CAO Penghe, XU Xuan, SUN Jiejie, et al. Effects of stand density and spacing configuration on the non-structural carbohydrate in different organs of poplar[J]. Journal of Zhejiang A&F University, 2022, 39(2): 297-306. DOI: 10.11833/j.issn.2095-0756.20210223
Citation: ZHANG Xinyu, DONG Yufeng, LIU Peiying, et al. Magnetic treatment on rootings of semi lignified twigs of Fraxinus velutina[J]. Journal of Zhejiang A&F University, 2017, 34(5): 949-954. DOI: 10.11833/j.issn.2095-0756.2017.05.024

Magnetic treatment on rootings of semi lignified twigs of Fraxinus velutina

DOI: 10.11833/j.issn.2095-0756.2017.05.024
  • Received Date: 2016-09-23
  • Rev Recd Date: 2016-10-25
  • Publish Date: 2017-10-20
  • This research explored the effect of magnets on the rooting of cutting slips, young seedling growth and biomass accumulation, and nourishing matter content in roots. Using a current year, sprouting branchlet from a cloned 3-year-old female Fraxinus velutina 'Lula-5' tree as cuttage material and three treatments of magnetized water spray (MW), [magnetized water spray (MW) + magnetization blanket (MR)], and non-magnetized water spray (NMW) (the control) an experiment was carried out with a randomized complete block design trial. Results showed that: (1) the cuttage segment rootage ratio and the root effective index for (MW + MR) were greater and highly significant (P < 0.01) compared to the MW and NMW treatments (control). The average diameter and length growth of young sprouting shoots in the (MW + MR) treatment were also significantly higher than MW and NMW treatments (P < 0.05). (2) The fine root length, diameter, surface area, and volume showed no difference for the three treatments; whereas, all root morphology indexes in (MW + MR) and MW treatments were significantly higher than the NMW treatment (P < 0.05). (3) Compared to the control, nutrient content of N, P, K, Ca, Mg, Fe, Mn, Zn, Cu, and soluble sugar in the other two treatments was greater and highly significant (P < 0.01), but Na was lower and highly significant (P < 0.01). In conclusion, magnetization was beneficial for enhancement of the rooting rate, for promoting root growth as well as forbiomass and nutrient accumulation.
  • [1] SONG Peng, LI Hui, JIANG Houlong, ZHAO Pengyu, LI Lixiang, ZHAO Biao, ZHANG Jun.  Effect of biochar-based fertilizer on root development, yield and quality of flue-cured tobacco in Chongqing tobacco growing area . Journal of Zhejiang A&F University, 2023, 40(6): 1232-1240. doi: 10.11833/j.issn.2095-0756.20230161
    [2] ZHU Xiaoyu, TONG Wanwan, ZHAO Chu, TIAN Ru’nan.  Root formation and anatomical structure of Ilex × altaclerensis ‘Belgica Aurea’ stem cuttings . Journal of Zhejiang A&F University, 2022, 39(2): 347-355. doi: 10.11833/j.issn.2095-0756.20210283
    [3] BI Sisheng, ZHANG Zhihao, LIU Xiumei, ZHU Hong, MENG Shiyuan, ZHANG Ying, WANG Huatian.  Physiological characteristics of hardwood cuttings from mulberry trees with magnetic field conditions . Journal of Zhejiang A&F University, 2018, 35(6): 1182-1188. doi: 10.11833/j.issn.2095-0756.2018.06.024
    [4] JIN Houding, YU Weiwu, ZENG Yanru, XIANG Meiyun, DAI Wensheng, DANG Wanyu.  Cutting-based propagation in Torreya grandis 'Merrillii' . Journal of Zhejiang A&F University, 2017, 34(1): 185-191. doi: 10.11833/j.issn.2095-0756.2017.01.025
    [5] TENG Fei, LIU Yong, WANG Yan, HU Jiawei, SUN Qiaoyu, WAN Fangfang, ZHANG Jin.  Sub-irrigation with different container types and sizes for containerized root growth of Pinus tabuliformis seedlings . Journal of Zhejiang A&F University, 2017, 34(3): 449-458. doi: 10.11833/j.issn.2095-0756.2017.03.010
    [6] BAI Lei, LI Rongsheng, YIN Guangtian, YANG Jinchang, ZOU Wentao.  Rooting factors and optimization for propagation of Mytilaria laosensis cuttings . Journal of Zhejiang A&F University, 2016, 33(3): 543-550. doi: 10.11833/j.issn.2095-0756.2016.03.025
    [7] WANG Rui, CHEN Yongzhong, PENG Shaofeng, WANG Xiangnan, CHEN Longsheng, LUO Jian.  Physiological and biochemical characteristics of Camellia oleifera during root cutting establishment . Journal of Zhejiang A&F University, 2013, 30(4): 615-619. doi: 10.11833/j.issn.2095-0756.2013.04.023
    [8] LI Da-wei, GUO Su-juan, ZHAI Ming-pu.  Establishing root cuttings of Corylus heterophylla × Corylus avellana and Corylus avellana‘Barcelona’ . Journal of Zhejiang A&F University, 2009, 26(1): 89-94.
    [9] HUANG You-jun, WANG Zheng-jia, ZHENG Bing-song, HUANG Jian-qin.  Experiment on root cutting of Carya cathayensis . Journal of Zhejiang A&F University, 2006, 23(2): 228-231.
    [10] ZHANG Xiao-ping, FANG Yan-ming.  Comparison of cuttage characters of Liriondendron chinense ×L . tulipifera in different seasons . Journal of Zhejiang A&F University, 2003, 20(3): 249-253.
    [11] ZHANG Ji-mao, CHEN Wen-rong, CHEN Neng-de, HE Zhi-bin, CHEN Qiao-nu, ZHENG Wen.  Cutting test on Cunninghamia konishii cuttage in artificial conditions . Journal of Zhejiang A&F University, 2001, 18(2): 139-143.
    [12] WENG Pu-jin, WANG Kui-hong, HE Qi-jiang, WU Rong.  Absorbing ability of root and rhizome system of Phyllostachys pubescens shoot forest at different ages . Journal of Zhejiang A&F University, 2001, 18(2): 136-138.
    [13] DING Ai-fang, YU Yuan-chun, CHEN Ping-ping.  Effects of aluminum in soil on the tree root growth . Journal of Zhejiang A&F University, 2001, 18(2): 119-122.
    [14] CHEN Deng-xiong, CAI Bang-ping, DONG Jian-wen, CHENG Mu-lin.  Cutting propagation techniques for Quisqualis indica . Journal of Zhejiang A&F University, 2000, 17(4): 384-388.
    [15] YAN Yi-lun, YAN Qi-peng, HU Li-zhong.  Physiological characteristics of Cunninghamia lanceolata and Sassafras tsumu roots in mixed forests and pure forests . Journal of Zhejiang A&F University, 2000, 17(1): 20-23.
    [16] Cai Jianguo, Shen Xikang, Zhang Ruohui, Lin Dingbo, Lu Yuanyuan.  Application of stereo-device for cuttage and plant growth regulators on cutting propagation of Ginkgo biloba . Journal of Zhejiang A&F University, 1998, 15(4): 340-346.
    [17] Qian Lianfang, Li Zhangju, Qian Yongtao, Gao Hong.  Ecological Characters and Roots’Anatomical Structure of 4 Speeies of sageretia . Journal of Zhejiang A&F University, 1996, 13(1): 34-40.
    [18] Zhang Ruohui, Liu Hong'e, Shen Xikang, ZhouCheng, Ye Shufang.  Cutting Propagation of 26 Subtropical Tree Species. . Journal of Zhejiang A&F University, 1994, 11(2): 116-120.
    [19] Jiang Peikun, JiangQiuyi, Xu Qiufang, Qian Xinbiao, Jin Lei..  Study on Root Exudates of Chinese Fir Seedling Using Carbon 14. . Journal of Zhejiang A&F University, 1994, 11(3): 241-246.
    [20] Qian Lianfang, Li Zhangju, Chi Fanghe, Ni Lifen, Wang Wenchao.  Hardwood Cuttage of Ginkgo and Its Organ Initiation . Journal of Zhejiang A&F University, 1993, 10(2): 125-132.
  • [3]
    QI Jianshuang, LU Caixia, YUE Runqing, et al. Effect of composite magnetic field on seeds germination and seedling growth and development of maize [J]. Chin Agric Sci Bull, 2015, 31(27): 41-45.
    [4]
    ZHOU Sheng, ZHANG Ruixi, CHU Guixin, et al. Effects of magnetized water in agriculture[J]. Agric Eng, 2012, 2(6): 44-48.
    [5]
    BELYAVSKAYA N A. Biological effects due to weak magnetic field on plants [J]. Adv Space Res, 2004, 34(7): 1566-1574.
    [6]
    BELYAVSKAYA N A. Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields [J]. Adv Space Res, 2001, 28(4): 645-650.
    [7]
    HOZAY M, QADOS A M S A. Irrigationg with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicer arietinum L.) [J]. Agric Biol J North Am, 2010, 1(4): 671-676.
    [8]
    XIAO Wang, YE Suqin, WANG Yuling, et al. Effects of seeds soaking in magnetized water on seed germination and physiological characteristics of watermelon seedlings [J]. Biotechnology, 2003, 13(6): 39-41.
    [9]
    SELIM A F H, EL-NADY M F. Physio-anatomical responses of drought stressed tomato plants to magnetic field [J]. Acta Astronaut, 2011, 69(7/8): 387-396.
    [10]
    LIN Jian, ZHANG Guocai, BI Bing. Effect of magnetized water treatment on extracellular enzyme activities and nutritive value of pleurotus eryngii [J]. J Northeast For Univ, 2009, 37(8): 59-61.
    [11]
    QIU Nianwei, TAN Tinghong, DAI Hua, et al. Biological effects of magnetized water on seed germination, seedling growth and physiological characteristics of wheat [J]. Plant Physiol J, 2011, 47(8): 803-810.
    [12]
    PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North Amican trees [J]. Ecol Monogr, 2002, 72(2): 293-309.
    [13]
    JIN Jingchun, HU Menghong, ZHANG Songzhi, et al. Rooting capability of twigs of Picea abies[J]. J Northwest For Univ, 2009, 24(5): 70-73.
    [16]
    WANG Yanhong, YANG Xiaogang. Magnetized water treatment technology and its application in agriculture[J]. Agric Eng, 2014, 4(5): 74-77.
    [17]
    BELYAVSKAYA N A. Biological effects due to weak magnetic field on plants [J]. Adv Space Res, 2004, 34(7): 1566-1574.
    [18]
    LIU Xiumei, WANG Lu, WANG Huatian, et al. Effects of magnetic brackish water irrigation on composition of soil exchangeable base ions [J]. J Soil Water Conserv, 2016, 30(2): 266-271.
    [19]
    LIU Xiumei, WANG Huatian, WANG Yanping, et al. Analysis of magnetic salinity water irrigation promoting growth and photosynthetic characterisitcs of Populus × euramericanna 'Neva' [J]. Trans Chin Soc Agric Eng, 2016, 32(1): 1-7.
    [20]
    WAN Xiao, LIU Xiumei, WANG Huatian, et al. Effect of magnetic treatment of salty irrigation water on physiological and growth characteristics of potted Fraxinus velutina seedlings [J]. Sci Silv Sin, 2016, 52(2): 120-126.
    [21]
    MAHESHWARI B L, GREWAL H S. Magnetic treatment of irrigation water: its effects on vegetable crop yield and water productivity [J]. Agric Water Manage, 2009, 96(8): 1229-1236.
    [22]
    ZHU Jie. Study on the biological effects of magnetic fields and its possible mechanisms[J]. Biomagnetism, 2005, 5(1): 26-29.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.8 %FULLTEXT: 21.8 %META: 76.0 %META: 76.0 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.8 %其他: 8.8 %其他: 1.1 %其他: 1.1 %Australia: 0.2 %Australia: 0.2 %Canton: 0.2 %Canton: 0.2 %China: 0.9 %China: 0.9 %Nahant: 0.2 %Nahant: 0.2 %Philippines: 0.2 %Philippines: 0.2 %United States: 4.2 %United States: 4.2 %Wixom: 0.2 %Wixom: 0.2 %[]: 0.6 %[]: 0.6 %上海: 2.7 %上海: 2.7 %东莞: 0.1 %东莞: 0.1 %临汾: 0.1 %临汾: 0.1 %丽水: 0.1 %丽水: 0.1 %伊犁: 0.1 %伊犁: 0.1 %休斯敦: 0.2 %休斯敦: 0.2 %伦敦: 0.5 %伦敦: 0.5 %佐治亚: 0.2 %佐治亚: 0.2 %保定: 0.1 %保定: 0.1 %兰州: 0.1 %兰州: 0.1 %加利福尼亚州: 0.3 %加利福尼亚州: 0.3 %加拿大魁北克泰勒博恩: 0.2 %加拿大魁北克泰勒博恩: 0.2 %北京: 8.3 %北京: 8.3 %十堰: 0.1 %十堰: 0.1 %南平: 0.1 %南平: 0.1 %南昌: 0.1 %南昌: 0.1 %印度: 0.1 %印度: 0.1 %厦门: 0.1 %厦门: 0.1 %吕梁: 0.2 %吕梁: 0.2 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %坦佩: 0.3 %坦佩: 0.3 %太原: 0.1 %太原: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.1 %宁波: 0.1 %宣城: 0.1 %宣城: 0.1 %密蘇里城: 0.7 %密蘇里城: 0.7 %布雷登顿: 0.2 %布雷登顿: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 3.9 %张家口: 3.9 %成都: 0.5 %成都: 0.5 %扬州: 0.1 %扬州: 0.1 %拉雷多: 0.2 %拉雷多: 0.2 %旧金山: 0.2 %旧金山: 0.2 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.7 %杭州: 1.7 %格兰特县: 0.3 %格兰特县: 0.3 %格拉斯哥: 0.1 %格拉斯哥: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 0.2 %武汉: 0.2 %波尔多: 0.2 %波尔多: 0.2 %深圳: 0.2 %深圳: 0.2 %温哥华: 0.1 %温哥华: 0.1 %温州: 0.2 %温州: 0.2 %漯河: 0.1 %漯河: 0.1 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽瓦克: 0.1 %纽瓦克: 0.1 %芒廷维尤: 8.9 %芒廷维尤: 8.9 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.2 %苏州: 0.2 %茂名: 0.1 %茂名: 0.1 %莫斯科: 0.2 %莫斯科: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 45.3 %西宁: 45.3 %西安: 0.3 %西安: 0.3 %诺沃克: 0.2 %诺沃克: 0.2 %贝克斯菲尔德: 0.1 %贝克斯菲尔德: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 1.6 %运城: 1.6 %遂宁: 0.2 %遂宁: 0.2 %郑州: 0.8 %郑州: 0.8 %重庆: 0.2 %重庆: 0.2 %金华: 0.2 %金华: 0.2 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.2 %阳泉: 0.2 %雅安: 0.2 %雅安: 0.2 %青岛: 0.2 %青岛: 0.2 %其他其他AustraliaCantonChinaNahantPhilippinesUnited StatesWixom[]上海东莞临汾丽水伊犁休斯敦伦敦佐治亚保定兰州加利福尼亚州加拿大魁北克泰勒博恩北京十堰南平南昌印度厦门吕梁呼和浩特哈尔滨哥伦布嘉兴坦佩太原娄底宁波宣城密蘇里城布雷登顿广州张家口成都扬州拉雷多旧金山晋城朝阳杭州格兰特县格拉斯哥桂林武汉波尔多深圳温哥华温州漯河石家庄秦皇岛纽瓦克芒廷维尤芝加哥苏州茂名莫斯科襄阳西宁西安诺沃克贝克斯菲尔德贵阳运城遂宁郑州重庆金华长沙长治阳泉雅安青岛Highcharts.com
  • Cited by

    Periodical cited type(14)

    1. 米实,白飞远,湛金龙. 吉林四平杨树种植及管理技术. 现代农村科技. 2025(02): 59-60 .
    2. 李帆,田娜玲,余殿,杨君珑. 林木非结构性碳水化合物的分布特征及影响因素研究进展. 温带林业研究. 2025(01): 39-44+62 .
    3. 牛鉴祺,吕彦飞,王树力. 抚育间伐对杨桦次生林非结构性碳水化合物质量分数和碳氮磷生态化学计量特征的影响. 东北林业大学学报. 2024(06): 51-57 .
    4. 吕彦飞,牛鉴祺,王树力. 抚育间伐对小黑杨人工林非结构性碳和氮磷钾生态化学计量特征的影响. 森林工程. 2024(05): 62-73 .
    5. 王凯,邢仕奇,张日升,刘建华. 不同密度下樟子松非结构性碳水化合物变化规律. 生态学杂志. 2024(09): 2607-2614 .
    6. 张新民. 杨树的栽培技术与抚育管理方法研究. 农业开发与装备. 2024(10): 211-213 .
    7. 杨豆,刘超华,李凤巧,唐罗忠,田野,方升佐,李孝刚. 苏北平原2个密度杨树人工林土壤团聚体及固碳差异. 林业科学. 2024(10): 21-28 .
    8. 植可翔,关欣,黄苛,王娇,杨佳敏,张伟东,陈龙池,杨庆朋. 杉木不同组织/器官非结构性碳水化合物含量及其对修枝的响应. 生态学报. 2024(20): 9391-9400 .
    9. 姚宇恒,陈洁,南丽丽,汪堃,何海鹏. 红豆草非结构性碳水化合物含量对低磷胁迫的响应. 草原与草坪. 2024(06): 260-266 .
    10. 韩亚飞,徐昪,江超,闵旭峰. 杨树栽培技术——以山东济宁地区为例. 现代园艺. 2023(08): 35-37 .
    11. 赵阳. 不同林分密度对杨树人工林生长及土壤理化性质的影响. 基层农技推广. 2023(05): 42-45 .
    12. 蔡宗明,邓智文,李东宝,李士坤,陈礼光,温伟庆,郑郁善,荣俊冬. 带状采伐对毛竹生物量和根系非结构性碳水化合物的影响. 中南林业科技大学学报. 2023(04): 33-42 .
    13. 杨蕾,赵彩鸿,邢鸿林,杨玲,沈海龙. 疏伐强度对红皮云杉人工林林木生长和林分蓄积的影响. 西北林学院学报. 2023(04): 207-213 .
    14. 孙圆,夏庆哲,温小荣,蒋佳文,周慧琳. 杨树人工林无损年轮计量特征气象响应分析. 农业工程学报. 2023(15): 133-143 .

    Other cited types(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  / Tables(2)

Article views(2896) PDF downloads(241) Cited by(22)

Related
Proportional views

Magnetic treatment on rootings of semi lignified twigs of Fraxinus velutina

doi: 10.11833/j.issn.2095-0756.2017.05.024

Abstract: This research explored the effect of magnets on the rooting of cutting slips, young seedling growth and biomass accumulation, and nourishing matter content in roots. Using a current year, sprouting branchlet from a cloned 3-year-old female Fraxinus velutina 'Lula-5' tree as cuttage material and three treatments of magnetized water spray (MW), [magnetized water spray (MW) + magnetization blanket (MR)], and non-magnetized water spray (NMW) (the control) an experiment was carried out with a randomized complete block design trial. Results showed that: (1) the cuttage segment rootage ratio and the root effective index for (MW + MR) were greater and highly significant (P < 0.01) compared to the MW and NMW treatments (control). The average diameter and length growth of young sprouting shoots in the (MW + MR) treatment were also significantly higher than MW and NMW treatments (P < 0.05). (2) The fine root length, diameter, surface area, and volume showed no difference for the three treatments; whereas, all root morphology indexes in (MW + MR) and MW treatments were significantly higher than the NMW treatment (P < 0.05). (3) Compared to the control, nutrient content of N, P, K, Ca, Mg, Fe, Mn, Zn, Cu, and soluble sugar in the other two treatments was greater and highly significant (P < 0.01), but Na was lower and highly significant (P < 0.01). In conclusion, magnetization was beneficial for enhancement of the rooting rate, for promoting root growth as well as forbiomass and nutrient accumulation.

CAO Penghe, XU Xuan, SUN Jiejie, et al. Effects of stand density and spacing configuration on the non-structural carbohydrate in different organs of poplar[J]. Journal of Zhejiang A&F University, 2022, 39(2): 297-306. DOI: 10.11833/j.issn.2095-0756.20210223
Citation: ZHANG Xinyu, DONG Yufeng, LIU Peiying, et al. Magnetic treatment on rootings of semi lignified twigs of Fraxinus velutina[J]. Journal of Zhejiang A&F University, 2017, 34(5): 949-954. DOI: 10.11833/j.issn.2095-0756.2017.05.024
  • 扦插育苗是将离体植物营养器官如根、茎(枝)、叶等插入基质中,利用植物的再生能力,经过人工培育使之发育成完整新植株的繁育方法。扦插育苗方法简单,取材方便,能够保持母本优良性状并实现快速批量繁殖,是木本植物的重要繁育方法之一,但很多树种因生根困难而无法利用扦插进行繁殖[1]。以往扦插育苗主要应用于较易生根的树种,近年来针对难生根树种的生根机制和生根技术等方面开展了大量研究,发现通过插穗消毒处理、流水冲洗生根抑制物质、黄化处理及激素处理、调控环境温湿度等技术措施[2],能够大大提高难生根树种的扦插生根率。生物磁学(biomagnetism)是研究外磁场对生物体的影响以及生物磁性与生命活动关系的磁学和生物学相互渗透的新兴交叉学科。随着生物磁学在农业、医学、环保、食品以及生物工程等领域的广泛应用,生物磁学已经得到国内外各领域专家的重视,这为揭示生物磁学机制提供了有利的证据。研究发现磁化处理能够促进种子萌发[3]、提高作物产量[4]、促进植物细胞分裂[5-6]、对植物的生理生化反应也有一定的影响[7-11]。目前,磁化处理对于木本植物扦插生根的相关研究却很少见,在促进难生根树种生根、根系发育和扦插苗生长及生理特性方面,仍需做大量研究工作。绒毛白蜡Fraxinus velutina具有抗旱、耐涝、耐盐碱、速生、材性好、树姿美观等特点,广泛用于盐碱地造林和城乡园林绿化。绒毛白蜡优良无性系‘鲁蜡5号’Fraxinus velutina ‘Lula-5’耐旱性强、生长迅速、观赏价值高,然而由于其扦插繁殖困难,限制了该优良品种的快速繁育和大面积推广应用。本研究采用磁处理技术对绒毛白蜡新品种插穗进行处理,以探讨磁处理技术在难生根树种扦插育苗中的应用前景。

  • 试验材料为绒毛白蜡优良无性系‘鲁蜡5号’,采自山东省济南市德林种苗有限公司3年生采穗圃。2015年8月下旬取采穗母树上无病虫害的当年生半木质化健壮新梢,剪取插穗长度12~15 cm,粗度1.0~1.2 cm,在芽上1 cm剪成平口,下切口剪成马耳形,保持切口平滑。保留2叶片并剪成半叶,将插穗在质量浓度为1.0 g·L-1高锰酸钾溶液中消毒0.5 h,然后将插穗基部浸泡在200 mg·L-1的吲哚丁酸(IBA)溶液中4 h。选用珍珠岩作为基质,扦插前5 d喷淋质量浓度为0.5%的高锰酸钾溶液消毒,用黑色塑料薄膜覆盖3 d后揭开薄膜,待药剂挥发后扦插。扦插棚为智能控制温湿度的联栋大棚。

  • 试验设置磁化水喷淋(MW)+磁化毯(MR),磁化水喷淋(MW)和对照(ck,清水喷淋)3个处理,重复4次,扦插100株·小区-1。其中:① 喷淋处理:采用PP-25-ADS-600型磁化水处理器(Φ=25 mm,磁场强度为600 T,水流量为6 m3·h-1)处理的磁化水对插床进行喷淋处理,所用喷淋水为饮用自来水;② 磁化毯处理:将磁场强度为300 T的磁化毯铺设在扦插基质下方25 cm处,插穗下端高于磁化毯5 cm。设定棚内温度为25~27 ℃,相对湿度(85±5)%,自动控制喷淋。喷头采用十字雾化喷头(KL3073)。扦插后每7 d采样1次,随机抽样10株·处理-1,观察插穗生根进程及生长状况(在愈伤组织形成以后至生根以前,适当加大观测密度,以确定不定根产生的准确时间)。扦插90 d,调查各处理所有材料的生根率、根系特征及生长量、新梢及叶片生长量。

  • 11月中旬,采用冲洗法将全部扦插苗整株取出,统计生根率,新梢高,茎、叶片生长量。随机抽样扦插苗10株·处理-1,去离子水冲洗根系表面残留物,将每个插穗构型完整的根系,按照PREGITZER等[12]的方法对根系进行分级,即将根系最外端的细根定为1级根,其母根为2级根,2级根的母根为3级根。将各级根序细根放入装有去离子水的培养皿中并进行编号,用根系分析仪Winrhizo(德国)测定各级根序细根长度、直径、表面积和体积,计算根系效果指数[13]。将各处理植株置于103 ℃烘箱中杀青10 min后80 ℃烘干至恒量,测定单株根系干质量。将烘干的根系及新梢分别研磨过100目筛,采用张志良等[14]的方法测定可溶性糖,凯氏定氮法测定总氮,采用燃烧氧化法用总碳分析仪(Elementar Vario,德国)测定总碳含量。

    根系效果指数I=(L×M×R)/N。其中:L为插穗平均根长,M为插穗根系数量,R为插穗生根率,N为生根插穗数。

  • 利用统计软件SAS 9.2,Excel 2016对数据进行分析,采用Duncan多重比较法(Duncan’s multiple-range)进行处理间差异性分析。生根率百分数经过反正弦转换。

  • 表 1可知:MW+MR处理的绒毛白蜡嫩枝扦插生根率最高,达到84.2%,MW为60.4%,分别比ck高60.7%和36.9%,差异极显著(P<0.01);扦插后第10天分别随机抽取10株发现,MW+MR处理有4株出现愈伤组织,MW和ck分别只有2株和1株出现愈伤组织;MW+MR处理在扦插后15 d出现不定根,MW不定根出现于19 d,ck则在扦插后25 d左右才出现不定根;MW+MR处理的插穗根系干质量相对较大(0.090 g),高于MW及ck,差异极显著(P<0.01);MW+MR处理的根系含水量比ck高0.516 g,MW比ck高0.284 g,差异极显著(P<0.01)。不同处理根系效果指数比较,MW+MR及MW处理根系效果指数均高于ck,而MW+MR比MW高0.577,说明磁化毯能够促进插穗生根。

    处理不定根出现期/d生根率/%根干质量/g根含水量/g根系效果指数
    ck2523.5 ± 1.594 C0.062 ± 0.002 C0.510 ± 0.057 B0.410
    MW1960.4 ± 2.838 B0.081 ± 0.005 B0.782 ± 0.077 AB0.987
    MW+MR1584.2 ± 2.341 A0.107 ± 0.005 A0.996 ± 0.100 A1.567
    说明:数据为3次测定的平均值±标准误, 同列中不同大写字母表示处理间的差异达到极显著水平(P<0.01)。

    Table 1.  Comparison of different treatment on rooting date, rooting rate, root drought weight, root water contet and root effect index

  • 图 1可知:磁化处理能有效促进绒毛白蜡扦插苗的新梢和叶片生长。MW+MR,MW和ck等3个处理75 d龄扦插苗新梢平均基径分别为0.26,0.24和0.22 cm,MW+MR处理显著(P<0.05)高于MW及ck,MW显著(P<0.05)高于ck;MW+MR,MW和ck处理的新梢平均长度分别为4.95,4.07和2.83 cm,MW+MR显著(P<0.05)高于MW及ck,MW显著(P<0.05)高于ck。MW+MR处理的叶片数量及面积最高,分别为4.7片和24.15 cm2,其次为MW,分别为4.2片和17.41 cm2,ck最低,分别为2.8片和11.31 cm2,MW+MR和MW处理的叶片数量及面积显著(P<0.05)高于ck,MW+MR处理的叶片面积显著高于(P<0.05)MW,但MW+MR和MW处理的叶片数量差异性不显著(P>0.05)。说明磁化处理显著促进了插穗苗新梢和叶片的生长。

    Figure 1.  Effect of different treatment on new shoot diameter (A), new shoot length (B), blade quantity (C) and blade area (D)

  • 图 2中看出:不同处理根系形态参数存在较大差异,MW+MR及MW处理的一级根序细根长度、直径、表面积、体积均显著(P<0.05)高于ck,虽然二级根系形态差异不显著(P>0.05),但是MW+MR及MW处理的根系分为3级,ck的根系只有2级,表明磁场有助于促进生根及根系发育,这与磁化处理高于ck的生根成活率是一致的。

    Figure 2.  Comparison of differene treatment on root length(A), surface area(B), diameter(C)and volume(D)

  • 表 2可知:MW+MR处理的碳氮比极显著(P<0.01)低于MW及ck,MW+MR处理扦插苗氮质量分数最高,其次为MW,ck的氮质量分数最低,差异极显著(P<0.01)。MW+MR及MW处理钾、钙、镁、铁、锰、锌、铜质量分数均高于ck,差异极显著(P<0.01)。然而磁化处理后钠质量分数则减少,与ck相比,MW+MR及MW处理分别减少了22.8%和9.7%,差异极显著(P<0.01)。MW+MR处理的可溶性糖质量分数最高,MW次之,但高于ck,差异显著(P<0.05),因此磁化处理能够明显加快插穗可溶性糖的积累,促进不定根的形成,从而缩短生根周期。

    处理碳氮比氮/(mg.g-1)磷/(mg.g-1)钾/(mg.g-1)钙/(mg.g-1)钠/(mg.g-1)
    ck8.135±0.456 A41.618±2.013 C160.029±5.405 B1.899±0.093 B5, 566±0, 420 C28, 732±1, 007 A
    MW5.369±0.348 B72, 326±2, 936 B208.781±13.194 A2.227±0.010 B7, 499±0, 455 B25.937±0.717 B
    MW+MR3.966±0.315 C103.797±8.508 A226.402± 13.749 A2.625±0.128 A9.075±0.511 A22.180±0.812 C
    处理镁/(mg.g-1)铁/(mg.g-1)锰/(mg.g-1)锌/(mg.g-1)铜/(mg.g-1)可溶性糖/(mg.g-1)
    ck0, 644±0, 021 A0, 523±0, 098 B0.128±0.017 A0, 112±0, 008 C0, 037±0, 001 C142.954±1.175 C
    MW0, 736±0, 008 B1, 532±0, 257 B0, 075±0, 003 B0.198±0.016 B0.228±0.013 B154.554±2.544 B
    MW+MR0.835±0.014 C2, 963±0, 387 A0.050±0.001 B0.321±0.012 A0.393±0.004 A167.819±3.379 A
    说明:数据为3次测定的平均值±标准误, 同列中不同大写字母表示处理间的差异达到极显著水平(P<0.01)。

    Table 2.  Comparison of different treatment on C/N and element

  • 绒毛白蜡嫩枝插穗经过磁化处理对插穗形成愈伤组织、缩短生根时间以及对提升根系质量与扦插成活率有显著的促进作用。有研究认为:磁化处理能够影响酶的活性及内源激素的成分,从而促进植物愈伤组织与生根基因的表达,产生不定根[15]。磁化水水培小麦Triticum aestivum和水稻Oryza sativa能够促进次生根的分化,提高对矿质元素和水分的吸收效率[16]。也有研究认为:磁化处理后亚麻Linum sp.和小扁豆Polygala tatarinowii的细胞增殖活性减弱,增殖周期减缓[17]。本次研究发现,磁化处理后绒毛白蜡的一级根系形态参数明显高于对照组,表明在磁场环境下很可能激活了植物生长的某条代谢途径,或者生根关联酶活性,从而促进了绒毛白蜡生根及生长发育。

  • 磁化处理技术在扦插繁育中起到有效的促进作用,不仅能够促进插穗生根,增加根系数量,而且提高了苗木繁育速度,大大缩短了育苗周期。本研究证明,磁化处理能够明显加快插穗可溶性糖的积累,促进插穗不定根的形成,从而缩短生根周期;能够促进扦插苗生物量积累,能够降低植物根系中钠质量分数,促进氮磷钾及微量元素的累积。有研究表明,磁化水通过影响水的渗透力、溶解力与缔合度产生的物理效应来促进插穗对水分的吸收[15],从而对植物生长发育、产量和生物量的提高具有显著影响。磁化处理提高了有效态养分的利用率,抑制了对钠离子(Na+)的吸收、积累,促进植株对钾离子(K+),钙离子(Ca2+),镁离子(Mg2+)等矿物养分离子的选择吸收能力[18]。磁化微咸水能够增强欧美杨-107 Populus × euramericanna ‘Neva’根系对水分和养分的吸收,能够极显著地提高其根、叶的生物量累积[19]。磁化处理能够显著提高鹰嘴豆Cicer arietinum的种实量、秸秆量及生物产量[7]。高矿化度水经过磁化处理能够促进绒毛白蜡植株的光合作用,从而促进其生长及生物量的累积[20]

    也有研究表明:不同磁场强度对植物影响不同,这可能与磁场环境改变了某些关联酶活性有关[21]。磁场对于植物的效应还与磁场的分布及频率有关,所以磁场作用于植物生长是由多种机制共同作用决定最终效应的[22]。磁化作用对于植物的最佳作用机制和技术条件还需进一步探究,以促进该技术在林业领域更广泛的应用。

Reference (22)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return