Silicon distribution in bamboo stands of different ecotypes
-
摘要: 选择10种散生竹、丛生竹和混生竹为试材,运用偏硼酸锂溶解和钼蓝比色方法,研究了不同生态型竹子器官的硅质量分数、储量和通量等,为植硅体封存碳潜力评估提供参考。结果表明:不同生态型竹子器官硅质量分数均为叶>蔸>枝>根>鞭>秆,质量分数区间为1.77~63.10 gkg-1,在不同生态型间竹叶硅质量分数分布趋势整体表现为混生>散生>丛生;其中硅储量和通量分别为混生(2 225.91 kghm-2a-1,1 112.96 kghm-2a-1)>散生(788.18 kghm-2a-1,394.06 kghm-2a-1)>丛生(586.00 kghm-2a-1,293.00 kghm-2a-1)。全国竹子硅储量和通量散生竹远高于丛生竹和混生竹。植硅体封存二氧化碳通量为混生竹(38.83kghm-2a-1)>散生竹(33.69 kghm-2a-1)>丛生竹(27.32 kghm-2a-1),全国散生竹总植硅体碳封存速率(190.69106~197.48106 kga-1)分别为丛生竹和混生竹的5.46倍和35.7倍。因此,在未来的竹林种植和管理中,可以适当地通过选择封存二氧化碳通量高的竹种(如混生竹)进行造林或者采取竹林废弃物还林作硅肥等措施来提高部分竹林植硅体的生物固碳潜力。因为本研究区属于散生竹的典型生长区,而非丛生竹典型生长区,不能推测所有地区都符合以上规律,在丛生竹典型生长区的结果可能正好相反。所有生态环境和生物气候带生长的竹子中硅储量和硅体碳的相关性是否一致或相近还需进一步研究。图3表1参34Abstract: To provide scientific references for understanding the role of phytoliths in biogeochemical carbon sequestration, organs (leaf, branch, culm, stump, root, and rhizome) of ten representative bamboo species belonging to three bamboo ecotypes (mix, scatter, and cluster) were sampled at the Jiyong Plantation Experimental Site at Zhejiang A F University. The biological Si cycle in bamboo ecosystems was studied based on the above-ground biomass production and silica accumulations in bamboo organs. Results showed that the Si content of the organs in different bamboo species significantly ranged from 1.77 gkg-1 to 63.10 gkg-1 with leaf > branch > stump > root > rhizome > culm (P<0.01). For the three bamboo ecotypes, Si distribution was mixed > scattered > clustered; additionally, mean Si storage and fluxes of Si for bamboo ecotypes were mixed > scattered > clustered. Based on the analytic results of this study, we find that the mean flux for phytolith carbon sequestration in bamboo ecotypes was scattered > mixed > clustered. Furthermore, for China the rate of phytolith carbon sequestration in scattered bamboo was 5.46 times greater than clustered bamboo and 35.7 times greater than mixed bamboo. Thus, this study highlights that increasing the area of bamboo planting and electing a scattered bamboo ecotype characterized by bamboo species with high carbon content in phytoliths would increase atmospheric CO2 sequestration. However, further research should be systematically carried out to identify silicon and carbon cycles in national and global soil-bamboo systems. [Ch, 3 fig. 1 tab. 34 ref.]
-
Key words:
- forest ecology /
- bamboo /
- silicon (Si) /
- biological cycling /
- carbon sequestration /
- phytoliths
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2015.05.003

计量
- 文章访问数: 3913
- HTML全文浏览量: 553
- PDF下载量: 749
- 被引次数: 0