Volume 34 Issue 2
Mar.  2017
Turn off MathJax
Article Contents

ZHENG Jun, WU Renwu, SHI Yan, YANG Fan, YAN Hai, WU Yibo, REN Weitao, BAO Zhiyi. Research progress on environmental effects of bamboo: a review[J]. Journal of Zhejiang A&F University, 2017, 34(2): 374-380. doi: 10.11833/j.issn.2095-0756.2017.02.024
Citation: ZHENG Jun, WU Renwu, SHI Yan, YANG Fan, YAN Hai, WU Yibo, REN Weitao, BAO Zhiyi. Research progress on environmental effects of bamboo: a review[J]. Journal of Zhejiang A&F University, 2017, 34(2): 374-380. doi: 10.11833/j.issn.2095-0756.2017.02.024

Research progress on environmental effects of bamboo: a review

doi: 10.11833/j.issn.2095-0756.2017.02.024
  • Received Date: 2016-04-07
  • Rev Recd Date: 2016-06-20
  • Publish Date: 2017-04-20
  • With degradation of the living environment, urban and rural areas have had an irreversible tendency bringing a series of serious consequences. At the same time, the public has expressed a strong desire to improve their living environment. Bamboo not only protects and improves the environment, but also promotes the physical and mental health of mankind through its eco-environmental functions. Aiming at the hotspots in environmental science research, and from the viewpoint of improving the microclimatic environment, purifying the air, releasing negative air ions, and fixing carbon, this paper summarizes recent research progress concerning the environmental effects of bamboo. Future work in this field should focus on expanding the scope of bamboo, improving research methods for quantitative experimentation on environmental effects, and establishing an evaluation system for bamboo ecological and environmental services.
  • [1] CHEN Rongfen, HUANG Jianqin, CHEN Rong, XU Chuanmei.  On the application of flow cytometry in the genomic size determination of bamboo plants . Journal of Zhejiang A&F University, 2021, 38(1): 103-111. doi: 10.11833/j.issn.2095-0756.20200212
    [2] XU Sen, YANG Liting, CHEN Shuanglin, GUO Ziwu, GU Rui, ZHANG Chao.  Review on the formation of bamboo shoot palatability and its main influencing factors . Journal of Zhejiang A&F University, 2021, 38(2): 403-411. doi: 10.11833/j.issn.2095-0756.20200400
    [3] ZHANG Jie, YIN Dejie, GUAN Haiyan, QU Qiqi, DONG Li.  An overview of Sedum spp. Research . Journal of Zhejiang A&F University, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [4] DING Shaogang, ZHU Yanran.  Constructing a synthetic evaluation system of hospital out-door environment based on analytic hierarchy process and fuzzy synthetic evaluation . Journal of Zhejiang A&F University, 2017, 34(6): 1104-1112. doi: 10.11833/j.issn.2095-0756.2017.06.019
    [5] XU Zaien, YU Yu, LI Bingjuan, CHEN Hongjun, GUO Xiaoqin.  Single nucleotide polymorphism of non-ε 14-3-3 genes in Shibataeeae . Journal of Zhejiang A&F University, 2016, 33(1): 80-87. doi: 10.11833/j.issn.2095-0756.2016.01.011
    [6] YU Botao, YANG Tianqi, LI Chen.  Analysis on phytocoenosis association of tree species composition in ecological gardens of winter cities . Journal of Zhejiang A&F University, 2016, 33(2): 247-256. doi: 10.11833/j.issn.2095-0756.2016.02.009
    [7] FANG Shuli, ZHANG Mingru, MENG Meng, ZHANG Lin, WANG Xin.  Characteristics of plant landscape of traditional academy gardens in Zhejiang . Journal of Zhejiang A&F University, 2015, 32(4): 619-624. doi: 10.11833/j.issn.2095-0756.2015.04.019
    [8] YAN Wenbo, LIU Dan, PENG Danli, LI Song, CHEN Junren, YE Zhengqian, WU Jiasen, WANG Hailong.  Technology advances of ecological restoration and environmental remediation of heavy metal mines . Journal of Zhejiang A&F University, 2015, 32(3): 467-477. doi: 10.11833/j.issn.2095-0756.2015.03.021
    [9] YU Botao, QI Mucun.  Species selection for ecological garden trees in winter cities . Journal of Zhejiang A&F University, 2015, 32(5): 743-748. doi: 10.11833/j.issn.2095-0756.2015.05.013
    [10] WU Xue, DU Changxia, YANG Bingbing, FAN Huaifu.  Research progress in plant aquaporins . Journal of Zhejiang A&F University, 2015, 32(5): 789-796. doi: 10.11833/j.issn.2095-0756.2015.05.020
    [11] CHEN Lei, SUN Bing, LIAO Shaobo, CHEN Yong, ZHANG Jing, HUANG Yingfeng.  Research progress on the cultivation of Bombax malabaricum resource and its landscape application . Journal of Zhejiang A&F University, 2014, 31(5): 798-804. doi: 10.11833/j.issn.2095-0756.2014.05.022
    [12] LIU Yufang, CHEN Shuanglin, LI Yingchun, GUO Ziwu, YANG Qingping.  Environmental stress on physiological plasticity of bamboo: a review . Journal of Zhejiang A&F University, 2014, 31(3): 473-480. doi: 10.11833/j.issn.2095-0756.2014.03.022
    [13] BU Tao, ZHANG Shuikui, SONG Xinzhang, JIANG Hong.  Effects of several environmental factors on litter decomposition . Journal of Zhejiang A&F University, 2013, 30(5): 740-747. doi: 10.11833/j.issn.2095-0756.2013.05.017
    [14] CHENG Jian-zhong, YANG Ping, GUI Ren-yi.  Research progress on speciation of selenium compounds in plants . Journal of Zhejiang A&F University, 2012, 29(2): 288-395. doi: 10.11833/j.issn.2095-0756.2012.02.020
    [15] ZHANG Zhe, PAN Hui-tang.  Research on the evaluation of garden plant landscapes . Journal of Zhejiang A&F University, 2011, 28(6): 962-967. doi: 10.11833/j.issn.2095-0756.2011.06.021
    [16] YANG Xu-fei, LI Guo-xin.  Multiple aesthetical connotations of plants in Chinese classical gardens . Journal of Zhejiang A&F University, 2009, 26(2): 262-265.
    [17] WU Zhi-pei, WANG Chang-jin.  Aesthetic connotation of forest . Journal of Zhejiang A&F University, 2008, 25(6): 781-786.
    [18] WANG Xiao-ming, WANG Ke, QIN Sui-chu, JIANG Yu-gen.  Review of research on favorable environmental factors of Torreya grandis ‘Merrillii’ . Journal of Zhejiang A&F University, 2008, 25(3): 382-386.
    [19] WANG Yi-ping,  YU Zhen-dong,  WU Hong.  Main environmental factors for forestry insects that become important pests . Journal of Zhejiang A&F University, 2007, 24(6): 752-757.
    [20] ZHU Xue-nan, YING Qiu-shi, FENG You-lin, GAO Zhan.  Environment effect comparison of evergreen and deciduous street trees in winter . Journal of Zhejiang A&F University, 2002, 19(4): 399-402.
  • [1]
    ZHOU Sha, HUANG Yuefei, YU Bofu, et al. Effects of human activities on the eco-environment in the middle Heihe River Basin based on an extended environmental Kuznets curve model[J]. Ecol Eng, 2015, 76:14-26.
    [2]
    KONG Fanhua, YIN Haiwei, NAKAGOSHI N, et al. Simulating urban growth processes incorporating a potential model with spatial metrics[J]. Ecol Indic, 2012, 20(20):82-91.
    [3]
    LU Di. Ecological civilization construction strategy of East Lake famous scenic site of Wuhan under the background of rapid urbanization[J]. Chin Landscape Archit, 2015, 31(10):66-70.
    [5]
    PU Xiaorong, CHEN Qibing. Analyses on ecological environmental functions of bamboo in the urban[J]. J Bamboo Res, 2006, 25(3):59-62.
    [6]
    WANG Ling, ZHAO Liya. Ecological function of bamboo plants[J]. Resour Develop Mark, 2011, 27(4):342-343.
    [7]
    LI Zhiyong, XIAO Jianmin, ZHANG Xinping, et al. Evaluation on eco-environmental benefit of bamboo forest[J]. World Bamboo Rat, 2005, 3(4):15-17.
    [8]
    CHEN Shuanglin, XIAO Jianghua, XUE Jianhui. A review on hydrological effects of bamboo stand[J]. For Res, 2004, 17(3):399-404.
    [9]
    CHAN Y S. Mitigating surface urban heat island by a tree protection policy:a case study of The Woodland, Texas, USA[J]. Urban For Urban Green, 2013, 12(4):474-480.
    [10]
    GEORGI J N, DIMITRIOU D. The contribution of urban green spaces to the improvement of environment in cities:Case study of Chania, Greece[J]. Build Environ, 2015, 45(6):1401-1414.
    [11]
    TAN Qing, TONG Jun, JI Xiaomei, et al. Researches on capability of carbon fixation & oxygen production, and temperature decrease & humidity increase in 31 wild groundcover plants in Wuhan[J]. Chin Landscape Archit, 2010, 26(8):93-95.
    [12]
    LIU Jiaomei, LI Shuhua, YANG Zhifeng. Temperature and humidity effect of urban green spaces in Beijing in summer[J]. Chin J Ecol, 2008, 27(11):1972-1978.
    [13]
    BAO Chunsong, LOU Jianhua, ZENG Xinyu, et al. Effect of landscaping and greening on microclimate in Hangzhou City[J]. J Zhejiang Univ Agric Life Sci, 2001, 27(4):415-418.
    [14]
    WU Ying. Study on the Eco-efficiency and Landscape Application of 5 Species of Chinese Special Ornamental Bamboos[D]. Fuzhou:Fujian Agriculture and Forestry University, 2014.
    [15]
    YU Shuquan, FENG Jie. Study on the variation traits of different types of greenbelt humiture and air ions concentration in summer[J]. J Northeast Agric Univ, 2013, 44(5):66-74.
    [16]
    ZHANG Zhe, LÜYingmin, PAN Huitang. Cooling and humidifying effect of plant communities in subtropical urban parks[J]. Urban For Urban Green, 2013, 12(3):323-329.
    [17]
    PU Xiaorong. Studies on Ecological Function of Eight Ornamental Bamboos in Urban[D]. Chengdu:Sichuan Agricultural University, 2007.
    [18]
    ZHANG Ying. Research on the function of Ornamental Bamboos in Purifying Environment[D]. Fuzhou:Fujian Agriculture and Forestry University, 2013.
    [19]
    SONG Linghao, SONG Weimin, SHI Wei, et al. Health effects of atmospheric microbiological pollution on respiratory system among children in Shanghai[J]. J Environ Health, 2000, 17(3):135-138.
    [20]
    XIE Huiling, LI Shuren, YUAN Xiuyun, et al. Study on the disinfection of plant volatile secretion to the microorganism content in the air[J]. Acta Agric Univ Henan, 1999, 33(2):127-133.
    [21]
    DUDAREVA N, NEGRE F. Practical applications of research into the regulation of plant volatile emission[J]. Curr Opin Plant Biol, 2005, 8(1):113-118.
    [22]
    ZHOU Danhong. Effects of Four Garden Plants on Airborne Microbes[D]. Lin'an:Zhejiang A & F University, 2009.
    [23]
    CHANG Jie, REN Yuan, SHI Yan, et al. An inventory of BVOC emission for a subtropical urban-rural complex:Greater Taizhou Area[J]. Acta Ecol Sin, 2012, 32(2):641-649.
    [24]
    ZHANG Li, BAI Yanying, WANG Xiaoke, et al. Isoprene emission of bamboo and its implication to ozone level in region[J]. Acta Ecol Sin, 2002, 22(8):1339-1344.
    [25]
    WANG Xiaolei, WANG Cheng. Research status and prospects on functions of urban forests in regulating the air particulate matter[J]. Acta Ecol Sin, 2014, 34(8):1910-1921.
    [26]
    ZHANG Lingyi, QIN Hua. Research on progress of dust-retention for urban green space[J]. Chin Landscape Archit, 2015, 31(1):64-68.
    [27]
    GUO Hanwen, DING Guodong, ZHAO Yuanyuan, et al. Diurnal variations in the mass concentration of suspended particulate matter 2. 5(PM2. 5) of different urban green space[J]. Sci Soil Water Conserv, 2015, 31(1):64-68.
    [28]
    HONG Xi, NI Le, ZHANG Yinghui, et al. A study on dust retention capacity of 18 bamboos including Bambusa multiplex 'Fernleaf' etc.[J]. Fujian For, 2013, 29(1):25-29.
    [30]
    HONG Xi. Study on the Function of 18 Ornamental Bamboos in Purifying Environment[D]. Fuzhou:Fujian Agriculture and Forestry University, 2014.
    [31]
    SU Yongxian, HUANG Guangqing, CHEN Xiuzhi, et al. Research progress in the eco-environment effects of urban green spaces[J]. Acta Ecol Sin, 2011, 31(23):7287-7300.
    [32]
    ZHANG Ying, JIANG Jianli, HE Tianyou, et al. Study on the contents of sulfur of 3 bamboos[J]. J Fujian For Sci Technol, 2013, 40(2):60-63.
    [33]
    ZHANG Ying, HE Tianyou, CHEN Lingyan, et al. Comparison of chlorine in 4 bamboo species[J]. Subtrop Agric Res, 2012, 8(2):102-104.
    [34]
    LI Yinying. Study of Ralation of Plants and Air Negetive Ions[D]. Yangling:Northwest A & F University, 2007.
    [35]
    WU Chucai, HUANG Shengji. Determination of the anion content in the air in Taoyuandong National Forest Park and evaluation of the air quality[J]. J Cent-South For Coll, 1995, 15(1):9-12.
    [36]
    HU Weihua. Bamboo forest eco-environmental resources and its tourism development[J]. J Bamboo Res, 2010, 29(4):58-62.
    [37]
    ZENG Shucai, SU Zhiyao, CHEN Beiguang. Air negative ion concentrations and their affecting factors in greenbelts of Guangzhou[J]. Chin J Ecol, 2007, 26(7):1049-1053.
    [38]
    ZHANG Ye. Study on Negative Air Ion Concentration and Photosynthetic Characteristics of 18 Species of Ornamental Bamboos Such as Bambusa vulgaris[D]. Fuzhou:Fujian Agriculture and Forestry University, 2012.
    [39]
    ZHANG Jing. Ecological Health Effects of Moso Bamboo Recreation Forest in Huishan Area of Wuxi in the Fall[D]. Beijing:Chinese Academy of Forestry, 2012.
    [40]
    LIU Guohua, FU Bojie, FANG Jingyun. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J]. Acta Ecol Sin, 2000, 20(5):733-739.
    [41]
    XIE Ruilin. Carbon Storage and Its Spatial Distribution in Mianzhu Stands in the Bamboo Sea of Southern Sichuan[D]. Chengdu:Sichuan Agricultural University, 2013.
    [42]
    LI Zhengcai, FU Maoyi, XU Deying. Bamboo ecosystem and carbon dioxide sequestration[J]. J Bamboo Res, 2003, 22(4):1-6.
    [43]
    CHEN Xiangang, ZHANG Yiping, ZHANG Xiaoquan, et al. Carbon stock changes in bamboo stands in China over the last 50 years[J]. Acta Ecol Sin, 2008, 28(11):5218-5227.
    [44]
    ZHOU Guomo, JIANG Peikun. Density, storage and spatial distribution of carbon in Phyllostachy pubescens forest[J]. Sci Silv Sin, 2004, 40(6):20-24.
    [45]
    ZHANG Rui, SHEN Guicang, ZHANG Xudong, et al. Carbon stock and sequestration of a Phyllostachys edulis forest in Changning, Sichuan province[J]. Acta Ecol Sin, 2014, 34(13):3592-3601.
    [46]
    FANG Xi, TIAN Dalun, XIANG Wenhua. Density, storage and distribution of carbon in Chinese fir plantation at fast growing stage[J]. Sci Silv Sin, 2002, 38(3):14-19.
    [47]
    HU Haiqing, LUO Bizhen, WEI Shujing, et al. Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxing'an Mountains, China[J]. Chin J Plant Ecol, 2015, 39(2):140-158.
    [48]
    LI Jiang, HUANG Congde, ZHANG Guoqing. Density, storage and spatial distribution of carbon in Pleioblastus amarus forest returned from farmland[J]. J Zhejiang For Sci Technol, 2006, 26(4):1-5.
    [49]
    WANG Yongjun, HUANG Congde, WANG Xianshuai, et al. Carbon stock and spatial distribution characteristics of Neosinocalamus affinis forest ecosystem[J]. J Fujian For Sci Technol, 2009, 36(2):6-9, 87.
    [50]
    SONG Xinzhang, ZHOU Guomo, JIANG Hong, et al. Carbon sequestration by Chinese bamboo forests and their ecological benefits:assessment of potential, problems, and future challenges[J]. Environ Rev, 2011, 19(1):418-428.
    [51]
    TZOULAS K, KORPELA K, VENN S, et al. Promoting ecosystem and human health in urban areas using Green Infrastructure:a literature review[J]. Landscape Urban Plan, 2007, 81(3):167-178.
    [53]
    ZHANG Zhe, PAN Huitang. Research on the evaluation of garden plant landscapes[J]. J Zhejiang A & F Univ, 2011, 28(6):962-967.
    [54]
    CHANG C Y. Psychophysiological responses to different landscape settings and a comparison of cultural differences[J]. Acta Hortic, 2004, 639:57-65.
    [55]
    VERLARDE M D, FRY G, TVEIT M. Health effects of viewing landscapes:landscape types in environmental psychology[J]. Urban For Urban Green, 2007, 6(4):199-212.
    [56]
    MAO Qizheng, LUO Shanghua, MA Keming, et al. Research advance in ecological assessment of urban greenspace[J]. Acta Ecol Sin, 2012, 32(17):5589-5600.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(4784) PDF downloads(517) Cited by()

Related
Proportional views

Research progress on environmental effects of bamboo: a review

doi: 10.11833/j.issn.2095-0756.2017.02.024

Abstract: With degradation of the living environment, urban and rural areas have had an irreversible tendency bringing a series of serious consequences. At the same time, the public has expressed a strong desire to improve their living environment. Bamboo not only protects and improves the environment, but also promotes the physical and mental health of mankind through its eco-environmental functions. Aiming at the hotspots in environmental science research, and from the viewpoint of improving the microclimatic environment, purifying the air, releasing negative air ions, and fixing carbon, this paper summarizes recent research progress concerning the environmental effects of bamboo. Future work in this field should focus on expanding the scope of bamboo, improving research methods for quantitative experimentation on environmental effects, and establishing an evaluation system for bamboo ecological and environmental services.

ZHENG Jun, WU Renwu, SHI Yan, YANG Fan, YAN Hai, WU Yibo, REN Weitao, BAO Zhiyi. Research progress on environmental effects of bamboo: a review[J]. Journal of Zhejiang A&F University, 2017, 34(2): 374-380. doi: 10.11833/j.issn.2095-0756.2017.02.024
Citation: ZHENG Jun, WU Renwu, SHI Yan, YANG Fan, YAN Hai, WU Yibo, REN Weitao, BAO Zhiyi. Research progress on environmental effects of bamboo: a review[J]. Journal of Zhejiang A&F University, 2017, 34(2): 374-380. doi: 10.11833/j.issn.2095-0756.2017.02.024
  • 过去30多年来中国城镇化的不断推进,社会经济水平增长迅速,人们物质生活水平不断提高,但人类活动对自然生态系统产生了十分严重的破坏,“城市病”和“农村病”等问题日益突出[1-2]。近几年“生态园林城市”以及“美丽乡村”建设的提出与实践强调了人与环境的和谐相处,将城市与乡村的生态环境引向良性发展的趋势。中国把生态文明建设放在突出地位,并纳入社会主义现代化建设总体布局,表明了保护与改善环境的决心,也标志着中国生态文明建设跨入新时代的新征程[3]。竹类植物是重要的森林资源,在全世界约有70多属1 200余种,主要分布在热带及亚热带地区。中国的竹类植物资源丰富,分布广泛,现有竹类植物39属500余种,竹林面积为逾500万hm2,占到世界竹林总面积的1/4[4]。因竹类植物具有生长快、产量高、适应性强等特点,近年来被广泛的运用到城市和乡村绿地景观的营造中,针对竹类植物生态环境功能的研究也逐渐引起国内外学者的重视。直至目前,对竹类植物生态环境功能研究进展的阐述主要集中在涵养水源、保持水土、防风固沙以及保护生物多样性等生态功能方面[5-8],针对竹类植物在目前环境科学研究中的热点领域,如城市小气候环境、大气污染、碳循环等方面的综述还涉及较少。针对这些问题,作者主要从改善小气候环境、净化空气、释放空气负离子和固碳释氧等方面对竹类植物的主要环境效应研究进行综述。

  • 热岛效应作为一个显著的城市气候问题一直备受关注。已有的研究证实绿色植被能够通过遮光、蒸散作用降低空气温度,增加空气湿度,从而缓解热岛效应,改善城市小气候环境[9-10]。对于园林植物降温增湿效应的测定主要有2种方法。一是选取健康植株的叶片进行蒸腾速率值的测定,并利用公式计算树种的日降温增湿量;二是使用温湿度计等仪器,直接测定植物群落的空气温度和相对湿度[11-12]

    竹类植物群落具有较强的降温增湿能力:夏季时毛竹Phyllostachys edulis林比桂花Osmanthus fragrans林气温平均低0.54 ℃,相对湿度低4.6%[13];短穗竹Brachystachyum densiflorum和黄甜竹Acidosasa edulis在夏季的平均日降温可达3.14 ℃和2.91 ℃,平均日增湿可达3.50%和3.34%[14];夏季清晨和夜间等低温时段,雷竹Phyllostchys vilascens林的降温效果相较于杉木Cunninghamia lanceolata林、无患子Sapindus mukorossi-国槐Sophora japonica混交林、乐昌含笑Michelia chapensis-桂花混交林和银杏Ginkgo biloba-红枫Acer palmatum混交林最为显著,而增湿效果差异较小[15]。也有研究结果表明:复层植物群落、乔木-草地型植物群落、棕榈科Palmae植物群落的降温增湿能力均强于丛生竹林植物群落[16]

    不同季节、不同竹类植物种类对于局部小气候的改善作用存在差异。从不同季节而言,竹类植物在9月的降温增湿效应要好于3-4月[17]。从不同种类而言,竹类植物降温增湿能力与其单叶面积呈正相关,降温增湿效果较好的竹种有金镶玉竹Phyllostachys aureosulcata ‘Spectabilis’,凤尾竹Bambusa multiplex ‘Fernleaf’,宜兴苦竹Pleioblastus yixingensis,麻竹Dendrocalamus latiflorus和绿竹Bambusa oldhami[17-18]。对于竹类植物改善小气候环境的研究还处于起步阶段,研究的竹子种类不够丰富,降温增湿效应影响因子的研究还不够深入。

  • 空气中散布着大量空气微生物,主要由1 200余种细菌和放线菌,以及40 000余种真菌组成,其中存在着各种有害的致病菌,严重威胁着人类身体健康[19]。植物能够通过释放挥发性有机复合物(VOCs),如萜烯类、醚、醛、酮等物质,起到抑菌、杀菌的作用[20-21]。植物杀菌能力的测定主要通过水插枝法、琼脂平板扩散法、钢环法和管碟法测定其挥发物的杀菌作用[22]

    常杰等[23]对野外森林挥发性有机复合物的研究发现:毛竹林VOCs排放强度远高于马尾松Pinus massoniana林、杉木林和常绿阔叶林;张莉等[24]发现,毛竹林释放的VOCs中异戊二烯的排放量较大,且集中在夏季,说明毛竹林具有较强的杀菌潜力。周单红[22]比较了4种园林植物对空气微生物的影响,结果显示:竹林对空气细菌的抑菌率最高,杨梅Myrica rubra林与桂花林次之,樟树Cinnamomum camphora林最低,且它们都在夏季达到峰值,但4种林地对真菌和放线菌均起到了促进作用。

  • 空气颗粒物因不仅本身具有污染性,更是其他污染物的载体而成为国内外诸多城市空气的首要污染物[25]。植物能够通过停着、附着以及黏附3种方式净化空气中的粉尘污染[26]。植物滞尘能力的测定方法主要有2种,一种是使用粉尘仪对环境中可吸入颗粒物比例进行测定[27];另一种是通过差重法对一段时间内植物叶片单位面积的滞尘量进行测定[28]

    相关研究表明,竹林能够减少空气中50%左右的尘土,其滞尘能力平均为4.0~8.0 g·m-2[29]。不同竹种的滞尘量差异显著,灌木状株型的竹种滞尘能力明显强于乔木状株型的竹种;并且不同竹种在不同高度的滞尘效应也有较大差异,黄金间碧玉竹Bambusa vulgaris ‘Vittata’在离地面200 cm处滞尘效果最好,而阔叶箬竹Indocalamus latifolius在离地50~150 cm处滞尘能力最强[28]。还有研究发现,单株竹类植物的滞尘能力与其叶面积指数呈显著正相关,生物量和冠层结构等是影响竹类植物群落滞尘效应的重要因素[17]

  • 无机化学污染物是当今城市空气污染中分布广泛且危害较大的主要污染物,植物可以通过叶片以及枝条吸收有害气体,经氧化还原反应降解,再积累于体内或排出体外[30]。近年来国内外学者主要针对二氧化硫(SO2),氟化氢(HF)和氯气(Cl2)3种污染性气体进行研究[31]。研究表明:竹类植物对于空气中的硫元素与氯元素具有较强的吸收作用,对于二氧化硫与氯气的浓度变化具有指示作用,并且可以作为硫污染区与氯污染区的绿化植物。例如,凤凰竹Bambusa floribunda,凤尾竹,淡竹Phyllostachys glauca等对二氧化硫抗性较强,观音竹Bambusa multiplex var. riviereorum,花眉竹Bambusa longispiculata和霞山泥竹Bambusa xiashanensis具有较强的吸收二氧化硫能力,佛肚竹(Bambusa ventricosa和歪脚龙竹Dendrocalamus sinicus能够有效吸收氯化物来净化空气[5, 17, 32-33]

  • 空气负离子是空气中的各种分子在特殊情况下获得电子而带电所形成的,主要为氧气分子获得电子后形成的负离子又称为负氧离子[34]。某些植物因为叶片呈针状,曲率半径小,在大气电场所产生的电势差等作用下,使空气发生电离,增加空气负离子的浓度[35]。空气负离子浓度的测定主要采用空气负离子浓度测定仪,在研究对象内选取多个测试点进行多次测定。竹类植物具有较强的释放空气负离子功能,竹林中的空气负离子浓度是同一景区内水泥广场的3倍[36];曾曙才等[37]对广州主要公园绿地中典型绿地进行了测定,结果显示:空气负离子浓度大小顺序为竹林>小叶竹柏林>花卉区>隆缘桉林>苗圃、草地>住宅区。不同竹种在不同季节的空气负离子浓度日变化规律差异显著,簕竹属Bambusa竹种春季表现为双峰型,而夏季和秋季以U型为主;刚竹属Phyllostachys竹种春季和秋季以单峰型为主,夏季则表现为U型[38]。这种差异可能与竹类植物本身特性有关,因此,未来应积极开展叶面积指数、冠层结构等内在因素对竹类植物释放空气负离子功能的定量研究。外在环境因素对于竹类植物释放空气负离子功能也有显著影响,毛竹林秋季空气负离子浓度与温度、风速呈正相关,与相对湿度呈显著负相关[39]

  • 大气中二氧化碳浓度的急剧上升导致了温室效益等一系列环境问题。森林系统能够通过植物群落生物积累过程,将大气中碳固定于植物体和土壤中[40]。竹类植物主要通过直接与间接2种形式固碳,直接固碳是指竹类植物通过光合作用,在竹体内、林下土壤和林下凋落物积累碳元素;间接固碳是指通过工业加工使竹木被砍伐后依然保持了一定存量的碳物质[41]。目前,竹体内固碳能力主要通过生物量测算法以及绿量法进行测定[17]。经初步估算,目前中国竹林生态系统的碳储量是整个森林生态系统的4%~5%。在全球森林面积不断下降,而竹林面积却以3%的速度增长的背景下,竹林将是一个重要的并且不断增大的碳汇[42]。陈先刚等[43]对中国过去50 a竹林碳储量的估算结果也证明,中国竹林碳储量呈增加趋势,越到后期增长越快,并且碳储量将持续增加。

    竹林植被层储藏着大量的碳素。从不同植物固碳能力来说,竹类植物具有较大的优势。浙江临安毛竹林乔木层碳素年固定量为5.097 t·hm-2[44],四川南部毛竹林年固碳量为9.43 t·hm-2[45],均高于速生阶段杉木林(3.489 t·hm-2),幼龄阶段红松Pinus koraiensis林(1.300 t·hm-2),蒙古栎Quercus mongolica林(1.050 t·hm-2)和山杨Populus davidiana林(2.290 t·hm-2)等[46-47]。对不同竹类植物的固碳释氧效应分析发现:其吸收二氧化碳和释放氧气量与叶面积指数和绿量呈正相关,与净光合速率呈正比[30]。苦竹Pleioblastus amarus平均氧气释放量达到35 g·m-2·d-1,远高于其他竹种,其他释氧能力较强的竹种还有阔叶箬竹、黄槽竹Phyllostachys aureosulcata和佛肚竹等[17, 30]。不同竹类植物的不同器官碳素密度不同,但波动幅度不大。毛竹不同器官波动量为0.468 3~0.521 0 g·g-1,苦竹为0.348 5~0.518 6 g·g-1,慈竹Bambusa emeiensis介于0.460 0~0.510 5 g·g-1,一般均表现为竹秆与竹根的碳素密度高于竹枝与竹叶[44, 48-49]。竹林土壤是竹林生态系统中最大的碳库[4]。研究发现:大多数竹林中,土壤层的碳储量是地上植被层的2倍,占竹林生态系统碳储量的2/3[50]。目前,竹类植物固碳释氧效应较集中在野外竹林的研究上,对于城市绿地中竹类植物固碳释氧效应的研究开展较少,而城市绿地与人类的身心健康息息相关,因此针对不同竹种在城市绿地中所发挥的固碳释氧功能将是未来的研究重点。

  • 中国作为世界范围内竹类植物分布的重点区域,有大量国内学者开展了竹类植物的相关研究。总体来说,虽然对于竹类植物改善小气候环境、净化空气、释放空气负离子和固碳释氧等环境效应都进行了定量研究,但仅在固碳效应方面开展的较为深入,其他效应的研究还在起步阶段。通过对主要环境效应的综述发现,竹类植物相较于其他植物具有很强的固碳能力;也具有一定的改善小气候环境和释放空气负离子功能;在净化空气包括杀菌、滞尘以及吸收有害气体等方面存在很强的潜力,但目前对于这方面的研究较少。

    针对竹类植物环境效应研究存在的不足以及竹类植物生态景观发展的趋势,将来竹类植物环境效应的研究重点应从以下几个方面展开:①扩大竹类植物环境效应定量实验研究对象的范围。目前,因竹类植物环境效应定量实验的研究对象范围较小,涉及竹种较少,使得对于竹类植物生态环境功能的认知不够全面。随着对竹类植物生态环境功能重要性的逐步认识,扩大实验对象的范围,测定更多竹种的环境效应指标将是未来竹类植物环境效应的重点研究内容。②改进竹类植物环境效应定量实验的研究方法。通过对已有的竹类植物生态环境功能的测定研究发现,在实验环境、测定方法等不统一的情况下,同种植物发挥的环境效应以及其影响因素差异显著[51],因此,如何对竹类植物环境效应各项指标进行科学、准确的测定是一个迫切的问题,并且,目前的实验模式较为传统、固定,缺乏创新,难以将实验结果与人类健康形成直接关系,因此加强与多学科的耦合运用必将成为未来实验研究的主要趋势。例如,在设计实验时,可以通过主观评价法:包括语义分析法(SD法)、心境状态量表(POMS)以及状态特质焦虑问卷(STAI)等[52-53],以及客观评价法,利用电子仪器观测被试者生理指标的变化,主要包括脑电波、心率、呼吸速率、血压、肌电值、皮肤温度等[54-55],对人体心理以及生理变化进行测定分析,从而促进人类对竹类植物生态环境功能重要性的认知,为竹类植物的生态环境应用提供理论支持。③建立竹类植物生态环境服务的评价体系。目前,对于植被生态服务量化评价方法十分多样[56],因此,通过实验数据建立模型,科学准确地反应竹类植物环境效应,并形成生态环境服务评价体系,将更有效地为优势竹类植物群落筛选提供支持,提高其生态景观效益,并且丰富城市以及乡村绿地生态服务及应用理论。

Reference (56)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return