色素质量分数均显著增加,而叶绿素a/b则降低。在N2施肥水平下,光合色素增加最多,其中1年生毛竹叶绿素a,叶绿素b,叶绿素(a+b)和类胡萝卜素质量分数分别比对照增加了19.6%(P<0.01),27.7%(P<0.01),21.7%(P<0.01)和12.9%(P<0.05);3年生毛竹分别比对照增加了14.0%(P<0.05),29.7%(P<0.01),18.2%(P<0.01)和9.3%(P<0.05)(表 5)。

    竹龄 处理 叶绿素a/(mg·g-1) 叶绿素b/(mg·g-1) 叶绿素总量/(mg·g-1) 叶绿素a/b 类胡萝卜素/(mg·g-1)
    ck2.91±0.10 Bc1.01±0.09 Bc3.92±0.15 Bc2.91±0.29 Aa0.85±0.07 Ab
    N13.24±0.29 Ab1.13±0.26 ABb4.37±0.53 ABb3.03±0.68 Aa0.87±0.03 Ab
    1年生N23.48±0.17 Aa1.29±0.09 Aa4.77±0.24 Aa2.68±0.15 Ab0.96±0.06 Aa
    N33.34±0.22 Aab1.30±0.09 Aa4.64±0.30 Aab2.57±0.07 Ab0.81±0.03 Ab
    ck3.01±0.33 Abc1.01±0.11 Bc4.01±0.60 Bc3.02±0.56 Aa0.86±0.20 Ab
    N13.20±0.30 Ab1.12±0.11 ABab4.32±0.68 ABab2.86±0.21 Aab0.87±0.10 Ab
    3年生N23.43±0.27 Aa1.31±0.12 Aa4.74±0.38 Aa2.62±0.05 Ab0.94±0.11 Aa
    N33.11±0.24 Abc1.20±0.07 Aab4.31±0.38 ABab2.59±0.14 Ab0.86±0.11 Ab
    说明:小写字母表示差异在P < 0.05水平下差异显著;大写字母表示差异在P < 0.01水平下差异极显著。

    Table 5.  Photosynthetie pigment content in leaves of Ph. edulis at different nitrogen fertilization levels

  • 氮素施肥后,1年生和3年生毛竹叶片的净光合速率明显高于对照,并且在N2施肥水平下净光合速率最高(图 1)。

    Figure 1.  Net photosynthetie rate in leaves of Ph. edulis at different nitrogen fertilization levels

    在N1,N2和N3施肥水平下,1年生和3年生毛竹的光补偿点明显降低,而光饱和点和最大光合速率则显著明显。在N2施肥水平下,各指标的变化最为明显,其中1年生毛竹的光补偿点降低了49.5%(P<0.01),光饱和点和最大光合速率则分别增加了5.1%(P<0.05)和11.6%(P<0.05);3年生毛竹的光补偿点降低了20.4%(P<0.01),光饱和点和最大光合速率分别增加了9.0%(P<0.05)和14.3%(P<0.05)(表 6)。

    竹龄处理光补偿点/ (μmol · m-2· s-1)光饱和点/ (μmol · m-2· s-1)最大光合速率/ (μmol · m-2· s-1)
    ck53.3±3.2 Aa580.3±10.7 Ab17.3±1.1 Ab
    N146.2±3.1 Ab590.9±7.8 Aab18.6±1.3 Aab
    1年生N226.9±1.3 Cd610.0±8.9 Aa19.3±1.2 Aa
    N334.3±2.7 Bc597.4±10.1 Aab18.5±0.9 Aab
    ck44.2±2.3 Aa590.1±9.7 Abc15.4±0.5 Ab
    3年生N137.2±1.9 ABb621.0±10.3 Aa16.3±0.2 Aab
    N235.2±3.1 Bb643.5±9.3 Aa17.6±0.5 Aa
    N341.2±3.9 ABa616.4±11.5 Aab17.2±0.6 Aa
    说明:小写字母表示差异在P < 0.05水平下差异显著;大写字母表示差异在P < 0.01水平下差异极显著。

    Table 6.  Photosynthesis parameters in leaves of Ph. edulis at different nitrogen fertilization levels

  • 对1年生和3年生毛竹而言,不同氮素施肥水平均能使其叶片气孔导度明显增加,其中在N2施肥水平下气孔导度增至最大;当施氮素增至N3水平时,气孔导度有所降低,但是仍明显高于对照(图 2)。

    Figure 2.  Cond in leaves of Ph. edulis at different nitrogen fertilization levels

  • 氮素施肥后,1年生和3年生毛竹叶片的胞间二氧化碳摩尔分数均明显降低。随着施肥量增加,毛竹叶片胞间二氧化碳摩尔分数逐渐降低,当施肥量在N2水平时胞间二氧化碳摩尔分数最低。当施肥量继续增加,胞间二氧化碳摩尔分数又有所升高,但仍明显低于对照(图 3)。

    Figure 3.  CO2 concentration in leaves of Ph. edulis at different nitrogen fertilization levels

  • 施肥是毛竹林集约经营,提高经济效益的重要手段之一,对毛竹进行深翻再加施稀土复合肥后,其出笋提前6 d,出笋期延长10 d,出笋总量增加2.2倍[10]。李睿等[11]研究亦有相似发现,毛竹林施肥可使其出笋数和活笋数提高3倍以上。除笋产量提高外,施肥还能使毛竹胸径和林分密度明显增加,同时林分水平的长期生物产量增长[12]。本研究亦表明,氮素施肥处理能明显提高竹笋和竹材产量,促进毛竹胸径生长,并且250 kg·hm-2与400 kg·hm-2施肥水平之间的促进效果无显著性差异。

    对1年生和3年生毛竹的测定结果表明:施肥能明显促进其光合色素合成,从而使其质量分数增加,其中以250 kg·hm-2的施肥效果最好(表 5)。这与金晓春等[13]和宋艳冬等[14]施肥处理后毛竹光合色素含量明显升高的研究结果相一致。氮是叶绿素卟啉环与镁离子结合的关键元素,因此施加氮肥有利于植物叶绿素合成,从而使其含量提高。Anderson等[16]研究表明:叶绿素b含量增加对叶绿体基粒以及基粒片层的增加具有重要作用,从而有利于叶片光能捕获与传递能力的提高。叶绿素a/b与叶绿素a的状态有关,其比值升高对光合作用具有不利影响[17]。施氮肥处理能不同程度地降低毛竹叶片叶绿素a/b,其中以250 kg·hm-2施肥水平处理后降低量最大,这可能是此施肥水平下毛竹光合能力较高的重要原因。

    施加氮肥后1年生和3年生毛竹叶片的光合能力明显增强,然而随着氮素施肥量增加,光合能力先增强后降低。这与适宜施肥后桑树Morus alba光合能力提高而过量施肥则降低的研究结果相类似,其原因可能与过量施肥对植物所造成的胁迫有关[18]。氮素影响植物叶片的光合作用主要有气孔因素和非气孔因素,其中气孔因素是指氮素通过影响气孔开度而影响光合作用,非气孔因素是指氮素作为光合机构的构架元素而影响光合过程。Heithold等[19]研究表明,气孔因素是影响高氮小麦Triticum aestivum光合作用的主要原因,并且这种影响明显高于低氮小麦。在缺氮条件下,植物叶片的1, 5-二磷酸核酮糖羧化/加氧酶(Rubisco)含量和活性明显降低,因此光合能力减弱[20]。增加氮素供应后,植物类囊体膜蛋白的磷酸化和Rubisco活性显著增强,因此光合速率提高[21]。施加氮肥后,毛竹叶片的气孔导度和叶绿素质量分数明显增加,而胞间二氧化碳摩尔分数降低则表明Rubisco对二氧化碳的同化能力增强,因此,施氮肥后毛竹叶片光合能力明显提高与气孔和非气孔因素均有关。

    光合作用是植物体内最基本的代谢过程,为植物生长发育提供必需的能量和营养物质。氮素施肥后毛竹的光合能力明显提高,从而有利于光合产物积累,进而促进竹笋和竹材产量增长。因此,综合竹笋与竹材产量与光合性能指标分析,毛竹林氮素施肥水平以250 kg·hm-2为宜。

Reference (21)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return