-
全球气候变化带来的一系列生态、经济、社会问题日益严重,引发了国际社会的高度重视。导致全球气候变暖的重要原因是二氧化碳(CO2)年排放量不断增加。目前除工业减排CO2外,植物固碳已成为解决这一问题的重要途径[1]。陆地碳汇是全球碳循环的基础,并正在被用来抵消人为CO2排放量的增加,其中森林生态系统作为陆地生态系统中最大的碳库,存储着整个陆地生态系统80%的地上碳和70%的土壤碳[2−3]。植硅体是植物根系吸收土壤溶液中的单硅酸[Si(OH)4],在蒸腾拉力的作用下沉积于细胞壁、细胞腔或细胞间隙内的非晶质二氧化硅颗粒物[4-6]。植硅体形成过程中会包裹一定量的有机碳,称为植硅体封存有机碳(phytolith-occluded organic carbon, PhytOC)[7−8],这部分被包裹的有机碳由于受到植硅体的保护而具有耐高温和高度抗氧化等特性,如果没有大的地质变迁,便能够在土壤以及沉积物中保存长达数千年甚至数万年之久,从而成为陆地土壤的长期固碳机制之一[9-11]。因此,植硅体封存的有机碳在减少大气CO2含量、缓解温室效应等方面具有重要的意义[12−14]。已有研究主要集中于植硅体碳含量较高的富硅植物,例如水稻Oryza sativa[15]、黍Panicum miliaceum、粟Setaria italica[9]、小麦Triticum aestivum[2]、甘蔗Saccharum officinarum[3]等农作物、草地和湿地植物[16-17]、竹类[18-20]。马尾松Pinus massoniana是分布面积较广的一种森林类型,也是中国松科Pinaceae植物中用途最广的先锋树种。近年来,有学者研究发现:马尾松生态系统有着可观的植硅体碳储量,其叶片中植硅体封存有机碳含量高于同为针叶林的杉木Cunninghamia lanceolata甚至高于禾本科Poaceae植物[21-22]。植物生物量对植硅体碳储量也有着很大的影响[20, 23]。张振等[24]研究发现:马尾松树干生物量占到总生物量的77.2%,由此可知马尾松树干植硅体碳汇潜力不可忽视。同一植物不同器官植硅体封存有机碳含量不同[25],同一树种不同种源由于适应性和生理生态差异,植硅体封存有机碳储量也会产生差异。关于马尾松不同种源植硅体碳汇差异的研究鲜见报道,本研究对来自全国的20个马尾松种源树干进行采样分析,研究不同马尾松种源树干植硅体碳储量的差异,并聚类分析,筛选出马尾松树干植硅体碳封存潜力较强的种源,为中国马尾松林生态系统植硅体碳封存研究提供依据。
-
研究区位于浙江省淳安县千岛湖东南湖区的姥山林场马尾松种源试验林(29°33′30″N,119°02′55″E),地处中亚热带地区,雨量充沛,四季分明,年平均气温为17.0 ℃,≥10 ℃的年积温为 5 410 ℃,年平均日照时数1 951 h,年降水量1 430 mm,无霜期263 d。姥山林场设置的试验地海拔150 m,坡度20°~30°,土壤为红壤土类的黄红壤亚类,土壤厚度80 cm以上,土壤有机质15.80 g·kg−1,碱解氮53.50 mg·kg−1,速效钾18.50 mg·kg−1,有效磷0.99 mg·kg−1,交换性钙128.00 mg·kg−1,交换性镁9.24 mg·kg−1。
-
1984年春,在姥山林场栽植了来自14个省区的49个马尾松种源1年生裸根苗,采用双列小区完全随机排列,重复8次(8株),株行距2 m×2 m,管理措施一致,用以筛选速生、优质的马尾松种源[26]。2017年12月对保存完好的20个马尾松种源植株进行调查、采样,通过每木测定,得到每个种源的平均木,随机选取3个小区,每个种源选取胸径与平均木相近的3株植株作为标准株,人工摘取标准株新鲜叶片于样品袋中,新鲜叶片带回实验室后用去离子水洗净,105 ℃杀青25 min,75 ℃下烘干48 h,再磨碎后于塑封袋保存。至2018年4月,再次砍伐20个种源胸径与平均木相近的3株标准株对马尾松进行树干取样,取得的树干圆盘带回实验室进行烘干磨碎处理,分析测定。
-
所有植物样品的碳和氮采用Elementar Vario MAX CN碳氮元素分析仪测定;植物植硅体的提取采用微波消解法[27],为了大量提取植硅体而在此方法上有所改进,用浓硝酸和双氧水大量消煮前处理,再进行微波消解;而植硅体封存有机碳的测定同植物碳和氮的测定方法。土壤有机质采用重铬酸钾外加热法测定;碱解氮采用碱解法测定;有效磷采用Bray法测定;速效钾采用乙酸铵浸提,火焰光度法测定;交换性钙、镁采用EDTA滴定法测定[28]。
-
w植硅体=m植硅体/m样品,其中:w植硅体为植硅体质量分数(g·kg−1),m植硅体为植硅体质量(g),m样品为样品干质量(kg)。w有机碳=m有机碳/m植硅体,其中:w有机碳为植硅体封存有机碳质量分数(g·kg−1),m有机碳为植硅体有机碳质量(g),m植硅体为植硅体质量(kg)。所以,w植硅体碳=m有机碳/m样品,其中:w植硅体碳为植硅体碳质量分数(g·kg−1)。C植硅体碳=B树干×w植硅体碳,其中:C植硅体碳为标准株树干植硅体碳储量(g·株−1),B树干为树干生物量(kg·株−1)。3次重复,取平均值。数据处理用SPSS 18.0完成,用Duncan新复极差法检验不同处理的差异显著性,并用植硅体质量分数、植硅体封存有机碳质量分数等碳储指标对所有参试种源进行Q型聚类分析。
-
表1显示:20个马尾松种源树干的总有机碳质量分数无显著差异,其变化范围为467.6~489.6 g·kg−1,而在不同种源中树干植硅体质量分数存在显著差异,表现为安徽太平32(0.845 g·kg−1)、贵州黄平122(0.702 g·kg−1)显著高于湖北通山84(0.465 g·kg−1)(P<0.05),而后者又显著高于广东乳源102(0.305 g·kg−1)(P<0.05)。不同马尾松种源树干植硅体封存有机碳质量分数的变化范围为126.8~210.2 g·kg−1,存在显著差异(P<0.05),树干植硅体封存有机碳质量分数以江西吉安63(210.2 g·kg−1)最高,显著高于福建邵武91(172.4 g·kg−1)(P<0.05),后者又显著高于浙江庆元54(126.8 g·kg−1)(P<0.05)。20个马尾松种源树干植硅体碳质量分数变化范围为0.049~0.128 g·kg−1,也存在显著差异(P<0.05)。树干植硅体碳质量分数以安徽太平32(0.128 g·kg−1)最高,显著高于贵州黎平124(0.076 g·kg−1)(P<0.05),后者又显著高于广东乳源102(0.049 g·kg−1)(P<0.05)。
表 1 不同马尾松种源树干总有机碳、植硅体、植硅体封存有机碳和植硅体碳质量分数的比较
Table 1. Comparison of the contents of total organic carbon(TOC), phytoliths, OC in phytoliths, and phytolith in dry matter in trunk of masson pine from different provenances
种源号 总有机碳/(g·kg−1) 植硅体/(g·kg−1) 植硅体封存有机碳/(g·kg−1) 植硅体碳/(g·kg−1) 河南桐柏21 489.6±22.6 a 0.421±0.049 cdef 188.9±16.8 abc 0.073±0.020 cdef 安徽太平32 485.9±5.4 a 0.845±0.033 a 148.0±15.9 de 0.128±0.008 a 安徽屯溪33 478.5±13.9 a 0.368±0.075 def 167.5±16.8 cd 0.059±0.013 def 浙江庆元54 484.0±14.3 a 0.519±0.057 c 126.8±11.8 e 0.070±0.016 cdef 浙江淳安56 474.1±9.9 a 0.437±0.062 cdef 148.4±14.2 de 0.064±0.004 def 江西吉安63 483.5±14.5 a 0.380±0.094 cdef 210.2±26.7 a 0.070±0.009 cdef 湖南安化72 488.7±4.8 a 0.330±0.026 ef 177.2±21.6 abcd 0.058±0.006 def 湖南资兴74 478.3±10.8 a 0.405±0.075 cdef 167.2±24.7 cd 0.066±0.003 def 湖北远安81 477.5±14.0 a 0.388±0.079 cdef 183.4±16.4 abcd 0.067±0.006 cdef 湖北通山84 475.5±3.4 a 0.465±0.119 cde 204.5±11.8 ab 0.091±0.026 bc 福建邵武91 475.8±13.6 a 0.410±0.082 cdef 172.4±10.0 bcd 0.069±0.021 cdef 福建永定95 467.6±8.2 a 0.395±0.094 cdef 147.6±22.1 de 0.051±0.002 ef 广东乳源102 479.9±10.9 a 0.305±0.074 f 162.2±18.3 cd 0.049±0.013 f 广东信宜105 476.5±10.2 a 0.481±0.069 cd 194.1±19.3 abc 0.111±0.024 ab 广西恭城111 474.7±10.5 a 0.396±0.036 cdef 205.1±15.5 ab 0.081±0.008 cd 广西岑溪115 472.9±5.0 a 0.519±0.033 c 205.7±5.5 ab 0.107±0.010 ab 贵州黄平122 476.5±11.6 a 0.702±0.103 b 187.6±33.7 abc 0.121±0.009 a 贵州都匀123 476.6±8.2 a 0.364±0.002 def 148.5±5.5 de 0.054±0.002 ef 贵州黎平124 469.1±2.8 a 0.465±0.119 cde 187.0±27.6 abc 0.076±0.001 cde 四川南江131 477.1±12.9 a 0.335±0.043 ef 190.3±19.2 abc 0.059±0.010 def 说明:表内的数据为平均值±标准差;同列不同字母表示不同种源间差异显著(P<0.05) -
表2可知:20个马尾松种源平均胸径和株高变化范围为分别17.1~32.3 cm和16.3~19.5 m。马尾松标准株树干生物量最高的是广西岑溪115(295.39 kg·株−1),最低为河南桐柏21(76.48 kg·株−1);马尾松标准株树干植硅体碳储量最高的是广西岑溪115(31.58 g·株−1),最低的是湖南安化72(4.83 g·株−1),前者是后者的6.54倍。
表 2 不同马尾松种源标准株树干植硅体碳储量的比较
Table 2. Comparison of PhytOC stock in trunk of masson pine plant from different provenances
种源号 胸径/
cm株高/
m树干生物量/
(kg·株−1)标准株植硅体
碳储量/(g·株−1)河南桐柏21 17.1 17.0 76.48 5.61 安徽太平32 21.8 17.0 124.85 16.03 安徽屯溪33 22.5 19.0 143.76 8.54 浙江庆元54 26.1 19.1 195.11 13.64 浙江淳安56 21.1 18.3 122.59 7.88 江西吉安63 20.8 17.4 114.65 8.08 湖南安化72 18.0 16.5 82.77 4.83 湖南资兴74 26.7 18.2 197.10 13.01 湖北远安81 21.5 18.8 129.52 8.70 湖北通山84 22.5 18.5 141.33 12.93 福建邵武91 27.2 19.2 212.87 14.60 福建永定95 28.4 18.9 229.44 11.79 广东乳源102 28.8 19.5 241.78 11.94 广东信宜105 25.1 19.3 182.05 20.23 广西恭城111 29.3 19.3 247.94 20.08 广西岑溪115 32.3 18.6 295.39 31.58 贵州黄平122 22.3 18.4 137.86 16.68 贵州都匀123 19.6 17.2 100.83 5.45 贵州黎平124 24.1 19.0 164.73 12.55 四川南江131 20.2 16.3 103.33 6.12 说明:树干生物量根据模型计算得到[29] -
图1相关性分析发现:不同马尾松种源树干植硅体质量分数与植硅体封存有机碳质量分数无相关关系,而植硅体质量分数与植硅体碳质量分数呈极显著的正相(R2=0.751 3,P<0.01)。20个马尾松种源的标准株树干植硅体碳储量与其树干生物量(R2=0.607 3,P<0.01)或树干植硅体碳质量分数(R2=0.438 8,P<0.01)之间均呈极显著正相关,而马尾松标准株的叶片与树干植硅体质量分数、植硅体碳储量无相关关系(图2)。
图 1 不同马尾松种源植硅体质量分数与植硅体封存有机碳质量分数(A)、植硅体碳质量分数(B)之间的相关性
Figure 1. Correlation between phytolith contents and OC in phytoliths(A), PhytOC contents in dry matter(B) of masson pine trunks
图 2 不同马尾松种源标准株植硅体碳储量与树干生物量(A)、标准株植硅体碳储量与植硅体碳质量分数(B)、标准株叶片植硅体质量分数与树干植硅体质量分数(C)或标准株叶片植硅体碳储量与标准株树干植硅体碳储量(D)之间相关性
Figure 2. Correlation between PhytOC stock and trunk biomass (A), PhytOC stock and PhytOC contents in dry matter (B), phytolith contents in the leaves and phytolith contents in the trunks (C), PhytOC stock of the leaves and PhytOC stock of the trunks (D)
-
基于上述结果,利用马尾松总有机碳质量分数、树干植硅体质量分数、植硅体封存有机碳质量分数等指标的均值对20个马尾松种源进行Q聚类分析(图3)。以图中m线为阈值可以将20个种源划分为4类,第1类为湖北通山84、广西恭城111、江西吉安63以及广西岑溪115,此类马尾松种源总有机碳质量分数为472.9~483.5 g·kg−1,植硅体封存有机碳质量分数最高,为204.5~210.2 g·kg−1,植硅体碳质量分数也整体相对较高,为0.070~0.107 g·kg−1,标准株马尾松树干植硅体碳储量为8.08~31.58 g·株−1,其中广西岑溪115(31.58 g·株−1)标准株树干植硅体碳储量最高;第2类马尾松种源包括河南桐柏21、湖南安化72、广东信宜105等7个种源,此类马尾松种源总有机碳质量分数为469.1~489.6 g·kg−1,树干植硅体封存有机碳质量分数为177.2~194.1 g·kg−1,植硅体碳质量分数为0.058~0.121 g·kg−1,标准株马尾松树干植硅体碳储量为4.83~20.23 g·株−1;第3类为浙江淳安56、贵州都匀123、福建永定95、安徽太平32等8个种源,这类马尾松种源总有机碳质量分数为467.6~485.9 g·kg−1,树干植硅体封存有机碳质量分数为147.6~172.4 g·kg−1,植硅体碳质量分数为0.049~0.128 g·kg−1,标准株树干植硅体碳储量变动为5.45~16.03 g·株−1;浙江庆元54为第4类马尾松种源,树干植硅体碳封存能力最差,总有机碳质量分数为484.0 g·kg−1,植硅体封存有机碳质量分数为126.8 g·kg−1,植硅体碳质量分数为0.070 g·kg−1,标准株树干植硅体碳储量为13.64 g·株−1。
-
植硅体的形成与植物富集硅的能力有关,因此关于植硅体的研究大多集中于高富集硅植物叶片(禾本科)以及林下土壤中;植硅体的形成还与植物体自身蒸腾作用有关,而植物蒸腾作用主要发生在植物叶片表面[6,30-31],对地上部分其他器官的植硅体碳汇研究相对较少。以马尾松(非禾本科)为代表的针叶林,自身植硅体的形成受到叶片(针叶)蒸腾作用和植物自身富硅能力的限制,植物植硅体质量分数相对较少。
分析发现:马尾松树干植硅体质量分数与植硅体封存有机碳质量分数之间无相关性,与前人研究结果一致[2, 9, 20, 32],说明植硅体封存有机碳质量分数并不是由植硅体质量分数决定的,而可能与植硅体自身固碳能力和固碳效率有关;马尾松树干的植硅体质量分数和植硅体碳质量分数呈极显著的正相关(R2=0.751 3,P<0.01),这与中国亚热带重要树种植硅体碳研究结果[21]和苦竹Pleioblastus amarus林碳汇的研究结果[25]一致。植硅体碳质量分数还受到其他多种因素的影响,SONG等[23]对不同森林类型植硅体碳封存研究发现:植物植硅体碳质量分数与硅质量分数存在相关性;LI等[33]研究发现:植物植硅体碳质量分数还与植物吸收利用二氧化碳的速率相关。
-
标准株马尾松树干植硅体碳储量是由树干生物量和植硅体碳质量分数相乘得到的,20个马尾松种源的标准株树干植硅体碳储量与其树干生物量(R2=0.607 3,P<0.01)或植硅体碳质量分数(R2=0.438 8,P<0.01)之间均存在极显著正相关,说明标准株马尾松树干植硅体碳储量在一定程度上有随自身树干生物量和植硅体碳质量分数的增加而呈增加的趋势。而马尾松标准株的叶片与树干植硅体质量分数、植硅体碳储量无相关关系,这可能是植硅体自身固碳能力和固碳效率不同导致的。
本研究20个马尾松种源叶片植硅体碳质量分数范围为0.165~0.520 g·kg−1,明显高于马尾松树干植硅体碳质量分数(0.049~0.128 g·kg−1),叶片生物量范围为7.53~18.90 kg·株−1,树干生物量范围为76.48~295.39 kg·株−1,计算结果显示标准株叶片植硅体碳储量范围为1.67~9.22 g·株−1,标准株树干植硅体碳储量范围为4.83~31.58 g·株−1,可见树干巨大的生物量对植硅体碳储量的影响较大。
-
植硅体碳储量是评价植物生态系统现存植硅体碳封存潜力的一个重要指标,其大小不仅与植物种类有关,而且还与植物的种源有关。5种林分的凋落物植硅体碳储量比较发现:最大的毛竹Phyllostachys edulis林植硅体碳储量是最小的杉木林植硅体碳储量的6.8倍[34];8种散生竹地上部分植硅体碳储量研究发现:不同竹种间差异显著,最大的淡竹Phyllostachys glauca植硅体碳储量是最小的高节竹Phyllostachys prominens植硅体碳储量的10.8倍[35];本研究马尾松标准株树干植硅体碳储量最高的是广西岑溪115,最低的是湖南安化72,前者是后者的6.5倍。上述结果说明:植硅体碳储量在不同树种和种源之间存在着巨大差异,因而对同一种源森林生态系统来说,有可能通过选择高植硅体碳储量的林木来大大增加其植硅体碳的封存量。
-
20个马尾松种源树干的植硅体质量分数、植硅体封存有机碳质量分数以及植硅体碳质量分数都有着显著的差异(P<0.05),其中树干植硅体质量分数最高的是安徽太平32(0.845 g·kg−1),最低的是广东乳源102(0.305 g·kg-1);树干植硅体封存有机碳质量分数最高的是江西吉安63(210.2 g·kg−1),最低的是浙江庆元54(126.8 g·kg−1);而植硅体碳质量分数最高的是安徽太平32(0.128 g·kg−1),最低的是广东乳源(0.049 g·kg−1)。由于生物量的差异,标准株树干植硅体碳储量最高的是广西岑溪115(31.58 g·株−1)。综合聚类分析,湖北通山84、广西恭城111、江西吉安63以及广西岑溪115为植硅体碳汇能力较强的种源,浙江庆元54植硅体碳汇能力最差。
A comparative study of the PhytOC sequestration potential in the trunk of Pinus massoniana of different provenances
-
摘要:
目的 植硅体封存有机碳(PhytOC)在减少大气二氧化碳含量、缓解温室效应等方面具有重要意义。本研究旨在研究不同种源马尾松Pinus massoniana树干植硅体碳封存潜力存在的差异,从而筛选出植硅体碳封存潜力较强的马尾松种源。 方法 在浙江淳安姥山林场采集20个马尾松种源树干样品,20个种源分别来自于全国11个省区的20个产地。以各样品总有机碳、植硅体、植硅体封存有机碳质量分数及树干生物量的测定结果来分析不同马尾松种源植硅体碳封存潜力的差异。 结果 20个马尾松种源树干的总有机碳、植硅体、植硅体封存有机碳、植硅体碳质量分数分别变动于467.6~489.6、0.305~0.845、126.8~210.2、0.049~0.128 g·kg−1;马尾松标准株树干生物量和植硅体碳储量的变动范围分别为76.48~295.39 kg·株−1和4.83~31.58 g·株−1;种源聚类分析可以将20个马尾松种源划分为4类,以湖北通山84、广西恭城111、江西吉安63和广西岑溪115植硅体碳封存能力较强的种源为1类;以河南桐柏21、湖南安化72、广东信宜105为代表的7个马尾松种源的植硅体碳封存能力次之;以浙江淳安56、贵州都匀123、福建永定95为代表的8个马尾松种源为第3类;浙江庆元54为植硅体碳封存能力最差的一类。 结论 不同种源马尾松树干的植硅体、植硅体封存有机碳和植硅体碳含量均具有显著性差异(P<0.05)。广西岑溪115的植硅体碳封存能力最强,因此在马尾松生态系统中,可通过推广广西岑溪115来提高植硅体碳封存量。图3表2参35 Abstract:Objective As phytolith-occluded organic carbon (PhytOC) plays a unique role in the reduction of atmospheric CO2 contents and the mitigation of the greenhouse effect, this study, with a comparison conducted of the PhytOC sequestration potential of masson pines( Pinus massoniana) of different provenances is aimed at the selection of the Masson pine with the highest PhytOC sequestration capacity. Method With masson pines of twenty provenances(twenty regions in 11 provinces ) chosen at Laoshan Forest Farm which is located in Chun’an County of Zhejiang Province, an analysis was conducted of the contents of total OC, phytoliths, PhytOC as well as the trunk biomass of masson pines to highlight the differences of sequestration potential of masson pines of different provenances. Result (1) The contents of total OC, phytoliths, PhytOC, and phytolith carbon mass fraction in the trunks of masson pines were in the range of 467.6−489.6, 0.305−0.845, 126.8−210.2, and 0.049−0.128 g·kg−1 respectively. (2) The trunk biomass and PhytOC stock in the trunks of masson pines were 76.48−295.39 kg·plant−1 and 4.83−31.58 g·plant−1, respectively. (3) As was shown in the cluster analysis, the chosen masson pines of 20 provenances can be divided into four categories: a. Hubei Tongshan 84, Guangxi Gongcheng 111, Jiangxi Jian 63 and Guangxi Cenxi 115 which demonstrate the strongest PhytOC sequestration capacity; b. 7 provenances including Henan Tongbai 21, Hunan Anhua 72 and Guangdong Xinyi 105 which demonstrate relatively strong PhytOC sequestration capacity; c. 8 provenances including Zhejiang Chun’an 56, Guizhou Duyun 123, Fujian Yongding 95; d. Zhejiang Qingyuan 54 which demonstrate the weakest PhytOC sequestration capacity. Conclusion Significant differences were shown in the content of phytoliths, PhytOC, and carbon content of phytolith in the trunks of masson pines of different provenances (P<0.05). Guangxi Cenxi 115 demonstrated the highest PhytOC sequestration capacity and should be promoted in plantation in the ecosystem of masson pines so as to increase the sequestration amount of PhytOC. [Ch, 3 fig. 2 tab. 35 ref.] -
毛竹Phyllostachys edulis是中国面积最广、经济价值最高的竹种[1],但其主要分布区土壤有效磷含量偏低[2],严重影响毛竹的生长和产量。研究表明:低磷胁迫降低了毛竹叶片叶绿素和金属含量[3],导致磷组分[4]和内源激素含量[5]等也发生变化,进而降低了整体生物量。常用施磷肥来增加土壤磷有效性,但过度施磷会引起水体富营养化、磷矿资源枯竭等问题[6]。因此,为应对缺磷带来的生产危机,研究植物对低磷胁迫的响应机制显得尤为重要[7]。低磷胁迫下,植物根系会分泌化学物质,影响根际土壤养分有效性[8];同时毛竹等植物会调整根冠比[5,9]等生物量分配格局来适应低磷环境。低磷胁迫还会促使植物改变自身对养分的需求,协调植物体内养分平衡[10]。但不同生长时期植物对养分的需求和获取存在差异[11]。快速生长时期,植物对养分需求较大,土壤供应可能不足,会促使植物发挥养分重吸收作用[12]。LU等[13]研究表明:低磷胁迫使紫花苜蓿Medicago sativa的磷素利用效率增强,但其效率随育苗时间延长而降低。张文元[14]研究表明:不同生长阶段毛竹对养分的需求及所处根际土壤化学性质存在差异。低磷胁迫会打破土壤原有的养分平衡,使植物体内养分调控机制发生变化。但施磷肥后不同生长时期土壤养分动态变化及毛竹实生苗适应性响应的研究尚无报道。综上,本研究模拟不同土壤磷环境,旨在探究低磷胁迫对不同生长时期根际土壤养分环境、毛竹幼苗生长和养分生理的影响及其持续效应,为植物对低磷环境的适应机制提供理论基础。
1. 材料与方法
1.1 材料
试验地设在浙江农林大学果木园大棚。毛竹种子采自广西桂林灵川县,用质量浓度为0.3%高锰酸钾消毒和无菌水冲洗并浸种24 h后催芽。供试土壤挖取于浙江省杭州市临安区青山湖仙人洞毛竹林地1 m以下土层,自然风干过20目筛后,以V(土壤)∶V(珍珠岩)=3∶1混匀成育苗基质。土壤理化性质:有机质5.02 g·kg−1,总氮0.46 g·kg−1,全磷0.24 g·kg−1,全钾13.01 g·kg−1,碱解氮93.63 mg·kg−1,有效磷2.58 mg·kg−1,速效钾54.99 mg·kg−1,pH 4.83。育苗容器采用高14.0 cm、底径11.8 cm、上口径14.0 cm的BN170型PP5塑料育苗软盆,盆底有16个透水孔,且各配套1个塑料托盘。
1.2 方法
以毛朝明等[2]对松阳县毛竹林土壤养分分级为依据,采用单因素随机区组试验设计,共设4个初始土壤有效磷水平,分别模拟极低磷(2.5 mg·kg−1,P1)、低磷(5.0 mg·kg−1,P2)、中磷(10.0 mg·kg−1,P3)和适磷(20.0 mg·kg−1,P4)土壤环境。每盆装基质1.4 kg,磷肥采用磷酸二氢钾(分析纯),溶解于水后施入基质并均匀搅拌,每盆浇施100 mL,其质量浓度分别为0、153.5、460.6和1 074.8 mg·L−1,折合每盆分别添加磷为0、3.5、10.5和24.5 mg。本底氮肥已足够支撑幼苗生长所需,不再额外施加氮肥。对于低磷土壤,施加分析纯硫酸钾以补齐钾元素,保证单一磷变量。2019年6月14日,每盆播8粒饱满健康的毛竹种子,长出4片真叶后间苗,留2株健壮且长势一致的幼苗,每处理设4个重复,每重复150株苗木,共2 400株。进行常规栽培管理,为减少边缘效应,隔半月随机移动苗木1次,并在培育过程中摒弃异常植株。
1.3 样品采集和测定
根据毛竹幼苗苗高增长变化及普遍生长节律[15],于2019年12月中旬(当年生长季末,T1)和2020年6月中旬(翌年快速生长期,T2)进行破坏性取样,分为根、茎、叶3个部分在105 ℃烘箱中杀青30 min后,70 ℃烘至恒量,测定生物量后,粉碎并过100目筛,用于测定养分。测试样品采用H2SO4-H2O2消煮[16],分别采用凯氏定氮法、钼锑抗比色法和火焰光度法测定全氮、全磷、全钾质量分数,并计算毛竹幼苗根冠比、养分积累量、养分分配比例和磷素利用效率[17]。每个指标重复测定4次,每次重复分别随机取6株均匀混合样。
同时将附着在根系上的土壤作为根际土壤。采用pH计电位法测定根际土壤pH,高温外热重铬酸钾-容量法测定有机质质量分数,H2SO4消煮-凯氏定氮法测定全氮质量分数,乙酸铵浸提法测定速效钾质量分数,盐酸-氟化铵-钼锑抗比色法测定有效磷质量分数[16],并计算土壤有效磷变化幅度。有效磷变化幅度=(某时期有效磷质量分数−初始有效磷质量分数)/初始有效磷质量分数×100%。
1.4 数据处理与分析
采用Excel 2010和SPSS 19.0统计和分析数据,SigmaPlot 12.5作图。采用单因素方差分析(one-way ANOVA),Duncan法在α=0.05水平上进行多重比较。
2. 结果与分析
2.1 低磷胁迫对根际土壤养分环境的影响
表1所示:T1时期,与初始有效磷水平相比,P3和P4处理下的根际土壤有效磷质量分数降低,但低磷处理组(P1和P2)处理下反而增加;此时低磷处理组的根际土壤pH分别较P4显著降低了10.60%和8.55% (P<0.05);但根际土壤全氮质量分数随初始有效磷水平降低而增加,其中P1较P4显著提高了19.23% (P<0.05);此时根际土壤有机质和速效钾质量分数在不同土壤有效磷水平间均无显著差异(P>0.05)。T2时期,根际土壤有效磷质量分数与初始设置水平相比均降低,但低磷处理组降幅较P4显著减小(P<0.05);此时根际土壤pH仅在P1下较P4显著降低3.53% (P<0.05);而低磷处理组的根际土壤全氮质量分数分别较P4显著增加了30.76%和11.82% (P<0.05);此时根际土壤速效钾质量分数在不同有效磷水平间仍无显著差异(P>0.05),但低磷处理组的根际土壤有机质质量分数分别较P4均显著增加了10.70% (P<0.05)。
表 1 初始土壤有效磷水平对根际土壤养分环境的影响Table 1 Effects of initial soil available phosphorus level on soil nutrient environment in rhizosphere生长时期 初始土壤有效磷水平 有效磷/(mg·kg−1) 有效磷变化幅度/% pH 有机质/(g·kg−1) 全氮/(mg·kg−1) 速效钾/(mg·kg−1) T1 P1 3.05±0.11 d 22.13±4.56 a 4.81±0.07 b 5.53±0.33 a 902.26±37.64 a 65.47±0.89 a P2 6.57±0.04 c 31.47±0.75 a 4.92±0.03 b 5.90±0.31 a 805.16±38.17 ab 65.94±1.63 a P3 8.47±0.21 b −15.30±2.09 b 5.40±0.03 a 5.83±0.42 a 868.47±4.46 ab 64.94±1.13 a P4 14.98±0.87 a −25.10±4.33 b 5.38±0.04 a 5.17±0.07 a 756.77±42.93 b 63.58±0.64 a T2 P1 2.32±0.04 D −7.33±1.76 A 5.19±0.03 B 7.45±0.21 A 1013.74±29.97 A 93.92±3.87 A P2 4.34±0.12 C −13.27±2.48 A 5.42±0.04 A 7.45±0.19 A 866.91±24.09 B 82.20±1.46 A P3 7.53±0.30 B −24.73±2.99 B 5.43±0.01 A 7.21±0.03 AB 836.34±17.01 BC 75.43±2.63 A P4 12.16±0.28 A −39.20±1.39 C 5.38±0.03 A 6.73±0.23 B 775.27±6.81 C 78.91±10.97 A 说明:数据为平均值±标准误。大小写字母分别表示T2和T1时期不同处理间差异显著(P<0.05);有效磷变化幅度中的−表示土壤有效 磷质量分数与初始水平相比降低,否则表示增加 2.2 低磷胁迫对毛竹幼苗生物量及共分配的影响
表2所示:T1时,低磷处理组(P1和P2)的毛竹幼苗单株生物量分别较P4显著降低了27.09%和15.93% (P<0.05);根冠比较P4分别显著降低22.22%和14.29% (P<0.05);但各土壤有效磷水平下的毛竹幼苗生物量分配率从大到小均依次为根、叶、茎。T2时,低磷处理组的单株生物量较P4分别显著降低了48.96%和43.40% (P<0.05);但根冠比较P4分别显著增加了44.30%和37.97% (P<0.05);此时毛竹幼苗生物量分配率在各土壤有效磷水平下均从大到小依次为根、茎、叶。
表 2 初始土壤有效磷水平对毛竹幼苗生物量及分配的影响Table 2 Effects of initial soil available phosphorus level on biomass and allocation of Ph. edulis seedlings生长时期 初始土壤
有效磷水平生物量/(g·株−1) 生物量分配/% 根冠比 根 茎 叶 T1 P1 0.197±0.005 c 49.40±1.19 d 23.35±0.74 a 27.25±0.98 a 0.98±0.05 c P2 0.227±0.003 b 52.00±0.54 c 20.14±0.04 b 27.86±0.58 a 1.08±0.02 c P3 0.264±0.005 a 60.03±0.43 a 17.00±0.42 c 22.97±0.04 b 1.50±0.03 a P4 0.270±0.009 a 55.82±0.65 b 19.50±0.46 b 24.68±0.24 b 1.26±0.03 b T2 P1 0.243±0.020 B 54.56±1.39 A 29.17±2.40 AB 16.27±1.05 B 1.14±0.10 A P2 0.270±0.025 B 52.09±1.33 A 32.06±0.67 A 15.85±1.12 B 1.09±0.06 A P3 0.307±0.012 B 53.34±1.05 A 25.02±0.83 B 21.64±1.31 A 1.14±0.05 A P4 0.477±0.050 A 43.97±1.35 B 32.37±1.43 A 23.66±0.61 A 0.79±0.04 B 说明:数据为平均值±标准误。大小写字母分别表示T2和T1时期不同处理间差异显著(P<0.05) 2.3 低磷胁迫对毛竹幼苗养分生理的影响
2.3.1 毛竹幼苗养分质量分数
由图1可见:T1时,低磷处理组(P1和P2)较P4均显著降低了毛竹各组织氮质量分数(P<0.05),也显著降低了茎和叶的磷质量分数(P<0.05),但根的磷质量分数仅在P1处理下较P4显著降低了17.01% (P<0.05);此时P1和P4处理的毛竹各组织钾质量分数均无显著差异(P>0.05),但P2处理根和叶的钾质量分数较P4显著降低了6.18%和8.05% (P<0.05)。T2时,毛竹各组织氮质量分数也均随土壤有效磷水平降低而减小,其中低磷处理显著降低了根和茎的氮质量分数(P<0.05),但叶的氮质量分数在不同土壤有效磷水平间无显著差异(P>0.05);此时低磷处理显著降低了根磷质量分数(P<0.05),叶中则显著增加(P<0.05),但茎上无显著差异(P>0.05);而低磷处理组较P4均显著降低了该时期各组织钾质量分数(P<0.05)。
2.3.2 毛竹幼苗养分积累和分配
由表3显示:无论T1还是T2时期,低磷处理(P1和P2)均显著降低了毛竹幼苗各组织和整株氮、磷、钾积累量(P<0.05)。其中T1时,P1和P2处理的氮积累量较P4分别显著降低了50.28%和38.74% (P<0.05),磷积累量则分别显著降低了42.59%和28.70% (P<0.05),钾积累量则分别显著减小了27.10%和21.55% (P<0.05);T2时,P1和P2处理的氮、磷、钾养分积累量分别依次较P4显著降低了66.86%和57.03%、57.11%和43.16%、60.94%和60.42% (P<0.05)。
表 3 初始土壤有效磷水平对毛竹幼苗养分积累量的影响Table 3 Effects of initial soil available phosphorus level on nutrient accumulation of Ph. edulis seedlings生长
时期初始土壤有效磷水平 根养分积累量/(mg·株−1) 茎养分积累量/(mg·株−1) 氮 磷 钾 氮 磷 钾 T1 P1 0.74±0.08 b 0.025±0.001 b 2.53±0.07 b 0.31±0.02 b 0.013±0.001 b 0.89±0.03 b P2 0.91±0.07 b 0.033±0.001 b 2.82±0.06 b 0.33±0.03 b 0.015±0.000 b 0.87±0.01 bc P3 1.50±0.08 a 0.046±0.004 a 3.50±0.09 a 0.34±0.03 b 0.015±0.001 b 0.78±0.01 c P4 1.60±0.18 a 0.047±0.003 a 3.85±0.19 a 0.63±0.01 a 0.021±0.001 a 1.01±0.05 a T2 P1 1.57±0.18 B 0.073±0.009 B 2.62±0.26 B 0.89±0.02 C 0.048±0.002 B 1.49±0.03 B P2 1.81±0.06 B 0.093±0.004 B 2.61±0.18 B 1.50±0.19 B 0.065±0.008 B 1.68±0.17 B P3 2.01±0.23 B 0.133±0.003 A 2.79±0.06 B 1.66±0.05 B 0.066±0.003 B 1.48±0.06 B P4 3.36±0.42 A 0.160±0.016 A 5.08±0.62 A 3.59±0.11 A 0.109±0.015 A 4.03±0.32 A 生长
时期初始土壤有效磷水平 叶养分积累量/(mg·株−1) 整株养分积累量/(mg·株−1) 氮 磷 钾 氮 磷 钾 T1 P1 0.77±0.02 c 0.024±0.001 c 1.18±0.02 b 1.81±0.10 c 0.062±0.001 d 4.60±0.09 c P2 0.99±0.11 bc 0.029±0.001 b 1.26±0.04 b 2.23±0.19 c 0.077±0.001 c 4.95±0.08 c P3 1.16±0.07 b 0.031±0.001 b 1.29±0.04 b 2.99±0.08 b 0.092±0.004 b 5.57±0.13 b P4 1.41±0.02 a 0.039±0.001 a 1.45±0.06 a 3.64±0.20 a 0.108±0.003 a 6.31±0.28 a T2 P1 1.06±0.08 C 0.042±0.006 B 1.14±0.16 C 3.51±0.24 C 0.163±0.016 C 5.25±0.39 B P2 1.24±0.26 BC 0.059±0.010 B 1.03±0.17 C 4.55±0.46 BC 0.216±0.022 BC 5.32±0.51 B P3 2.02±0.31 B 0.058±0.005 B 2.26±0.24 B 5.69±0.57 B 0.257±0.003 B 6.54±0.33 B P4 3.65±0.38 A 0.111±0.014 A 4.33±0.54 A 10.59±0.86 A 0.380±0.045 A 13.44±1.43 A 说明:数据为平均值±标准误。大小写字母分别表示T2和T1时期不同处理间差异显著(P<0.05) 由图2显示:T1时期,氮养分主要分配在根和叶上,分别占40%,且低磷处理组(P1和P2)较P3显著降低了氮在根的分配比例(P<0.05);此时磷养分在各组织分配比例从大到小均依次为根、叶、茎,且低磷处理组也较P3显著降低了磷分配在根的比例(P<0.05);钾养分与磷相似,分配比例从大到小均依次为根、叶、茎,此时低磷处理组较P3和P4均显著降低了其在根的分配比例(P<0.05)。T2时期,氮分配在各组织比例相当,且低磷处理组的氮分配在根的比例较P4均分别显著增加了41.05%和28.85% (P<0.05);钾养分分配比例因土壤有效磷水平不同而异,其中低磷处理组的钾分配比例从大到小依次为根、茎、叶,但中适磷则为根、叶、茎,此时低磷处理组的钾养分分配在根的比例较P4分别显著增加了31.79%和30.86% (P<0.05)。
2.3.3 毛竹幼苗磷素利用效率
由表4可见:T1时期,低磷处理(P1和P2)显著增加了毛竹茎、叶及整株磷素利用效率,但根的磷素利用效率仅在P1下较P4显著增加了20.31%(P<0.05)。T2时期,低磷处理显著增加了根的磷素利用效率(P<0.05),叶中则显著降低(P<0.05),茎上无显著差异(P>0.05);此时仅P1的整株磷素利用效率较P4显著增加了19.05%,P2与P4间无显著差异(P>0.05)。
表 4 初始土壤有效磷水平对毛竹幼苗磷素利用效率的影响Table 4 Effects of initial soil available phosphorus level on phosphorus utilization efficiency of Ph. edulis seedlings生长
时期初始土
壤有效
磷水平磷素利用效率/(g·mg−1) 根 茎 叶 整株 T1 P1 3.85±0.09 a 3.57±0.07 a 2.22±0.03 a 3.16±0.02 a P2 3.58±0.15 ab 3.07±0.11 b 2.15±0.08 ab 2.93±0.07 b P3 3.44±0.21 ab 2.97±0.08 b 1.98±0.06 b 2.86±0.07 b P4 3.20±0.09 b 2.48±0.15 c 1.71±0.03 c 2.50±0.02 c T2 P1 1.83±0.03 a 1.46±0.06 a 0.95±0.01 c 1.50±0.03 a P2 1.51±0.05 b 1.35±0.11 a 0.74±0.01 d 1.25±0.04 b P3 1.23±0.04 c 1.17±0.07 a 1.15±0.02 a 1.19±0.04 b P4 1.31±0.02 c 1.43±0.09 a 1.02±0.01 b 1.26±0.02 b 说明:磷素利用效率=生物量/磷素积累量;数据为平均值±标准误;大小写字母分别表示T2和T1时期不同处理间差异显著(P<0.05) 3. 讨论
3.1 低磷胁迫对毛竹幼苗根际土壤的影响机制
根际土壤环境直接影响土壤养分的转化、迁移及被植物吸收的能力[18],根际土壤有效磷作为表征土壤供磷能力的重要指标,是植物吸收磷素的直接形态[19]。本研究中,低磷胁迫显著降低了当年生长季末根际土壤pH,但其有效磷质量分数较初始设置水平增加,这可能是磷素缺乏时,毛竹根系会分泌苹果酸、草酸等有机酸物质进入土壤[20],增强根际酸化能力,并与土壤中磷酸铁、磷酸铝等难溶性磷酸盐作用,释放出磷酸盐,可相对提高磷的有效性;此时根际土壤全氮质量分数随有效磷水平降低而增加,但有机质和速效钾质量分数无显著差异,这表明当年生长季末时,极低磷胁迫会相对更阻碍毛竹幼苗吸收根际土壤氮素,抑制幼苗生长发育。随育苗时间推移,低磷胁迫显著增加了翌年快速生长期的根际土壤有机质质量分数,但有效磷降幅较小,这可能是由于低磷胁迫下的毛竹根系会随着生长分泌更多有机物质,缓解难溶性磷酸盐在土壤中的沉积,维持土壤磷肥力。此时,低磷环境均会显著限制毛竹幼苗吸收土壤氮素。
3.2 低磷胁迫对毛竹幼苗生长和养分生理的影响机制
低磷胁迫显著抑制了当年生长季末毛竹幼苗生物量的积累,这可能是由于磷素不足会导致植物体内核酸、核蛋白合成受阻,抑制细胞形成和分裂[21]。植物养分平衡作为生物量积累的基础,其养分浓度和积累量受土壤养分有效性影响[22]。本研究中,养分浓度与积累量随土壤磷水平降低变化规律并不完全一致,主要原因是各组织养分积累量和生物量均随土壤磷水平降低而减小,但两者降幅不完全同步,从而对某些养分浓度造成相对稀释或浓缩[23],这是植物养分协调供应的表现形式之一。养分利用效率反映了植物对养分的利用和适应情况,本研究表明:低磷胁迫显著提高了当年生长季末毛竹整体磷素利用效率,与目前主流观点一致:缺磷素环境下的植物养分利用效率高于富态营养环境[23]。低磷胁迫显著降低了当年生长季末毛竹幼苗根冠比,也相对减少了氮、磷、钾养分在根系的分配比例,这表明生长季末时,低磷胁迫会提高毛竹叶片储存养分的比例,增强光合作用,并尽可能多的制造有机物质,在来年春季新生长时,作为源将养分输送到其他组织促进生长发育。
3.3 低磷胁迫对毛竹幼苗生长和养分影响的持续效应
低磷胁迫显著降低毛竹生物量和养分积累量的作用持续到翌年快速生长期,且降幅较当年生长季末更高,这表明了低磷胁迫对毛竹幼苗吸收根际土壤养分的抑制作用随育苗时间延长有所增强,并进一步抑制了生物量的积累。在翌年快速生长期,低磷胁迫显著降低了根的磷质量分数,但叶相反,这可能是毛竹幼苗为应对低磷胁迫采用的“被动”策略,即通过活化细胞壁中所储存的磷素[24],促进磷素内循环,从而提高叶片光合效率[25],以维持正常生理生化活动所需。毛竹整体磷素利用效率至翌年快速生长期时仅在极低磷胁迫下显著增加,这表明毛竹幼苗对低磷胁迫的适应性随育苗时间延长而增强。此外,至翌年快速生长期,低磷胁迫显著提高了毛竹幼苗根冠比和氮、钾养分分配到根系的比例,这可能是由于低磷土壤迫使快速生长期的毛竹幼苗分配更多养分用于支持根系生长,提高根系活力;也可能是当年生长季末储存在叶片中的养分被更多地转运到根系,以维持苗木正常生长发育。
4. 结论
低磷胁迫降低了当年生长季末毛竹幼苗根际土壤pH,但维持了根际土壤高氮质量分数,这种作用持续到了翌年快速生长期,此时低磷胁迫还显著增加了根际土壤有机质质量分数。此外,低磷胁迫显著抑制了毛竹生物量和养分的积累,但提高了整株磷素利用效率;低磷抑制作用随育苗时间推移增强,但毛竹幼苗会通过提高根冠比、根系养分分配比例来提高对低磷胁迫的适应性。
-
图 2 不同马尾松种源标准株植硅体碳储量与树干生物量(A)、标准株植硅体碳储量与植硅体碳质量分数(B)、标准株叶片植硅体质量分数与树干植硅体质量分数(C)或标准株叶片植硅体碳储量与标准株树干植硅体碳储量(D)之间相关性
Figure 2 Correlation between PhytOC stock and trunk biomass (A), PhytOC stock and PhytOC contents in dry matter (B), phytolith contents in the leaves and phytolith contents in the trunks (C), PhytOC stock of the leaves and PhytOC stock of the trunks (D)
表 1 不同马尾松种源树干总有机碳、植硅体、植硅体封存有机碳和植硅体碳质量分数的比较
Table 1. Comparison of the contents of total organic carbon(TOC), phytoliths, OC in phytoliths, and phytolith in dry matter in trunk of masson pine from different provenances
种源号 总有机碳/(g·kg−1) 植硅体/(g·kg−1) 植硅体封存有机碳/(g·kg−1) 植硅体碳/(g·kg−1) 河南桐柏21 489.6±22.6 a 0.421±0.049 cdef 188.9±16.8 abc 0.073±0.020 cdef 安徽太平32 485.9±5.4 a 0.845±0.033 a 148.0±15.9 de 0.128±0.008 a 安徽屯溪33 478.5±13.9 a 0.368±0.075 def 167.5±16.8 cd 0.059±0.013 def 浙江庆元54 484.0±14.3 a 0.519±0.057 c 126.8±11.8 e 0.070±0.016 cdef 浙江淳安56 474.1±9.9 a 0.437±0.062 cdef 148.4±14.2 de 0.064±0.004 def 江西吉安63 483.5±14.5 a 0.380±0.094 cdef 210.2±26.7 a 0.070±0.009 cdef 湖南安化72 488.7±4.8 a 0.330±0.026 ef 177.2±21.6 abcd 0.058±0.006 def 湖南资兴74 478.3±10.8 a 0.405±0.075 cdef 167.2±24.7 cd 0.066±0.003 def 湖北远安81 477.5±14.0 a 0.388±0.079 cdef 183.4±16.4 abcd 0.067±0.006 cdef 湖北通山84 475.5±3.4 a 0.465±0.119 cde 204.5±11.8 ab 0.091±0.026 bc 福建邵武91 475.8±13.6 a 0.410±0.082 cdef 172.4±10.0 bcd 0.069±0.021 cdef 福建永定95 467.6±8.2 a 0.395±0.094 cdef 147.6±22.1 de 0.051±0.002 ef 广东乳源102 479.9±10.9 a 0.305±0.074 f 162.2±18.3 cd 0.049±0.013 f 广东信宜105 476.5±10.2 a 0.481±0.069 cd 194.1±19.3 abc 0.111±0.024 ab 广西恭城111 474.7±10.5 a 0.396±0.036 cdef 205.1±15.5 ab 0.081±0.008 cd 广西岑溪115 472.9±5.0 a 0.519±0.033 c 205.7±5.5 ab 0.107±0.010 ab 贵州黄平122 476.5±11.6 a 0.702±0.103 b 187.6±33.7 abc 0.121±0.009 a 贵州都匀123 476.6±8.2 a 0.364±0.002 def 148.5±5.5 de 0.054±0.002 ef 贵州黎平124 469.1±2.8 a 0.465±0.119 cde 187.0±27.6 abc 0.076±0.001 cde 四川南江131 477.1±12.9 a 0.335±0.043 ef 190.3±19.2 abc 0.059±0.010 def 说明:表内的数据为平均值±标准差;同列不同字母表示不同种源间差异显著(P<0.05) 表 2 不同马尾松种源标准株树干植硅体碳储量的比较
Table 2. Comparison of PhytOC stock in trunk of masson pine plant from different provenances
种源号 胸径/
cm株高/
m树干生物量/
(kg·株−1)标准株植硅体
碳储量/(g·株−1)河南桐柏21 17.1 17.0 76.48 5.61 安徽太平32 21.8 17.0 124.85 16.03 安徽屯溪33 22.5 19.0 143.76 8.54 浙江庆元54 26.1 19.1 195.11 13.64 浙江淳安56 21.1 18.3 122.59 7.88 江西吉安63 20.8 17.4 114.65 8.08 湖南安化72 18.0 16.5 82.77 4.83 湖南资兴74 26.7 18.2 197.10 13.01 湖北远安81 21.5 18.8 129.52 8.70 湖北通山84 22.5 18.5 141.33 12.93 福建邵武91 27.2 19.2 212.87 14.60 福建永定95 28.4 18.9 229.44 11.79 广东乳源102 28.8 19.5 241.78 11.94 广东信宜105 25.1 19.3 182.05 20.23 广西恭城111 29.3 19.3 247.94 20.08 广西岑溪115 32.3 18.6 295.39 31.58 贵州黄平122 22.3 18.4 137.86 16.68 贵州都匀123 19.6 17.2 100.83 5.45 贵州黎平124 24.1 19.0 164.73 12.55 四川南江131 20.2 16.3 103.33 6.12 说明:树干生物量根据模型计算得到[29] -
[1] 韦荣华. 应对气候变化林业作用特殊[J]. 中国林业, 2007(8): 14 − 17. WEI Ronghua. Forestry plays a special role in coping with climate change [J]. Chin For, 2007(8): 14 − 17. [2] PARR J F, SULLIVAN L A. Phytolith occluded carbon and silica variability in wheat cultivars [J]. Plant Soil, 2011, 342: 165 − 171. [3] JEFF P J, SULLIVAN L A, QUIRK R. Sugarcane phytoliths: encapsulation and sequestration of a long-lived carbon fraction [J]. Sugar Tech, 2009, 11(1): 17 − 21. [4] ROVNER I. Plant opal phytolith analysis: major advances in archmeobotanical research[M]//SCHIFFER M B. Advances in Archmeological Method and Theory Vol. 6. New York: Academic Press, 1983: 225 – 266. [5] PIPERNO D R. Phytoliths: A Comprehensive Guide for Archmeologists and Paleoecologists[M]. London: Altamira Press, 2006: 117 – 124. [6] PARR J F, SULLIVAN L A. Soil carbon sequestration in phytoliths [J]. Soil Biol Biochem, 2005, 37(1): 117 − 124. [7] ZUO Xinxin, LÜ Houyuan, ZHAO Yangu. Distribution of soil phytolith-occluded carbon in the Chinese Loess Plateau and its implications for silica-carbon cycles[J]. Plant & Soil, 2014, 374(1): 223 – 232. [8] JONES R L, BEAVERS A H. Aspects of catenary and depth distribution of opal phytoliths in Illinois soils [J]. Soil Sci Soc Am J, 1964, 28(3): 413 − 416. [9] ZUO Xinxin, LÜ Houyuan. Carbon sequestration within millet phytoliths from dry-farming of crops in China [J]. Chin Sci Bull, 2011, 56(32): 3451 − 3456. [10] FISHKIS O, INGWERSEN J, STRECK T. Phytolith transport in sandy sediment: experiments and modeling [J]. Geo-derma, 2009, 151(3): 168 − 178. [11] WILDING L P. Radiocarbon dating of biogenetic opal [J]. Science, 1967, 156(3771): 66 − 67. [12] YING Yuqi, LOU Kangyi, XIANG Tingting, et al. PhytOC stock in forest litter in subtropical forests: effects of parent material and forest type [J]. Ecol Eng, 2016, 97: 297 − 303. [13] XIANG Tingting, YING Yuqi, TENG Jiangnan, et al. Sympodial bamboo species differ in carbon bio-sequestration and stocks within phytoliths of leaf litters and living leaves [J]. Environ Sci Pollut Res, 2016, 23(19): 1 − 9. [14] SONG Zhaoliang, PARR J F, GUO Fengshan. Potential of global cropland phytolith carbon sink from optimization of cropping system and fertilization [J]. Plos One, 2013, 8(9): e73747 – e73747. doi: 10.1371/journal.pone.0073747 [15] LI Zimin, SONG Zhaoliang, PARR J F, et al. Occluded C in rice phytoliths: implications to biogeochemical carbon sequestration [J]. Plant Soil, 2013, 370(1/2): 1 − 9. [16] LI Zimin, SONG Zhaoliang, JIANG Peikun. Biogeochemical sequestration of carbon within phytoliths of wetland plants: a case study of Xixi wetland, China [J]. Chin Sci Bull, 2013, 58(20): 2480 − 2487. [17] SONG Zhaoliang, LIU Hongyan, SI Yong, et al. The production of phytoliths in China’s grasslands: implications to the biogeochemical sequestration of atmospheric CO2 [J]. Glob Change Biol, 2012, 18(12): 3647 − 3653. [18] 李蓓蕾. 竹子植硅体碳汇及其与竹类和岩性的关系研究[D]. 杭州: 浙江农林大学, 2014. LI Beilei. Carbon Sink of Bamboo Phytolith and Its Relationship with Bamboo and Lithology[D]. Hangzhou: Zhejiang A&F University, 2014. [19] 冯晟斐, 黄张婷, 杨杰, 等. 3种不同生态型竹种植硅体碳汇比较研究[J]. 自然资源学报, 2017, 32(1): 154 − 164. FENG Shengfei, HUANG Zhangting, YANG Jie, et al. Comparison of phytOC sink for three different ecotypes of bamboos [J]. J Nat Resour, 2017, 32(1): 154 − 164. [20] PARR J F, SULLIVAN L A, CHEN B, et al. Carbon bio-sequestration within the phytoliths of economic bamboo species [J]. Global Change Biol, 2010, 16(10): 2661 − 2667. [21] 应雨骐, 项婷婷, 李永夫, 等. 中国亚热带重要树种植硅体碳封存潜力估测[J]. 自然资源学报, 2015, 30(1): 133 − 140. YING Yuqi, XIANG Tingting, LI Yongfu, et al. Estimation of carbon sequestration potential of important tree plants in subtropical China [J]. J Nat Resour, 2015, 30(1): 133 − 140. [22] 林维雷, 应雨骐, 姜培坤, 等. 浙江南部亚热带森林土壤植硅体碳的研究[J]. 土壤学报, 2015, 52(6): 1365 − 1373. LIN Weilei, YING Yuqi, JIANG Peikun, et al. Study on phytolith-occluded organic carbon in soil of subtropical forest of southern Zhejiang [J]. Acta Pedol Sin, 2015, 52(6): 1365 − 1373. [23] SONG Zhaoliang, LIU Hongyan, LI Beilei, et al. The production of phytolith-occluded carbon in China’s forests implications to biogeo-chemical carbon sequestration [J]. Glob Change Biol, 2013, 19(9): 2907 − 2915. [24] 张振, 金国庆, 周志春, 等. 马尾松广东种源与湖北种源的人工林生物量分配差异[J]. 浙江农林大学学报, 2019, 36(2): 271 − 278. ZHANG Zhen, JIN Guoqing, ZHOU Zhichun, et al. Biomass allocation differences with Pinus massoniana in Guangdong and Hubei Provenances [J]. J Zhejiang A&F Univ, 2019, 36(2): 271 − 278. [25] 杨杰, 吴家森, 姜培坤, 等. 苦竹林植硅体碳与硅的研究[J]. 自然资源学报, 2016, 31(2): 299 − 309. YANG Jie, WU Jiasen, JIANG Peikun, et al. Study on phytosilicate carbon and silicon in bitter bamboo forest [J]. J Nat Resour, 2016, 31(2): 299 − 309. [26] 刘青华, 金国庆, 张蕊, 等. 24年生马尾松生长、形质和木材基本密度的种源变异与种源区划[J]. 林业科学, 2009, 45(10): 55 − 61. LIU Qinghua, JIN Guoqing, ZHANG Rui, et al. Source variation and provenance provenancealization of growth, shape and trunk basic density of 24-year-old Pinus massoniana [J]. Sci Silv Sin, 2009, 45(10): 55 − 61. [27] PARR J F, DOLIC V, LANCASTER G, et al. A microwave digestionmethod for the extraction of phytoliths from herbarium specimens [J]. Rev Palaeobot Palynol, 2001, 116(3/4): 203 − 212. [28] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2008. [29] 曾伟生. 全国立木生物量方程建模方法研究[D]. 北京: 中国林业科学研究院, 2011. ZENG Weisheng. Modeling Method of National Standing Tree Biomass Equation[D]. Beijing: Chinese Academy of Forestry, 2011. [30] 徐德克, 李泉, 吕厚远. 棕榈科植硅体形态分析及其环境意义[J]. 第四纪研究, 2005, 25(6): 777 − 783. XU Deke, LI Quan, LÜ Houyuan. Morphological analysis of phytoliths in palmae and its environmental significance [J]. Quate Sci, 2005, 25(6): 777 − 783. [31] 李仁成. 竹叶及其植硅体类脂物的分类学意义及其季节性变化[D]. 武汉: 中国地质大学, 2010. LI Rencheng. Taxonomic Significance and Seasonal Variations of Lipid from Bamboo Leaf and Its Phytolith[D]. Wuhan: China University of Geosciences, 2010. [32] PARR J F, SULLIVAN L A, QUIRK R. Sugarcane phytoliths: encapsulation and sequestration of a long-lived carbon fraction[J]. Sugar Tech, 2009, 11(1): 1721. doi: 10.1007/s12355-009-0003-y. [33] LI Zimin, SONG Zhaoliang, LI Beilei. The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China [J]. Appl Geochem, 2013, 37: 117 − 124. [34] 应雨骐, 项婷婷, 林维雷, 等. 中国亚热带5种林分凋落物层植硅体碳的封存特性[J]. 林业科学, 2015, 51(3): 1 − 7. YING Yuqi, XIANG Tingting, LIN Weilei, et al. Phytolith-occluded carbon in litters of different stands in the subtropics of China [J]. Sci Silv Sin, 2015, 51(3): 1 − 7. [35] 杨杰. 中国重要散生竹生态系统植硅体碳汇研究[D]. 杭州: 浙江农林大学, 2016. YANG Jie. Phytolith-occluded Carbon Sequestration of Typical Monopodial Bamboo Ecosystems in China[D]. Hangzhou: Zhejiang A&F University, 2016. 期刊类型引用(5)
1. 刘娅惠,徐瑾,雷蕾,万一,曾立雄,肖文发. 不同磷质量分数下马尾松幼苗根的生理生化特征. 浙江农林大学学报. 2023(01): 126-134 . 本站查看
2. 诸炜荣,黄云峰,柴庆辉,吴佳,靳晓东,余礼华,毕毓芳,吴雪玲,王璐,唐辉. 毛竹林下不同树种的生长、光合作用及生理特性. 东北林业大学学报. 2023(05): 26-29 . 百度学术
3. 赵海民. 缺磷胁迫对旱柳生长及光合作用的影响. 河北林业科技. 2023(02): 16-20 . 百度学术
4. 高宁,邢意警,熊瑞,史文辉. 丛枝菌根真菌和溶磷细菌协调植物获取磷素的机制. 浙江农林大学学报. 2023(06): 1167-1180 . 本站查看
5. 孟超敏,耿翡翡,卿桂霞,周佳敏,张富厚,刘逢举. 陆地棉磷高效基因GhMGD3的克隆与表达分析. 浙江农林大学学报. 2022(06): 1203-1211 . 本站查看
其他类型引用(4)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190583