WANG Yueting, ZHANG Xiaoli, YANG Huiqiao, et al. Forest volume estimation based on spectral and textural information from the Landsat 8 satellite[J]. Journal of Zhejiang A&F University, 2015, 32(3): 384-391. DOI: 10.11833/j.issn.2095-0756.2015.03.008
Citation: WANG Yueting, ZHANG Xiaoli, YANG Huiqiao, et al. Forest volume estimation based on spectral and textural information from the Landsat 8 satellite[J]. Journal of Zhejiang A&F University, 2015, 32(3): 384-391. DOI: 10.11833/j.issn.2095-0756.2015.03.008

Forest volume estimation based on spectral and textural information from the Landsat 8 satellite

DOI: 10.11833/j.issn.2095-0756.2015.03.008
  • Received Date: 2014-07-17
  • Rev Recd Date: 2014-11-03
  • Publish Date: 2015-06-20
  • On the Jiangle State Forest Farm of Fujian Province forest volume was obtained by field investigation and by Landsat 8 observations that utilized band spectral values, vegetation indexes, derivatives of bands, and optimal textural measurements derived from the panchromatic band using varied window sizes. Through multiple regression analysis, volume estimation models were produced with independent variables of 1) only spectral factors and 2) combined spectral factors and textural volume. Then, validation was conducted using field survey data to test and compare model prediction accuracy. Experimental results showed R2 = 0.727 6 for the spectrally based volume estimation model and R2 = 0.857 5 for the combined model. Model prediction accuracy was 79.8% for the single spectral based volume estimation model and 86.0% for the combined model. Therefore, the improved prediction accuracy using textural information from the panchromatic band with images of Landsat 8 for forest volume estimation and application of this procedure should be considered when determining forest volume.[Ch, 3 fig. 6 tab. 22 ref.]
  • [1] DENG Zaichun, ZHANG Chao, ZHU Xiali, FAN Jinming, QIAN Hui, LI Chengrong.  Pinus yunnanensis volume estimation model based on UAV multispectral image . Journal of Zhejiang A&F University, 2024, 41(1): 49-56. doi: 10.11833/j.issn.2095-0756.20230263
    [2] ZHU Zan, YUAN Xiping, GAN Shu, ZHANG Liangjie, ZHAO Qinghui.  GF-1 remote sensing data for Panax notoginseng planting information extraction in Wenshan, Yunnan Province . Journal of Zhejiang A&F University, 2020, 37(1): 129-135. doi: 10.11833/j.issn.2095-0756.2020.01.017
    [3] LAN Jie, XIAO Zhongqi, LI Jimei, ZHANG Yutao.  Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains . Journal of Zhejiang A&F University, 2020, 37(3): 416-423. doi: 10.11833/j.issn.2095-0756.20190384
    [4] XIE Qiaoya, YU Kunyong, DENG Yangbo, LIU Jian, FAN Huadong, LIN Tongzhou.  Height measurement of Cunninghamia lanceolata plantations based on UAV remote sensing . Journal of Zhejiang A&F University, 2019, 36(2): 335-342. doi: 10.11833/j.issn.2095-0756.2019.02.015
    [5] SHEN Jiapeng, CHEN Dongsheng, SUN Xiaomei, ZHANG Shougong.  Modeling a single-tree biomass equation by seemingly unrelated regression and dummy variables with Larix kaempferi . Journal of Zhejiang A&F University, 2019, 36(5): 877-885. doi: 10.11833/j.issn.2095-0756.2019.05.005
    [6] XIE Fuming, ZI Li, SHU Qingtai.  Optimizing the k-nearest neighbors technique for estimating Pinus densata aboveground biomass based on remote sensing . Journal of Zhejiang A&F University, 2019, 36(3): 515-523. doi: 10.11833/j.issn.2095-0756.2019.03.012
    [7] LUO Hengchun, ZHANG Chao, WEI Anchao, ZHANG Yi, HUANG Tian, YU Zhexiu.  Average DBH growth model of a stand with environmental parameters for Pinus yunnanensis in central Yunnan, China . Journal of Zhejiang A&F University, 2018, 35(6): 1079-1087. doi: 10.11833/j.issn.2095-0756.2018.06.011
    [8] TAO Jiangyue, LIU Lijuan, PANG Yong, LI Dengqiu, FENG Yunyun, WANG Xue, DING Youli, PENG Qiong, XIAO Wenhui.  Automatic identification of tree species based on airborne LiDAR and hyperspectral data . Journal of Zhejiang A&F University, 2018, 35(2): 314-323. doi: 10.11833/j.issn.2095-0756.2018.02.016
    [9] WANG Haibin, PENG Daoli, GAO Xiuhui, LI Wenfang.  Forest stock volume estimates in Yanqing District based on GF-1 PMS images and k-NN method . Journal of Zhejiang A&F University, 2018, 35(6): 1070-1078. doi: 10.11833/j.issn.2095-0756.2018.06.010
    [10] LIANG Wenhai, LIU Jikai, ZHANG Wei, LI Xinwei, ZHONG Shiquan.  Extracting Eucalyptus information using GF-2 images based on an object-oriented method . Journal of Zhejiang A&F University, 2017, 34(4): 721-729. doi: 10.11833/j.issn.2095-0756.2017.04.019
    [11] WANG Shuhan, ZHANG Xiaoli, ZHU Chenghao, QU Shuai.  Stand density estimates based on a local maximum spectral filter . Journal of Zhejiang A&F University, 2017, 34(3): 413-420. doi: 10.11833/j.issn.2095-0756.2017.03.005
    [12] ZHAO Kuangji, JI Fuli, LIU Yanwen, LIU Xiaolan, JIA Zhongkui, MA Lüyi.  Growth of Larix principis-rupprechtii with thinning and pruning . Journal of Zhejiang A&F University, 2016, 33(4): 581-588. doi: 10.11833/j.issn.2095-0756.2016.04.005
    [13] LÜ Changxiao, DENG Huafeng, WANG Shaojie, CHEN Zhenxiong, WANG Xuejun.  Compatible tree volume and aboveground biomass equations for Pinus massoniana from different regions . Journal of Zhejiang A&F University, 2016, 33(5): 790-797. doi: 10.11833/j.issn.2095-0756.2016.05.010
    [14] JIANG Yunjiao, HAN Yiqun, LI Mingyang, WANG Yixiao.  Remote sensing based estimation and spatial distribution of tree species diversity for Zijin Mountain . Journal of Zhejiang A&F University, 2015, 32(4): 509-515. doi: 10.11833/j.issn.2095-0756.2015.04.003
    [15] YAO Zhi, ZHANG Xiaoli.  Based on WebGIS platform developing remote sensing information systems of forest canopy density inversion . Journal of Zhejiang A&F University, 2015, 32(3): 392-398. doi: 10.11833/j.issn.2095-0756.2015.03.009
    [16] DENG Jing, CHEN Yutuo.  Stand growth prediction based on a growth distribution model . Journal of Zhejiang A&F University, 2014, 31(6): 898-904. doi: 10.11833/j.issn.2095-0756.2014.06.011
    [17] ZHANG Qianqian, CHEN Jian, JIANG Hong, TANG Minzhong.  Classification of Hyperion hyperspectral imagery data using texture . Journal of Zhejiang A&F University, 2013, 30(6): 880-886. doi: 10.11833/j.issn.2095-0756.2013.06.012
    [18] JI Bi-yong, TAO Ji-xing, ZHANG Guo-jiang, DU Qun, YAO Hong-wen, XU Jun.  Zhejiang Province’s forest vegetation biomass assessment for guaranteed accuracy . Journal of Zhejiang A&F University, 2012, 29(3): 328-334. doi: 10.11833/j.issn.2095-0756.2012.03.002
    [19] WANG Xiao-ning, XU Tian-shu, LI Yi.  Estimating forest volume in hilly regions with the ALOS PALSAR model’s dual polarization data . Journal of Zhejiang A&F University, 2012, 29(5): 667-670. doi: 10.11833/j.issn.2095-0756.2012.05.005
    [20] LI Xiao-hong, GAO Jia-rong, ZHANG Jin-rui, YANG Qi-lin.  Determining stand density from growth indicators for young Pinus tabulaeformis in the Miyun Reservoir,Beijing . Journal of Zhejiang A&F University, 2010, 27(6): 821-825. doi: 10.11833/j.issn.2095-0756.2010.06.003
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.0 %FULLTEXT: 26.0 %META: 68.6 %META: 68.6 %PDF: 5.4 %PDF: 5.4 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.9 %其他: 3.9 %其他: 0.0 %其他: 0.0 %China: 1.3 %China: 1.3 %上海: 1.1 %上海: 1.1 %东莞: 0.2 %东莞: 0.2 %佛山: 0.0 %佛山: 0.0 %信阳: 0.0 %信阳: 0.0 %包头: 0.0 %包头: 0.0 %北京: 21.1 %北京: 21.1 %北伯根: 0.0 %北伯根: 0.0 %南京: 0.1 %南京: 0.1 %南昌: 0.0 %南昌: 0.0 %南阳: 0.1 %南阳: 0.1 %合肥: 0.3 %合肥: 0.3 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %圣克拉拉: 0.0 %圣克拉拉: 0.0 %天津: 0.1 %天津: 0.1 %安顺: 0.1 %安顺: 0.1 %宿州: 0.1 %宿州: 0.1 %密蘇里城: 0.2 %密蘇里城: 0.2 %广州: 0.3 %广州: 0.3 %延安: 0.0 %延安: 0.0 %张家口: 1.7 %张家口: 1.7 %扬州: 0.0 %扬州: 0.0 %抚州: 0.5 %抚州: 0.5 %抚顺: 0.2 %抚顺: 0.2 %拉斯维加斯: 0.1 %拉斯维加斯: 0.1 %斯托姆莱克: 0.0 %斯托姆莱克: 0.0 %新乡: 0.0 %新乡: 0.0 %昆明: 0.3 %昆明: 0.3 %杭州: 3.5 %杭州: 3.5 %格兰特县: 0.0 %格兰特县: 0.0 %武汉: 0.2 %武汉: 0.2 %洛阳: 0.1 %洛阳: 0.1 %海口: 0.1 %海口: 0.1 %深圳: 0.4 %深圳: 0.4 %温州: 0.0 %温州: 0.0 %漳州: 0.1 %漳州: 0.1 %潍坊: 0.1 %潍坊: 0.1 %石家庄: 0.2 %石家庄: 0.2 %绍兴: 0.2 %绍兴: 0.2 %芒廷维尤: 8.9 %芒廷维尤: 8.9 %芝加哥: 1.6 %芝加哥: 1.6 %苏州: 0.3 %苏州: 0.3 %西宁: 49.7 %西宁: 49.7 %西安: 0.2 %西安: 0.2 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.0 %运城: 0.0 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.4 %郑州: 0.4 %重庆: 0.0 %重庆: 0.0 %金华: 0.1 %金华: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 0.3 %长沙: 0.3 %阜新: 0.0 %阜新: 0.0 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.2 %青岛: 0.2 %马鞍山: 0.0 %马鞍山: 0.0 %黔西南: 0.0 %黔西南: 0.0 %龙岩: 0.1 %龙岩: 0.1 %其他其他China上海东莞佛山信阳包头北京北伯根南京南昌南阳合肥哥伦布嘉兴圣克拉拉天津安顺宿州密蘇里城广州延安张家口扬州抚州抚顺拉斯维加斯斯托姆莱克新乡昆明杭州格兰特县武汉洛阳海口深圳温州漳州潍坊石家庄绍兴芒廷维尤芝加哥苏州西宁西安诺沃克贵阳运城邯郸郑州重庆金华长春长沙阜新阳泉青岛马鞍山黔西南龙岩Highcharts.com
  • Cited by

    Periodical cited type(35)

    1. 邓再春,张超,朱夏力,范金明,钱慧,李成荣. 基于无人机多光谱影像的云南松林蓄积量估测模型. 浙江农林大学学报. 2024(01): 49-56 . 本站查看
    2. 殷唐燕,张加龙,廖易,王飞平,曹军,和云润,陈朝情,肖庆琳. 引入环境变量的香格里拉市高山松碳储量估测. 西部林业科学. 2024(01): 119-128 .
    3. 郑佳佳,周忠发,朱孟,黄登红,吴小飘,刘荣萍,龙洋洋. 典型喀斯特山区的森林蓄积量遥感估算. 水土保持通报. 2024(02): 176-186 .
    4. 骆耀培,李和平,杨广斌,岑刚,李蔓,曹乾洋,王仁儒,陈盼芳. 基于无人机影像的高郁闭度马尾松林蓄积量估算方法研究. 林草资源研究. 2024(02): 68-79 .
    5. 李康杰,胡中岳,刘萍,徐正春. 基于Landsat-8 Oli影像的珠三角森林生物量估测. 中南林业科技大学学报. 2023(03): 73-81 .
    6. 罗为检. 应用最大信息系数和支持向量机估测森林蓄积量. 东北林业大学学报. 2022(01): 40-45 .
    7. 任枫,王琦,杨佳,任庆福. 基于高分六号卫星红边波段的森林蓄积量遥感反演——以西宁市针叶林为例. 中国农业气象. 2022(05): 408-420 .
    8. 黄冰倩,岳彩荣,朱泊东. 基于GF-1数据多尺度遥感特征的森林蓄积量估测研究. 林业资源管理. 2022(03): 54-59 .
    9. 李滨,刘可宁. 基于无人机光学遥感的森林生物量估算研究. 森林工程. 2022(05): 83-92 .
    10. 雷令婷,高金萍,张晓丽,高显连. 基于Sentinel-1和Sentinel-2A数据的森林蓄积量估算. 云南大学学报(自然科学版). 2022(06): 1174-1182 .
    11. 罗凯健,许晓东,龙江平,徐聪荣,林辉,和晓风. 结合Landsat 8与PALSAR-2影像的龙南县针叶林蓄积量遥感估测研究. 林业资源管理. 2021(01): 69-76 .
    12. 高金萍,孙忠秋,于慧娜,高显连,吴发云,刘迎春. 基于航空点云的落叶松林分蓄积量建模和应用测试初探. 林业资源管理. 2021(04): 54-61 .
    13. 孙忠秋,高金萍,吴发云,高显连,胡杨,高剑新. 基于机载激光雷达点云和随机森林算法的森林蓄积量估测. 林业科学. 2021(08): 68-81 .
    14. 刘伯涛,李崇贵,郭瑞霞,刘思涵,马婷. 运用GF-1影像光谱和纹理信息构建森林蓄积量估测模型. 东北林业大学学报. 2020(01): 9-12+28 .
    15. 潘磊,孙玉军,王轶夫,陈丽萍,曹元帅. 基于Sentinel-1和Sentinel-2数据的杉木林地上生物量估算. 南京林业大学学报(自然科学版). 2020(03): 149-156 .
    16. 岳振兴,岳彩荣,邹会敏. 哑变量在森林蓄积量模型估测中的应用. 中南林业科技大学学报. 2020(07): 65-72 .
    17. 邱新彩,郑冬梅,王海宾,安天宇,许等平,郝月兰,彭道黎. 结合地统计学与Landsat 8影像的乔木林地上碳储量估算. 中南林业科技大学学报. 2020(11): 138-146 .
    18. 李世波,林辉,王光明,程韬略. 基于GF-1的森林蓄积量遥感估测. 中南林业科技大学学报. 2019(08): 70-75+86 .
    19. 王海宾,郑冬梅,王少杰,贾筱昕,许等平. 基于两种空间估算模型的乔木林地上碳密度估算. 农业机械学报. 2019(12): 213-220 .
    20. 曹霖,彭道黎,王雪军,陈新云. 应用Sentinel-2A卫星光谱与纹理信息的森林蓄积量估算. 东北林业大学学报. 2018(09): 54-58 .
    21. 瞿帅,张晓丽,朱程浩,霍朗宁,刘会玲. 机载激光雷达森林资源调查系统的设计与试验. 西北林学院学报. 2018(04): 175-182 .
    22. 吴继辉,郝国强,梁华,吴琼,孙異,任波涛. 基于S变换谱图纹理特征的输油泵轴承故障诊断. 油气储运. 2018(05): 546-550 .
    23. 郑冬梅,夏朝宗,王海宾,陈健,侯瑞萍. 基于SPOT-7影像的马尾松生物量估测模型研究. 中南林业科技大学学报. 2018(09): 82-88 .
    24. 刘建银,王忠伟. 面向森林资源观测的成像卫星任务规划算法设计. 中南林业科技大学学报. 2018(10): 41-46 .
    25. 任怡,王海宾,许等平. 基于Landsat 8影像的乔木林地上生物量估算. 林业资源管理. 2018(06): 38-44 .
    26. 杨柳,冯仲科,岳德鹏,孙金华. 结合纹理因子和地形因子的森林蓄积量多光谱估测模型. 光谱学与光谱分析. 2017(07): 2140-2145 .
    27. 胥喆,舒清态,杨凯博,吴娇娇,张亚红. 基于非线性混合效应的高山松林生物量模型研究. 江西农业大学学报. 2017(01): 101-110 .
    28. 闵志强,胡云云,顾丽. 基于多元线性回归的西昌市云南松蓄积量模型研究. 西北林学院学报. 2017(03): 186-190 .
    29. 葛小青,杨森,李山山,陈勃,张省,刘雪莹. Landsat-8长条带影像正射校正. 中国图象图形学报. 2017(09): 1279-1288 .
    30. 莫琴,陈志泊,谢士琴,陈明健,夏朝宗. 高分辨率林业生态工程监测系统研建与应用. 浙江农林大学学报. 2017(04): 737-742 . 本站查看
    31. 刘明艳,王秀兰,冯仲科,于东海. 基于主成分分析法的老秃顶子自然保护区森林蓄积量遥感估测. 中南林业科技大学学报. 2017(10): 80-83+117 .
    32. 杨柳,孙金华,冯仲科,岳德鹏,杨立岩. 基于PSO-LSSVM的森林地上生物量估测模型. 农业机械学报. 2016(08): 273-279+287 .
    33. 刘俊,孟雪,温小荣,林国忠,佘光辉,刘雪慧,徐达. 基于不同立地质量的森林蓄积量遥感估测. 西北林学院学报. 2016(01): 186-191 .
    34. 汪康宁,马婷,吕杰. 基于随机森林算法的凉水自然保护区蓄积量反演研究. 西南林业大学学报. 2016(05): 125-129+157 .
    35. 刘俊,孟雪,温小荣,林国忠,佘光辉,李赟,刘雪慧,徐达. 基于不同立地质量的松树林蓄积量遥感估测. 林业资源管理. 2015(05): 55-60+165 .

    Other cited types(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(3057) PDF downloads(681) Cited by(65)

Related
Proportional views

Forest volume estimation based on spectral and textural information from the Landsat 8 satellite

doi: 10.11833/j.issn.2095-0756.2015.03.008

Abstract: On the Jiangle State Forest Farm of Fujian Province forest volume was obtained by field investigation and by Landsat 8 observations that utilized band spectral values, vegetation indexes, derivatives of bands, and optimal textural measurements derived from the panchromatic band using varied window sizes. Through multiple regression analysis, volume estimation models were produced with independent variables of 1) only spectral factors and 2) combined spectral factors and textural volume. Then, validation was conducted using field survey data to test and compare model prediction accuracy. Experimental results showed R2 = 0.727 6 for the spectrally based volume estimation model and R2 = 0.857 5 for the combined model. Model prediction accuracy was 79.8% for the single spectral based volume estimation model and 86.0% for the combined model. Therefore, the improved prediction accuracy using textural information from the panchromatic band with images of Landsat 8 for forest volume estimation and application of this procedure should be considered when determining forest volume.[Ch, 3 fig. 6 tab. 22 ref.]

WANG Yueting, ZHANG Xiaoli, YANG Huiqiao, et al. Forest volume estimation based on spectral and textural information from the Landsat 8 satellite[J]. Journal of Zhejiang A&F University, 2015, 32(3): 384-391. DOI: 10.11833/j.issn.2095-0756.2015.03.008
Citation: WANG Yueting, ZHANG Xiaoli, YANG Huiqiao, et al. Forest volume estimation based on spectral and textural information from the Landsat 8 satellite[J]. Journal of Zhejiang A&F University, 2015, 32(3): 384-391. DOI: 10.11833/j.issn.2095-0756.2015.03.008

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return