-
据估计,到21世纪末,由于大气中的温室气体,特别是二氧化碳(CO2)浓度的增加,全球平均温度预计将增加2~7 ℃[1]。随着人们对气候变化和温室气体减排的越加重视,关于农田土壤固碳潜力的研究也日趋深入。而土壤作为一个巨大而且具有挥发性的潜在碳库,可以缓冲大气中二氧化碳浓度的增加。土壤碳库的微小变化,都可以引起大气二氧化碳浓度的显著变化[2]。例如,ESWARAN等[3]的研究显示,全球土壤有机碳储量0.1%的变化将导致大气中二氧化碳质量浓度10 mg·L-1的变化。而据推测,在2 m土层中的土壤有机质浓度增加5.0%~15.0%可使大气中的二氧化碳浓度减少16%~30%[4-5]。可见土壤碳库的稳定、增长或衰减都与大气二氧化碳浓度变化密切相关。此外,土壤有机碳库约占陆地总有机碳库的2/3,是大气碳库的2倍。土壤平均每年排放到大气中的二氧化碳约为化石燃料碳排放量的11倍,大气二氧化碳储量的10.0%[6]。由此可知:土壤碳库积累和变化直接影响全球的碳平衡,也是大气碳库和全球气候变化的主要原因[7],因此,土壤在稳定全球气候、减缓温室效应方面发挥着重要作用。在陆地生态系统中,碳汇功能体现在碳库的储量和积累率,而碳源则体现在碳的排放强度。土壤碳库的变化主要表现在土壤有机碳储量的变化上,土壤有机碳储量是进入土壤有机物质(生物残体等)的输入与损失(以土壤微生物分解作用为主)之间的平衡[8],而土壤有机碳的稳定性则主要体现在土壤有机碳周转期的长短。鉴于此,土壤中碳库的量化和稳定性机制引起了科学家的极大关注[9-10]。然而,在预测21世纪大气二氧化碳浓度时,土壤有机碳的稳定性是其不确定性的主要来源[11]。而提高土壤有机碳的稳定性可以使土壤以有机物的形式固定大气中更多的二氧化碳,有助于科学客观地预测土壤有机碳的动态变化等,提高土壤的碳汇功能。土壤有机碳的一个重要组成部分就是植硅体封存有机碳(phytolith-occluded organic carbon,PhytOC,以下简称植硅体碳),植硅体碳是植硅体在形成过程中封存在部分植物细胞中的有机碳。植硅体存在于多种植物细胞中,是高等植物通过吸收单硅酸,在细胞内或细胞间硅化沉淀形成的非晶质二氧化硅矿物颗粒。植硅体碳具有强稳定性,可在土壤中长期保存,稳定达数千年至万年之久,成为陆地土壤长期固碳的重要机制之一。植硅体封存有机碳是土壤中重要的有机碳种类,且作为生态系统碳汇的重要组成部分,关于其稳定性的研究,比如如何准确测定和评价植硅体碳的稳定性,以及采取优化管理措施来提高植硅体碳的稳定性等已引起各国科学家的注意。本文综述了土壤植硅体封存有机碳的形成机制与特征、植硅体碳稳定性研究的重要意义以及影响植硅体碳稳定性的因素。
HTML
-
土壤有机碳的稳定性分为生物化学稳定性、化学稳定性和物理稳定性等。闭蓄在团聚体内和吸附矿物上的土壤有机碳(SOC)是物理保护机制[12]。
土壤团聚体分为大团聚体(>250 μm)和微团聚体(<250 μm)。2种团聚体的物理稳定性机制是不同的[12]。在有机质的实验分组方法中,物理分组方法最为普遍。物理分组方法包括颗粒大小分组(particle size fractionation)和相对密度分组(density fractionation)。前者根据有机碳与土壤中不同初级颗粒结合形成各级复合体将有机碳分成砂粒结合态有机碳(50~2 000 μm),粉粒结合态有机碳(2~50 μm)和黏粒结合态有机碳(<2 μm),而后者根据有机碳与土壤矿物结合的形态将有机碳简单分成轻组有机碳和重组有机碳[13-14]。
土壤颗粒态有机碳(particulate organic carbon,POC)是介于新鲜的动植物残体和腐殖化有机物之间的暂时或过渡的有机碳组分,是与砂粒结合的有机碳部分,在土壤中周转速度较快,比土壤总有机碳更易受土地利用方式的影响[15]。吸附矿物表面的有机碳,主要与不同粒级的矿物颗粒紧密结合,形成有机-无机复合体,使其矿化速率大为减慢,故这部分有机碳往往相对稳定[14]。
土壤中存在的安全碳的形态有物理性保护的有机无机复合体(如微团聚)、木炭和植硅体碳。植硅体碳的封存机制被认为是有机无机复合体抗化学溶解的物理保护作用[8],木炭的形成也可被认为是土壤碳的长期封存机制[16]。植硅体碳具有很高的抗氧化和抗分解能力,是最稳定而安全的碳的形态。可长期累积于土壤中达数千年至万年之久,因而成为陆地土壤长期固碳的重要机制之一[17-19]。
-
土壤有机碳稳定性可用平均滞留时间(MRT)或周转期来量化。土壤有机碳中碳元素的周转一般是由输入和输出之间的平衡所决定。土壤有机碳的周转率通常用碳稳定状态的平均滞留时间(MRT)或半衰期(T1/2)来表示。碳的平均滞留时间可定义为稳定状态下碳平均滞留时间,也可定义为稳定状态下元素完全更新的时间。土壤有机碳的半衰期为现有碳库分解一半所需要的时间。
区分土壤中稳定态土壤碳和不稳定碳对于探明土壤碳稳定性的机制至关重要。由于土地利用或管理等变化引起了环境条件的改变,矿质土壤总有机碳含量须经过几十到几百年才能平衡。土壤中生物、化学和物理过程之间复杂的相互作用使得不同土壤有机碳成分具有不同的化学结构和分解速率,周转时间从几小时到近万年[11, 20]。依据周转速率的快慢把土壤有机碳分成易变碳库(labile carbon pool)和稳定碳库(stable carbon pool),或活性库(active pool),慢性库(slow pool)和惰性库(passive pool)。CENTURY SOM模型[20]则把土壤碳划分为活性库(active pool),慢库(slow pool)和被动库(passive pool),其平均滞留时间值分别为1.5,25.0和1 000 a。表 1列出了具有不同土壤有机碳周转期的碳库类型及其化合物。
残留物类型 碳库类型 物质类型 平均滞留时间/a 碳氮比 化合物 凋落物 代谢 可分解的植物材料 0.1~0.5 10-25 单糖,氨基酸,淀粉 结构 — 24 100-200 多糖 土壤有机碳 活性碳库 微生物生物量 可分解的植物物质 1-2 —— 活的生物量,颗粒有机质,多糖 慢性碳库 抗性植物材料 15?100 10-25 木质化组织,蜡,多酚 被动碳库 腐殖化有机质 惰性有机质 500-5 000 7-10 腐殖物质,黏土,有机配合物,生物炭 植硅体碳 硅化有机碳 <200-13 300* — 糖类,蛋白质,类脂物 说明 *植硅体碳在土壤中的存留时间。
1.1. 土壤有机碳的稳定性的分类
1.2. 土壤有机碳稳定性的量化指标及周转时间
[1] | WU Zuoting, DIJKSTRA P, KOCH G W. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation[J]. Global Change Biol, 2011, 17(2): 927-942. | |
[2] | SUNDQUIST E T. The global carbon dioxide budget[J]. Science, 1993, 259(5097): 935-941. | |
[3] | ESWARAN H, van DEN-BERG E, REICH P. Organic carbon in the soils of the World[J]. Soil Sci Am J, 1993, 57(1): 192-194. | |
[4] | BALDOCK J A. Composition and cycling of organic carbon in soil [G]// [s.n.]. Nutrient Cycling in Terrestrial Ecosystems. Berlin: Springer, 2007: 1-35. | |
[5] | KELL D B. Breeding crop plants with deep roots: their role in sustainable carbon nutrient and water sequestration[J]. Ann Bot, 2011, 108(3): 407-418. | |
[6] | RAICH J W, P0TTER C S, BHAGAWATI D. Inter annual variability in global soil respiration[J]. Global Change Biol, 2002, 8(8): 800-812. | |
[7] | WATSON R T. Land Use, Land Use Change, and Forestry: A Special Report of the IPCC[M]. Cambridge: Cambridge University Press, 2000. | |
[8] | POST W M, KWON K C. Soil carbon sequestration and land use change: processes and potential[J]. Global Change Biol, 2000, 6(3): 317-327. | |
[9] | LAL R. The potential of soils of the tropics to sequester carbon and mitigate the greenhouse effect[J]. Adv Agron, 2002, 76(): 1-30. | |
[10] | SMITH P. Land use change and soil organic carbon dynamics[J]. Nut Cycling Agroecosyst, 2008, 81(2): 169-178. | |
[11] | BARRÈ P T, EGLIN T, CHRISTENSEN B T. Quantifying and isolating stable soil organic carbon using long-term bare fallow experiments[J]. Biogeosciences, 2010, 7(11): 3839-3850. | |
[12] | SIX J, JASTROW J D. Organic matter turnover[J]. Encycl Soil Sci, 2002, 53(): 936-942. | |
[13] | TAN Z, LAL R, OWENS L. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice[J]. Soil Tillage Res, 2007, 92(1): 53-59. | |
[14] | YIN Yunfeng, CAI Zucong. Equilibrium of organic matter in heavy fraction for three long-term field experimental soils in China[J]. Pedosphere, 2006, 16(2): 177-184. | |
[15] | CAMBARDELLA C A, ELLIOTT E T. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils[J]. Soil Sci Soc Am J, 1994, 58(1): 123-130. | |
[16] | SKJEMSTAD J O, CLARKE P, TAYLOR J A. The chemistry and nature of protected carbon in soil[J]. Soil Res, 1996, 34(2): 251-271. | |
[17] | PARR J F, SULLIVAN L A. Soil carbon sequestration in phytoliths[J]. Soil Biol Biochem, 2005, 37(1): 117-124. | |
[18] | PARR J, SULLIVAN L, CHEN Bihua. Carbon bio-sequestration within the phytoliths of economic bamboo species[J]. Global Change Biol, 2010, 16(10): 2661-2667. | |
[19] | SONG Zhaoliang, PARR J F, GUO Fengshan. Potential of global cropland phytolith carbon sink from optimization of cropping system and fertilization[J]. Plos One, 2013, 8(9): e73747-. doi: 10.1371/journal/pone.0073747 | |
[20] | PARTON W J, SCHIMEL D S, COLE CV. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Sci Soc Am J, 1987, 51(5): 1173-1179. | |
[21] | BRADY N C, WEIL R R. The Nature and Properties of Soils[M]. Upper Saddle River: Prentice-Hall Inc., 1996: 501-522. | |
[22] | JENKINSON D S, RAYNER J H. The turnover of soil organic matter in some of the Rothamsted classical experiments[J]. Soil Sci, 1977, 123(5): 298-305. | |
[23] | PAUTIAN K, PARTON W J, PERSSON J. Modeling soil organic matter in organic-amended and nitrogen-fertiliz-ed long-term plots[J]. Soil Sci Soc Am J, 1992, 56(2): 476-488. | |
[24] | PIPERNO D R. Phytoliths: A Comprehensive Guide for Archmeologists and Paleoecologists [M]. Oxford: AltaMira Press, 2006: 117-124. | |
[25] | 王永吉. 植物硅酸体化学成分的研究[J]. 黄渤海海洋, 1998, 16(3): 33-37. | WANG Yongji. A study on the chemical composion of phytoliths[J]. J Oceanogr Huanghai Bohai, 1998, 16(3): 33-37. |
[26] | 张新荣, 胡克, 王东坡. 植硅体研究及其应用的讨论[J]. 世界地质, 2004, 23(2): 112-117. | ZHANG Xinrong, HU Ke, WANG Dongpo. Discussion on research and application of phytolith[J]. Global Geol, 2004, 23(2): 112-117. |
[27] | ELBAUM R, MELAMED-BESSUDO C, TUROSS N. New methods to isolate organic-materials from silic-ified phytoliths reveal fragmented glycoproteins butno DNA[J]. Quaternary Int, 2009, 193(1): 11-19. | |
[28] | WILDING L P. Radiocarbon dating of biogenetic opal[J]. Science, 1967, 156(3771): 66-67. | |
[29] | 吕厚远. 植硅体分析在古气候、古环境与农业考古研究中的应用[R]. 北京: 中国科学院地质与地球物理研究所, 2012. | LÜ Houyuan. Application of Phytolith Analysis in the Studies of Ancient Climate, Ancient Environment, and Agricultural Archaeology [R]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2012. |
[30] | ALEXANDRE A, MEUNIER J D, LEZINE A M. Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa[J]. Palaeogeogr, Palaeoclimatol Palaeoecol, 1997, 136(1): 213-229. | |
[31] | LI Rencheng, CARTER J A, XIE Shucheng. Phytoliths and microcharcoal at Jinluojia archeological site in middle reaches of Yangtze River indicative of paleoclimate and human activity during the last 3000 years[J]. J Archaeol Sci, 2010, 37(1): 124-132. | |
[32] | FISHKIS O, INGWERSEN J, LAMERS M. Phytolith transport in soil: a field study using fluorescent labeling[J]. Geoderma, 2010, 157(1/2): 27-36. | |
[33] | FISHKIS O, INGWERSEN J, STRECK T. Phytolith transport in sandy sediment: Experiments and modeling[J]. Geoderma, 2009, 151(3/4): 168-178. | |
[34] | 林维雷. 亚热带重要森林类型土壤植硅体碳的研究[D]. 临安: 浙江农林大学, 2015. | LIN Weilei. Study on Phytolith-occluded Carbon in Soil Under Important Forest Kinds [D]. Lin'an: Zhejiang A & F University, 2015. |
[35] | FISHER R F, BOURN C N, FISHER W F. Opal phytoliths as an indicator of the floristics of prehistoric grasslands[J]. Geoderma, 1995, 68(4): 243-255. | |
[36] | 陈留美, 张甘霖. 水耕人为土时间序列的植硅体及其闭留碳演变特征[J]. 土壤通报, 2011, 42(5): 1025-1030. | CHEN Liumei, ZHANG Ganlin. Phytoliths and its occluded organic carbon in a Stagnic Anthrosols Chronosequence[J]. Chin J Soil Sci, 2011, 42(5): 1025-1030. |
[37] | 李仁成, 农日正, 何伟松. 碳酸盐岩红土风化成因的植硅体记录[J]. 科技风, 2012, (5): 188-. | LI Rencheng, NONG Rizheng, HE Weisong. Phytolith records of weathering origin of red soil derived from carbonate rock[J]. Technol Wind, 2012, (5): 188-. |
[38] | SCHLESINGER W H. Evidence from chronosequence studies for the low carbon storage potential of soils[J]. Nature, 1990, 348(6298): 232-234. | |
[39] | WILDING L P. Radiocarbon dating of biogenetic opal[J]. Science, 1967, 156(3771): 66-67. | |
[40] | CHRISTENSEN B T. Matching measurable soil organic matter fractions with conceptual pools in simulation models of carbon turnover: revision of model structure [G] COLEMAN K, JENKINSON D S. Evaluation of Soil Organic Matter Models. Berlin: Springer, 1996: 143-159. | |
[41] | TRUMBORE S E. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements[J]. Global Biogeochem Cycl, 1993, 7(2): 275-290. | |
[42] | PAUL E A. Dynamics of organic matter in soils[J]. Plant Soil, 1984, 76(1/3): 275-285. | |
[43] | ALEXANDRE A, MEUNIER J D, COLIN F. Plant impact on the biogeochemical cycle of silicon and related weathering processes[J]. Geochim Cosmoch Acta, 1997, 61(3): 677-682. | |
[44] | 汪秀芳, 陈圣宾, 宋爱琴. 植物在硅生物地球化学循环过程中的作用[J]. 生态学杂志, 2007, 26(4): 595-600. | WANG Xiufang, CHEN Shengbin, SONG Aiqin. Roles of plants in biogeochemical cycling of silicon[J]. Chin J Ecol, 2007, 26(4): 595-600. |
[45] | FRAYSSE F, POKROVSKY O S, SCHOTT J. Surface chemistry and reactivity of plant phytoliths in aqueous solutions[J]. Chem Geol, 2009, 258(3): 197-206. | |
[46] | BARTOLI F, WILDING L P. Dissolution of biogenic opal as a function of its physical and chemical properties[J]. Soil Sci Soc Am J, 1980, 44(4): 873-878. | |
[47] | CABANES D, WEINER S, SHAHACK-GROSS R. Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths[J]. J Archaeol Sci, 2011, 38(9): 2480-2490. | |
[48] | MA Jianfeng, TAKAHASHI E. Soil, Fertilizer, and Plant Silicon Research in Japan [M]. Amsterdam: Elsevier, 2002. | |
[49] | MITANI N, MA Jianfeng. Uptake system of silicon in different plant species[J]. J Exp Bot, 2005, 56(414): 1255-1261. | |
[50] | TAKAHASHI E, MA Jianfeng, MIYAKE Y. The possibility of silicon as an essential element for higher plants[J]. Comment Agric Food Chem, 1990, 2(2): 99-102. | |
[51] | MOTOMURA H, MITA N, SUZUKI M. Silica accumulation in long-lived leaves of Sasa veitchii (Carrière) Rehder (Poaceae-Bambusoideae)[J]. Ann Bot, 2002, 90(1): 149-152. | |
[52] | 王永吉, 吕厚远. 植物硅酸体研究及应用[M]. 北京: 海洋出版社, 1993. | |
[53] | ALBERT R M, BAMFORD M K, DAN C. Taphonomy of phytoliths and macroplants in different soils from Olduvai Gorge (Tanzania) and the application to Plio-Pleistocene palaeoanthropological samples[J]. Quaternary Int, 2006, 148(1): 78-94. | |
[54] | WILDING L P, DREES L R. Contributions of forest opal and associated crystalline phases to fine silt and clay fractions of soils[J]. Clays Clay Miner, 1974, 22(3): 295-306. | |
[55] | CARNELLI A L, MADELLA M, THEURILLAT J P. Aluminum in the opal silica reticule of phytoliths: a new tool in palaeoecological studies[J]. Am J Bot, 2002, 89(2): 346-351. | |
[56] | RAJENDIRAN S, COUMAR M V, AJAY S K. Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems[J]. Currt Sci, 2012, 103(8): 911-920. | |
[57] | 耿云霞, 李依玲, 朱莎. 盐碱胁迫下羊草植硅体的形态变化[J]. 植物生态学报, 2011, 35(11): 1148-1155. | GENG Yunxia, LI Yiling, ZHU Sha. Morphological changes of phytoliths in Leymus chinensis under saline-alkali stress[J]. Chin J Plant Ecol, 2011, 35(11): 1148-1155. |
[58] | FARMER V C, DELBOS E, MILLER J D. The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams[J]. Geoderma, 2005, 127(1): 71-79. | |
[59] | GÈRARD F, MAYER K U, HODSON M J. Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem[J]. Geochim Cosmochim Acta, 2008, 72(3): 741-758. | |
[60] | KARKANAS P. Preservation of anthropogenic materials under different geochemical processes: a mineralogical approach[J]. Quaternary Int, 2010, 214(1): 63-69. | |
[61] | FRAYSSE F, CANTAIS F, POKROVSKY O S. Aqueous reactivity of phytoliths and plant litter: physico-chemical constraints on terrestrial biogeochemical cycle of silicon[J]. J Geochem Exp, 2006, 88(1/3): 202-205. | |
[62] | FRAYSSE F, POKROVSKY O S, SCHOTT J. Surface properties, solubility and dissolution kinetics of bamboo phytoliths[J]. Geochim Cosmochim Acta, 2006, 70(8): 1939-1951. | |
[63] | FRAYSSE F, POKROVSKY O, SCHOTT J. Surface chemistry and reactivity of plant phytoliths in aqueous solutions[J]. Chem Geol, 2009, 258(3/4): 197-206. | |
[64] | LOUCAIDES S, BEHRENDS T, van CAPPELLEN P. Reactivity of biogenic silica: Surface versus bulk charge density[J]. Geochim Cosmochim Acta, 2010, 74(2): 517-530. | |
[65] | LOUCAIDES S, CAPPELLEN P V, BEHRENDS T. Dissolution of biogenic silica from land to ocean: The role of salinity and pH[J]. Limnol Oceanogr, 2008, 53(4): 1614-1621. | |
[66] | CABANNES D, WEINER S, SHAHACKk-GROSS R. Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths[J]. J Archaeol Sci, 2011, 38(9): 2480-2490. | |
[67] | 杨杰, 李永夫, 黄张婷. 碱溶分光光度法测定植硅体碳含量[J]. 分析化学, 2014, 42(9): 1389-1390. | YANG Jie, LI Yongfu, HUANG Zhangting. Determination of phytolith-occluded carbon content using alkali dissolution-spectrophotometry[J]. Chin J Anal Chem, 2014, 42(9): 1389-1390. |
[68] | 介冬梅, 刘朝阳, 石连旋. 松嫩平原不同生境羊草植硅体形态特征及环境意义[J]. 中国科学: 地球科学, 2010, 40(4): 493-502. | JIE Dongmei, LIU Chaoyang, SHI Lianxuan. Characteristics of phytoliths in Leymus chinensis from different habitats on the Songnen Plain in Northeast China and their environmental implications[J]. Sci China Earth Sci, 2010, 40(4): 493-502. |
[69] | LIU Lidan, JIE Dongmei, LIU Hongyan. Response of phytoliths in Phragmites communis to humidity in NE China[J]. Quaternary Int, 2013, 304(7): 193-199. | |
[70] | ROSEN A M, WEINER S. Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat[J]. J Archaeol Sci, 1994, 21(1): 125-132. | |
[71] | MITHEN S, JENKINS E, JAMJOUM K. Experimental crop growing in Jordan to develop methodology for the identification of ancient crop irrigation[J]. World Archaeol, 2008, 40(1): 7-25. | |
[72] | MADELLA M, JONES M K, ECHLIN P. Plant water availability and analytical microscopy of phytoliths: Implications for ancient irrigation in arid zones[J]. Quaternary Int, 2009, 193(1): 32-40. | |
[73] | JENKINS E, JAMJOUM K, NUIMATT S. 21 irrigation and phytolith formation: an experimental study [G]//MITHEN S, BLACK E. Water, Life and Civilization: Climate, Environment and Society in the Jordan Valley. Cambridge University Press, 2011: 347-372. | |
[74] | WEBB E A, LONGSTAFFE F J. Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass[J]. Geochim Cosmochim Acta, 2002, 66(11): 1891-1904. | |
[75] | WEBB E A, LONGSTAFFE F J. Limitations on the climatic and ecological signals provided by the δ13C values of phytoliths from a C4 North American prairie grass[J]. Geochim Cosmochim Acta, 2010, 74(11): 3041-3050. | |
[76] | 高素华, 郭建平. CO2浓度和土壤湿度对羊草光合特性影响机理的初探[J]. 草业科学, 2004, 21(5): 23-27. | GAO Suhua, GUO Jianping. Initial study into the CO2 concentration and soil moisture effects on the photosynthesis impact mechanism of Leymus chinensis[J]. Pratac Sci, 2004, 21(5): 23-27. |
[77] | LI Nannan, JIE Dongmei, GE Yong. Response of phytoliths in Phragmites communis to elevated CO2 concentration in Songnen Grassland, China[J]. Quaternary Int, 2014, 321(3): 97-104. | |
[78] | 葛勇, 介冬梅, 郭继勋. 松嫩草原羊草植硅体对模拟全球CO2浓度升高的响应研究[J]. 科学通报, 2010, 55(27/28): 2735-2741. | GE Yong, JIE Dongmei, GUO Jixun. Response of phytoliths in Leymus chinensis to the simulation of elevated global CO2 concentrations in Songnen grassland, China[J]. Chin Sci Bull, 2010, 55(27/28): 2735-2741. |
[79] | GOH K M. Carbon dating [G]//COLOMAN D C. Carbon Isotope Techniques. San Diego: Academic Press, 1991: 125-145. | |
[80] | AMELUNG W, BRODOWSKI S, SANDHAGE-HOFMANN A. Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter[J]. Adv Agron, 2008, 100(): 155-250. | |
[81] | ZUO Xinxin, LÜ Houyuan. Carbon sequestration within millet phytoliths from dry-farming of crops in China[J]. Chin Sci Bull, 2011, 56(32): 3451-3456. | |
[82] | LI Zimn, SONG Zhaoliang, PARR J F. Occluded C in rice phytoliths: implications to biogeochemical carbon sequestration[J]. Plant Soil, 2013, 370(1/2): 615-623. | |
[83] | PARR J F, SULLIVAN L A. Phytolith occluded carbon and silica variability in wheat cultivars[J]. Plant Soil, 2011, 342(1/2): 165-171. | |
[84] | PARR J, SULLIVAN L, QUIRK R. Sugarcane phytoliths: encapsulation and sequestration of a long-lived carbon fraction[J]. Sugar Tech, 2009, 11(1): 17-21. | |
[85] | SONG Zhaoliang, LIU Hongyan, SI Yong. The production of phytoliths in China's grasslands: implications to the biogeochemical sequestration of atmospheric CO2[J]. Glob Change Biol, 2012, 18(12): 3647-3653. | |
[86] | 李自民, 宋照亮, 李蓓蕾. 杭州西溪湿地植物植硅体产生及其影响因素[J]. 浙江农林大学学报, 2013, 30(4): 470-476. | LI Zimin, SONG Zhaoliang, LI Beilei. Phytolith production in wetland plants of the Hangzhou Xixi Wetlands ecosystem[J]. J Zhejiang A & F Univ, 2013, 30(4): 470-476. |
[87] | LI Zimin, SONG Zhaoliang, LI Beilei. The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China[J]. Appl Geochem, 2013, 37(10): 117-124. | |
[88] | LI Zimin, SONG Zhaoliang, JIANG Peikun. Biogeochemical sequestration of carbon within phytoliths of wetland plants: A case study of Xixi wetland, China[J]. Chin Sci Bull, 2013, 58(20): 2480-2487. | |
[89] | SONG Zhaoliang, LIU Hongyan, LI Beilei. The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration[J]. Glob Change Biol, 2013, 19(9): 2907-2915. | |
[90] | 李蓓蕾, 宋照亮, 姜培坤. 毛竹林生态系统植硅体的分布及其影响因素[J]. 浙江农林大学学报, 2013, 31(4): 547-553. | LI Beilei, SONG Zhaoliang, JIANG Peilkun. Phytolith distribution and carbon sequestration in China with Phyllostachys edulis[J]. J Zhejiang A & F Univ, 2013, 31(4): 547-553. |