Volume 38 Issue 4
Aug.  2021
Turn off MathJax
Article Contents

ZHANG Kun, XU Jian, LU Changgen, SHAO Jianjun, CAI Guangyue, ZHANG Yan, WU Jiasen. Effects of different fertilizer types on nitrogen and phosphorus nutrient absorption and runoff loss in rice-vegetable rotation system[J]. Journal of Zhejiang A&F University, 2021, 38(4): 784-791. doi: 10.11833/j.issn.2095-0756.20200593
Citation: ZHANG Kun, XU Jian, LU Changgen, SHAO Jianjun, CAI Guangyue, ZHANG Yan, WU Jiasen. Effects of different fertilizer types on nitrogen and phosphorus nutrient absorption and runoff loss in rice-vegetable rotation system[J]. Journal of Zhejiang A&F University, 2021, 38(4): 784-791. doi: 10.11833/j.issn.2095-0756.20200593

Effects of different fertilizer types on nitrogen and phosphorus nutrient absorption and runoff loss in rice-vegetable rotation system

doi: 10.11833/j.issn.2095-0756.20200593
  • Received Date: 2020-09-13
  • Rev Recd Date: 2021-04-06
  • Available Online: 2021-08-09
  • Publish Date: 2021-08-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(4)

Article views(696) PDF downloads(172) Cited by()

Related
Proportional views

Effects of different fertilizer types on nitrogen and phosphorus nutrient absorption and runoff loss in rice-vegetable rotation system

doi: 10.11833/j.issn.2095-0756.20200593

Abstract:   Obejective  This study aims to explore the effect of different fertilization on nitrogen and phosphorus content in farmland in Xianju County, Zhejiang Province.  Method  A rice/Chinese cabbage rotation experiment was conducted to study the change of four fertilization treatments to crop yield, fertilizer absorption, runoff-driven N and P loss. The four treatments were no fertilizer application (ck), pure chemical fertilizer application (FP), 50% organic fertilizer replacement (CM) and carbon-based fertilizer application (CC).  Result  Compared with ck, the yield of rice and Chinese cabbage under three fertilization increased significantly by 33.5%−42.5% and 26.0%−31.8%, respectively. But there was no significant difference among three fertilizer treatments. Compared with ck, nitrogen absorption in Chinese cabbage increased by 33.8%−53.6%, whereas those of CM treatment were significant higher than others. Phosphorus absorption increased by 163.5%−267.8%, and the increase between different treatments was CM>FP>CC>ck. However, there was no significant difference among each treatment (P<0.05). For rice, runoff volume of nitrogen and phosphorus under three fertilization treatments was 13.49−15.32, 2.19−2.61 kg·hm−2, and runoff rate was 3.5%−4.2%, 2.0%−2.4%, respectively. For Chinese cabbage, nitrogen and phosphorus loss was 6.33−6.82, and 0.35−0.44 kg·hm−2, runoff rate was 1.3%−1.6%, 0.1%−0.4%, respectively. However, there was no significant difference among three fertilization treatments.While maintaining the same nutrient equivalent. There was no significant difference betweenpure chemical fertilizer application, 50% organic fertilizer replacement and carbon-based fertilizer application. [Ch, 3 fig. 4 tab. 25 ref.]

ZHANG Kun, XU Jian, LU Changgen, SHAO Jianjun, CAI Guangyue, ZHANG Yan, WU Jiasen. Effects of different fertilizer types on nitrogen and phosphorus nutrient absorption and runoff loss in rice-vegetable rotation system[J]. Journal of Zhejiang A&F University, 2021, 38(4): 784-791. doi: 10.11833/j.issn.2095-0756.20200593
Citation: ZHANG Kun, XU Jian, LU Changgen, SHAO Jianjun, CAI Guangyue, ZHANG Yan, WU Jiasen. Effects of different fertilizer types on nitrogen and phosphorus nutrient absorption and runoff loss in rice-vegetable rotation system[J]. Journal of Zhejiang A&F University, 2021, 38(4): 784-791. doi: 10.11833/j.issn.2095-0756.20200593
  • 农田氮磷流失是农业面源污染的主要来源。农业生产中,肥料的不合理施用是农田氮磷流失的主要原因,肥料施用后未能被作物吸收的部分氮磷通过径流进入河流等水体,造成氮磷流失[1]。因此,合理控制施肥量、调整肥料种类是减少氮磷流失的必要手段[2-3]。在太湖、巢湖、滇池等农业集中区域开展的稻田养分流失研究[4]表明:相比于习惯性施肥(化肥),有机肥50%替代氮肥可减少稻季总氮(5.49%)、总磷(23.32%)径流流失量,显著降低菜-稻周年总磷径流流失量(45.66%)[5],而水稻Oryza sativa产量未显著下降[6]。研究[7]发现:随着生物质炭施用量的增加,农田径流氮磷流失降低;与纯化肥相比,总氮流失量减少1.77~6.96 kg·hm−2,流失率下降0.29~3.62%,总磷流失量减少0.32~0.51 kg·hm−2,流失率下降0.12~0.44%。与纯化肥或纯有机肥相比,有机肥和化肥配施可显著提高作物产量[8]。生物质炭与肥料复合制成的生物质炭基肥可以改良土壤,促进作物生长和增产,提升农用效益[9]。炭基肥施用对不同作物增产效益不同[10],可使玉米Zea mays增产10.02%~24.32%,水稻增产11.54%~13.00%。目前关于有机肥和炭基肥配施影响农田氮磷流失的研究较少,不同肥料对于农业面源污染的影响趋势尚不明确。本研究拟探讨在相同氮磷施用条件下,纯化肥、半替代有机肥、炭基肥3种不同肥料施用对水稻-白菜Brassica pekinensis养分吸收及氮磷流失的影响,为控制农业面源污染提供参考。

  • 试验地浙江省台州市仙居县横溪镇下陈村(28°46′9.32″N,120°28′49.04″E)属典型亚热带季风气候,年平均气温为17.7 ℃,年平均降水量为1 796.8 mm,全年无霜期240.0 d。土壤类型为水稻土,土壤pH 4.99,有机质、全氮、全磷质量分数分别为44.39、2.78、0.51 g·kg−1,碱解氮、有效磷、速效钾质量分数分别为83.90、19.90、97.30 mg·kg−1

  • 采用随机区组设计,4个处理,3次重复,共12个试验小区。各小区面积30 m2,随机排列,各小区间用深50 cm宽35 cm的水泥田埂隔离以防水肥渗漏。同时各小区配置1个径流池,池深1.3 m,长3.0 m,宽1.0 m,试验地外围设置栅栏保护。试验于2019年5月至2020年5月进行,供试水稻品种为嘉丰优2号,白菜品种为早熟5号。

    设不施肥(ck)、习惯性纯化肥(FP)、半替代有机肥(50%替代,CM)、炭基肥(CC)等4个处理。通过不同肥料配比配施,保持不同施肥处理相同养分当量,参考当地施肥氮磷习惯投入量,各小区稻季氮磷投入量分别为270.0、75.0 kg·hm−2,菜季氮磷投入量分别为184.5、51.3 kg·hm−2。不同处理肥料施用量及施肥时间如表1所示。稻季水稻于2019年5月8日播种幼苗,6月8日移栽秧苗,7月16日涸田,8月2日复水,10月13日收获。菜季白菜于2019年10月3日播种,2020年5月10日收获。

    处理水稻季/(kg·hm−2)白菜季/(kg·hm−2)
    基肥(2019年6月5日)追肥(2019年6月23日)基肥(2019年10月23日)追肥(2020年1月5日)
    ck0000
    FP配方肥750.0,钙镁磷肥125.0尿素290.3,氯化钾24.3配方肥450.0,钙镁磷肥127.1尿素225.0,氯化钾34.7
    CM菜籽饼2700.0,钙镁磷肥62.5尿素290.3,氯化钾198.4菜籽饼1620.0,钙镁磷肥42.7尿素225.0,氯化钾135.6
    CC炭基肥1500.0炭基肥1025.0
      说明:配方肥m(N)∶m(P2O5)∶m(K2O)=18∶8∶18;菜籽饼肥m(N)∶m(P2O5)∶m(K2O)=10∶5∶2;炭基肥m(N)∶m(P2O5)∶m(K2O)∶m(C) =     18∶5∶10∶25;氯化钾中K2O质量分数为62%;尿素中N质量分数为46%;钙镁磷肥中P2O5质量分数为12%

    Table 1.  Rice-vegetable mode different fertilizer application amount and time

  • 采用全收获法测定不同小区水稻、白菜产量。不同作物收获时,每个小区中间位置取作物样5株(丛),带回实验室,用水清洗后,置于105 ℃干燥环境中30 min,再置于75 ℃烘箱中烘干48 h,在粉碎机中研磨过0.149 mm筛,待用。植物全氮采用凯氏定氮法测定,全磷采用氢氧化钠(NaOH)熔融-钼锑抗比色法测定。

  • 轮作结束后,每个小区均用5点采样法采集表层土壤样品(0~30 cm)约1 kg带回实验室。土壤样品经室内风干后,过2或0.149 mm筛,待用。土壤pH采用电位法,有机质采用外加热-重铬酸钾容量法,全氮采用半微量开氏法,全磷采用硫酸-高氯酸消解-钼锑抗比色法,有效磷采用0.5 mol·L−1 氯化钾-氟化铵浸提-钼锑抗比色法,速效钾采用1.0 mol·L−1中性醋酸铵浸提-火焰分光法测定,碱解氮采用碱解扩散法。

  • 每次大雨或连绵雨期产生径流后,测量径流池中径流量,将池中的水混匀,用采样器采集1000 mL水样,带回实验室;采样后,洗净、抽干径流池后用于下一次径流水的收集。水样总氮采用碱性过硫酸钾消解紫外分光光度法测定,总磷采用钼酸铵分光光度法测定。

  • 利用公式$ M =\sum\limits_{i = 1}^{n} {{C_i} {V_i}} $计算氮磷径流量;其中:M为氮磷的流失量(kg·hm−2);Ci为第i次径流水中氮、磷的质量浓度(mg·L−1);Vi为第i次径流水的体积(L)。计算肥料利用率=[不同施肥处理作物吸收氮(磷)量(kg·hm−2) − 对照作物吸收氮(磷)量(kg·hm−2)]/施入氮(磷)量(kg·hm−2)×100%。径流损失率=[不同施肥处理径流氮(磷)流失量(kg·hm−2) − 对照径流氮(磷)流失量(kg·hm−2)]/施入氮(磷)量(kg·hm−2)×100%。

    试验数据应用SPSS 22进行方差分析和统计检验,使用Excel 2016处理数据并作图。

  • 表2可知:稻-菜轮作当季结束后,不同处理土壤pH、有机质、全氮、全磷无显著差异(P>0.05)。3种施肥处理土壤碱解氮、有效磷质量分数显著高于ck(P<0.05),不同施肥处理无显著差异;FP、CC处理土壤速效钾质量分数显著高于ck(P<0.05)。

    处理pH有机质/(g·kg−1)全氮/(g·kg−1)全磷/(g·kg−1)碱解氮/(mg·kg−1)有效磷/(mg·kg−1)速效钾/(mg·kg−1)
    ck5.04±0.22 a44.50±1.10 a2.76±0.05 a0.49±0.04 a94.50±9.83 b16.10±1.36 b76.10±7.77 b
    FP4.97±0.13 a45.00±3.71 a2.81±0.32 a0.48±0.02 a101.30±13.11 a22.70±2.98 a88.45±18.17 a
    CM5.07±0.24 a45.10±1.12 a2.78±0.16 a0.48±0.02 a98.60±15.67 a20.30±3.00 a81.60±14.57 ab
    CC4.91±0.20 a43.00±4.43 a2.80±0.15 a0.50±0.02 a104.30±15.18 a20.60±2.26 a91.35±16.37 a
      说明:数据为平均值±标准差;同列不同字母表示处理间差异显著(P<0.05)

    Table 2.  Soil properties after the rice-cabbage season

  • 3种施肥处理显著提高作物产量(图1),与ck相比,水稻产量显著增加33.5%~42.5%(P<0.05),白菜产量显著增加26.0%~31.8%(P<0.05)。

    Figure 1.  Crop yields with different fertilization

  • 与ck相比,施肥显著提高水稻地上部分氮吸收量(P<0.05),但不同施肥间无显著差异(P>0.05)。由图2可知:稻季不同施肥处理的水稻氮吸收量为79.89~125.38 kg·hm−2,比ck显著提高41.9%~57.4%(P<0.05);水稻地上部分磷吸收量为23.78~33.69 kg·hm−2,比ck显著提高22.8%~41.7%(P<0.05)。

    Figure 2.  Amount of nitrogen and phosphorus absorbed in different fertilized rice-vegetable land parts

    菜季不同施肥处理的白菜地上部分氮吸收量为75.67~116.20 kg·hm−2,比ck显著提高33.8%~53.6%,CM处理氮吸收量显著高于其他处理(P<0.05)。白菜地上部分磷吸收量从大到小依次为:CM、FP、CC、ck,不同处理差异显著(P<0.05)。与ck相比,施肥处理磷吸收量分别提高267.8%、217.9%、163.5%。

    稻-菜轮作肥料氮磷利用率如表3。稻季氮肥利用率为13.0%~16.8%,不同处理无显著性差异,磷肥利用率为7.2%~13.2%,其中CM显著高于FP、CC(P<0.05)。菜季氮肥利用率为13.9%~22.0%,CM显著高于FP、CC(P<0.05),磷肥利用率为23.7%~38.8%,从大到小依次为FP、CM、CC,不同处理间差异显著(P<0.05)。

    处理稻季菜季全季
    氮/%磷/%氮/%磷/%氮/%磷/%
    FP13.01±0.98 a 8.39±1.04 b14.32±1.53 b38.84±1.65 a13.85±1.97 b27.66±2.11 a
    CM16.83±1.03 a13.24±1.12 a22.02±1.27 a31.57±1.37 b19.72±1.45 a22.44±1.67 b
    CC11.76±0.96 a 7.23±0.88 b13.94±1.07 b23.71±1.41 c13.17±1.08 b16.85±1.37 c
      说明:数据为平均值±标准差;同列不同字母表示处理间差异显著(P<0.05)

    Table 3.  Utilization rate of nitrogen and phosphorus fertilizer in the whole rice-vegetable season

  • 稻-菜轮作全季共出现10次径流,其中稻季7次,菜季3次,不同时间径流水中氮、磷质量浓度变化不同。由图3可知: CC处理水中氮、磷质量浓度以2019年6月21日的径流为最高,而FP、CM处理水中氮、磷质量浓度则以6月26日的径流为最高;随着时间推移,不同施肥处理径流水中氮、磷质量浓度均呈下降并保持相对稳定的趋势;不同处理氮质量浓度在2020年3月16日又有所上升,达到第2个峰值,随后重新出现下降趋势。相比之下,不同采样时间ck处理径流水中的氮、磷质量浓度相对稳定,分别为0.91~2.35和0.11~1.57 mg·L−1

    Figure 3.  Nitrogen and phosphorus concentrationins in different fertilization treatment run-off waters

  • 表4所示:稻季不同施肥处理氮流失量为13.49~15.32 kg·hm−2,流失率为3.53%~4.18%,磷流失量为2.19~2.61 kg·hm−2,流失率为2.04%~2.37%;不同处理间差异不显著(P>0.05)。菜季不同施肥处理氮流失量为6.33~6.82 kg·hm−2,流失率为1.31%~1.62%,磷流失量为0.35~0.44 kg·hm−2,流失率为0.09%~0.39%;不同处理间差异也不显著(P>0.05)。

    种植模式施肥处理
    流失量/(kg·hm−2)径流率/%流失量/(kg·hm−2)径流率/%
    稻季FP14.24±0.86 a3.81±0.92 a2.33±0.64 a2.11±0.68 a
    CM13.49±0.64 a3.53±0.79 a2.19±0.62 a2.04±0.94 a
    CC15.32±1.01 a4.18±0.88 a2.61±0.89 a2.37±0.83 a
    菜季FP6.33±0.46 a1.31±0.21 a0.44±0.21 a0.39±0.11 a
    CM6.51±0.87 a1.49±0.37 a0.35±0.13 a0.09±0.07 a
    CC6.82±0.72 a1.62±0.48 a0.36±0.17 a0.21±0.09 a
      说明:数据为平均值±标准差;同列相同字母表示稻季或菜季不同处理间差异不显著(P>0.05)

    Table 4.  Amount of nitrogen and phosphorus loss and runoff loss in different treatment stakes in the rice-cabbage season

  • 有机肥部分替代化肥可以改善土壤氮素供给状态,促进作物对氮素的吸收,达到增产目的[11]。生物质炭基肥可以有效控制水稻的无效分蘖,有利于提高水稻群体质量[12]和作物净光合速率[13];连续施入炭基肥及生物质炭还可有效提高土壤铵态氮含量[14],从而提高水稻产量。本研究表明:3种施肥处理下作物产量无显著差异,主要原因应为试验地土壤氮磷含量较高。3种施肥处理对水稻增产效果显著优于对白菜增产效果,与刘琪琪[15]研究肥料对不同作物增产效果不同的结果一致。

    作物的养分含量及积累量可以反映土壤的供肥能力。与对照相比,3种施肥处理作物地上部分氮磷吸收量显著提高,说明施肥对维持作物生长,满足作物营养需求效果显著,这与王新霞等[16]、杜加银等[17]研究结果相似。3种施肥处理下作物地上部氮磷吸收量无显著差异,这与范星露等[18]研究结果相似。

    半替代有机肥的氮利用率显著高于纯化肥和炭基肥,炭基肥的磷利用率显著低于纯化肥和半替代有机肥,这与张萌等[19]发现生物质炭基肥肥料利用率高于常规施肥的结果不符,主要原因在于炭基肥制备过程中,不同碳氮比影响了炭基肥的缓释效果[20-21],造成磷的利用显著低于其他处理,具体影响还有待于相关的试验研究。

  • 稻季首次径流,CC处理的氮磷质量浓度显著高于其他处理(P<0.05),第2次径流,FP、CM处理的氮磷质量浓度显著高于CC(P<0.05),显著高于首次径流(P<0.05)。主要原因是施肥处理方式和施肥时间不同;CC处理的氮磷肥于6月6日一次性施入,单次施肥量过大,是首次径流水中氮磷质量浓度显著高于其他处理的原因,而FP、CM处理于6月21日追肥,6月26日产生的径流水中氮磷质量浓度达到峰值且显著高于CC。提示炭基肥应当视情况斟酌施入,以避免大径流造成养分流失。

    3种不同施肥方案通过径流形式流失的氮磷总量无显著差异。刘红江等[22]发现:有机-无机配施可以减少氮磷流失量,但有机-无机配施在达到一定比例后,氮磷流失量随肥料中有机占比提高而增加,过高的有机投入同样会增加氮磷流失的风险。本研究中,炭基肥为单次施入,当首次极大径流出现时,高质量浓度的炭基肥并不能减少农田氮磷流失。研究区夏季多暴雨,径流产生频繁,施肥后如遇强降雨,会引起养分大量流失[23]。因此需要根据气象条件,选择合适的施肥时间。

    与纯化肥相比,半替代有机肥、炭基肥在制备时使用秸秆等废弃物,可以有效回收部分通过植物废弃物流失的氮磷,减少面源污染。目前符合国家标准的炭基肥中,秸秆炭质量分数约16%[24],同时炭基肥原料丰富,作物秸秆及动物粪便均可使用[21]。因此尽管对径流流失量影响不大,但半替代有机肥、炭基肥对减少氮磷流失更有利,与刘辉等[25]推算优化施肥下氮磷潜在流失量低于习惯性化肥施肥,氮潜在流失率大于磷潜在流失率的结果相似。

  • 相同养分当量投入下,纯化肥、半替代有机肥、炭基肥对作物氮、磷吸收和肥料利用率无显著差异;3种肥料施用后农田中氮磷径流流失量和流失率的差异也不显著。相同氮磷量投入下,3种肥料对农田氮磷流失影响结果差异不显著。

Reference (25)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return