-
竹材具有与木材相似的质感,且具有比木材生长快、韧性好等优点。近年来竹材在传统木材应用领域内被广泛利用[1]。作为一种天然生物材料,其自身的结构决定了竹材具有较强的湿胀干缩性,这影响了竹材的尺寸稳定性,也使得竹材制品在使用时易产生开裂、变形等缺陷[2]。浸润性与材料的疏水性有关,是固体表面一个重要的特征。影响材料表面浸润性的因素既有内在的如其微观结构、化学组成[3-8],又有外在的因素如光、电、热以及溶剂等[9-19]。自然界经过数十亿年的长期进化,生物表面的微纳米多尺度结构可赋予材料表面特殊的浸润性能,如超疏水、自清洁、超亲水、高黏附力和光反射等[20-21]。荷Nelumbo nucifera叶表面的纳米乳凸结构使其具有超疏水、自清洁特性,水滴在其表面有较大的接触角和极小的滚动角,微小的倾角即可使水珠滚动离开荷叶表面,生物体表面具有此类特征的现象被称为“荷叶效应”[22-24];此外,一些生物体表面具有与荷叶自清洁相反的特性,如月季Rosa chinensis花瓣表面不仅具有较大的接触角,而且还有较大的接触角滞后,与水有很强的黏附力,即使将月季花瓣旋转90.0°甚至180.0°,水珠仍可稳固地钉驻在花瓣表面,展现出超疏水及高黏附特性。这是因为月季花瓣的乳突阵列状微米结构和乳突顶部凹槽状纳米褶皱结构而产生的具有层次的微纳结构粗糙表面,通常将表面具有此类现象定义为“花瓣效应”[25-26]。由于多数生物结构非常精细复杂,因此,直接采用传统的人工方法很难制备出类似的结构。软印刷技术[27]是一种仿生领域广泛应用的方法,是以弹性体模具为核心,用模具转移图形结构至特定基片的表面。受生物启发,本研究利用软印刷技术[28]以新鲜月季花瓣为模板,聚二甲基硅氧烷(PDMS)为印章,经2次复形将月季花瓣表面的微观形貌转印在竹材表面,从而使竹材具有类月季花瓣的超疏水高黏附特性,可解决竹材在加工或使用时因吸水性而产生开裂、变形等缺陷可大大延长竹材的使用寿命和增加其附加值。
HTML
[1] | 于文吉, 江泽慧, 叶克林. 竹材特性研究及其进展[J]. 世界林业研究, 2002, 15(2): 50-55. | YU Wenji, JIANG Zehui, YE Kelin. Characteristics research of bamboo and its development[J]. World For Res, 2002, 15(2): 50-55. |
[2] | 田根林, 余雁, 王戈. 竹材表面超疏水改性的初步研究[J]. 北京林业大学学报, 2010, 32(3): 166-169. | TIAN Genlin, YU Yan, WANG Ge. Preliminary study on super-hydrophobic modification of bamboo[J]. J Beijing For Univ, 2010, 32(3): 166-169. |
[3] | TADA H, NAGAYAMA H. Chemical-vapor surface modification of porous-glass with fluoroalky l-functionalized silanes (2) resistance to water[J]. Langmuir, 1995, 11(1): 136-142. doi: 10.1021/la00001a025 | |
[4] | WU Junhua, MATE C M. Contact angle measurements of lubricated silicon wafers and hydrogenated carbon overcoats[J]. Langmuir, 1998, 14(17): 4929-4934. doi: 10.1021/la980189g | |
[5] | ABBOTT N L, FOLKERS J P, WHITESIDES G M. Manipulation of the wettability of surfaces on the 0.1-to 1-micrometer scale through micromachining and molecular self-assembly[J]. Science, 1992, 257(5075): 1380-1382. doi: 10.1126/science.257.5075.1380 | |
[6] | ROSSIER J S, BERCIER P, SCHWARZ A. Topography, crystallinity and wettability of photoablated pet surface[J]. Langmuir, 1999, 15(15): 5273-5278. | |
[7] | HUI M H, BLUNT M J. Effects of wettability on three-phase flow in porous media[J]. J Phys Chem B, 2000, 104(16): 3833-3845. doi: 10.1021/jp9933222 | |
[8] | FUKUSHIMA H, SEKI H, NISHIKAWA A T. Microstructure, wettability, and thermal stability of semifluorinated self-assembled monolayers (SAMs) on gold[J]. J Phys Chem B, 2000, 104(31): 7417-7423. doi: 10.1021/jp0003499 | |
[9] | SASAKI H, SHOUJI M. Control of hydrophobic character of super-water-repellent surface by UV irradiation[J]. Chem Lett, 1998, 27(4): 293-294. doi: 10.1246/cl.1998.293 | |
[10] | VALLET M, BERGE B, VOVELLE L. Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films[J]. Polymer, 1996, 37(12): 2465-2470. doi: 10.1016/0032-3861(96)85360-2 | |
[11] | ABBOTT N L, WHITESIDES G M. Potential-dependent wetting of aqueous solutions on self-assembled monolayers formed from 15-(ferrocenylcarbonyl) pentadecanethiol on gold[J]. Langmuir, 1994, 10(5): 1493-1497. doi: 10.1021/la00017a029 | |
[12] | SCHNEEMILCH M, WELTERS W J J, HAYES R A. Electrically induced changes in dynamic wettability[J]. Langmuir, 2000, 16(6): 2924-2927. doi: 10.1021/la990524g | |
[13] | VERHEIJEN H J J, PRINS M W J. Reversible electrowetting and trapping of charge: model and experiments[J]. Langmuir, 1999, 15(20): 6616-6620. doi: 10.1021/la990548n | |
[14] | GORMAN C B, BIEBUYCK H A, WHITESIDES G M. Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer[J]. Langmuir, 1995, 11(6): 2242-2246. doi: 10.1021/la00006a063 | |
[15] | YAKUSHIJI T, SAKAI K, KIKUCHI A. Graft architectural effects on thermoresponsive wettability changes of poly(N-isopropylacrylamide)-modified surfaces[J]. Langmuir, 1998, 14(16): 4657-4662. doi: 10.1021/la980090+ | |
[16] | MAMAN M, PONSINET V. Wettability of magnetically susceptible surfaces[J]. Langmuir, 1998, 15(1): 259-265. | |
[17] | ABBOTT S, RALSTON J, REYNOLDS G. Reversible wettability of photoresponsive pyrimidine-coated surfaces[J]. Langmuir, 1999, 15(26): 8923-8928. doi: 10.1021/la990558o | |
[18] | SUN Rende, NAKAJIMA A, FUJISHIMA A. Photoinduced surface wettability conversion of ZnO and TiO2 thin films[J]. J Phys Chem B, 2001, 105(10): 1984-1990. doi: 10.1021/jp002525j | |
[19] | 江雷, 冯林.生智能纳米界面材料[M].北京:化学工业出版社, 2007. | |
[20] | 邱宇辰, 刘克松, 江雷. 花生叶表面的高黏附超疏水特性研究及其仿生制备[J]. 中国科学:化学, 2011, 41(2): 403-408. | QIU Yuchen, LIU Kesong, JIANG Lei. Peanut leaves with high adhesive superhydrophobicity and their biomimetic materials[J]. Sci Sin Chim, 2011, 41(2): 403-408. |
[21] | 王女, 赵勇, 江雷. 受生物启发的多尺度微/纳米结构材料[J]. 高等学校化学学报, 2011, 32(3): 421-428. | WANG Nü, ZHAO Yong, JIANG Lei. Bioinspired hierarchical micro/nanostructure materials[J]. Chem J Chin Univ, 2011, 32(3): 421-428. |
[22] | MARMUR A. The lotus effect: superhydrophobicity and metastability[J]. Langmuir Acs J Surf Coll, 2004, 20(9): 3517-3519. doi: 10.1021/la036369u | |
[23] | GAO Lichao, McCARTHY T J. "Artificial lotus leaf" prepared using a 1945 patent and a commercial textile[J]. Langmuir, 2006, 22(14): 5998-6000. doi: 10.1021/la061237x | |
[24] | ERBIL H Y, DEMIREL A L, AVCI Y. Transformation of a simple plastic into a superhydrophobic surface[J]. Science, 2003, 299(5611): 1377-1380. doi: 10.1126/science.1078365 | |
[25] | FENG Lin, ZHANG Yanan, XI Jinming. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir Acs J Surf Coll, 2008, 24(8): 4114-4119. doi: 10.1021/la703821h | |
[26] | CHANG Fengming, HONG S J, SHENG Y J. High contact angle hysteresis of superhydrophobic surfaces: hydrophobic defects[J]. Appl Phys Lett, 2009, 95(6): 064102-. doi: 10.1063/1.3204006 | |
[27] | XIA Younan, WHITESIDES G M. Soft lithography[J]. Angew Chem Int Ed, 1998, 37(5): 550-575. doi: 10.1002/(ISSN)1521-3773 | |
[28] | GATES B D, WHITESIDES G M. Replication of vertical features smaller than 2nm by soft lithography[J]. J Amer Chem Soc, 2003, 125(49): 14986-14987. doi: 10.1021/ja0367647 |