-
随着城市化加速发展,不透水地面逐渐增多,城市热岛效应(urban heat island effect,UHI)日益凸显。学者们多从热环境时空变化[1−2]、影响机制及驱动力[3]、城市热岛效应缓解方法[4]等方面展开研究,但较少关注景观网络在缓解热岛效应中的作用。这些研究表明,地表温度受斑块间的热交换影响显著,热源与热汇的连通性是影响热流动的重要因素。然而,地表温度难以反映整体格局和连通性,需要合适的方法来准确描述热环境的空间格局。对城市热岛的研究侧重于整体区域尺度或是斑块水平上的统计分析,忽视了景观网络对缓解城市热环境的作用。陈利顶等[5]利用“源-汇”理论,将热环境与生态过程结合,为解决城市热环境问题提供新思路。
城市绿地对缓解城市热岛效应具有重要作用[6],当绿地覆盖面积在40%以下时,绿地系统的空间格局将对环境的增势以及降温产生主要影响[7],在有限的城市空间中增加大面积的绿地已经难以实现,因此通过优化绿地空间格局来缓解城市热岛效应尤为重要。基于景观生态学“源-汇”理论,识别城市热岛像元与绿地像元,构建多层级生态网络,将是缓解城市热环境的重要手段。生态网络构建方法主要包括形态空间格局分析方法(morphological spatial pattern analysis,MSPA)、最小累积阻力模型以及重力模型等 [8−9]。MSPA方法强调景观内部结构性的连接,可以准确地将前景要素划分为核心、孤岛、孔隙、边缘、环道、桥接和支线等7类,为后期廊道以及生态节点的识别提供理论依据[10−12]。近年来MSPA方法也逐渐应用到城市热岛的研究中,以达到缓解城市热岛效应的目的。景观连通性指数包括整体连通性指数(integral index of connectivity,IIC)、可能连通性指数(probability of connectivity,PC)等,反映了景观对生态过程中能量流动的促进或阻碍作用大小,良好的景观连通性有助于构建稳定的生态环境[13]。最小累积阻力模型是指物种从源地向目标迁移扩散过程中,穿越不同景观表面所需耗费的最小代价的模型[14],最小累积阻力模型与重力模型相结合能更好地识别生态廊道间的相互作用强度,以筛选具有重要作用的关键廊道。目前,大多数研究利用MSPA、景观连通性指数、最小累积阻力模型等方法进行绿地生态网络的构建,但利用该方法体系构建缓解城市热环境的多层级生态网络的研究相对较少。
本研究以成都市中心城区为研究对象,基于“源-汇”理论,利用MSPA与景观连通性指数,筛选研究区“源”“汇”景观,利用最小累积阻力模型、重力模型以及水文分析模块构建“源-源”“汇-汇”“源-汇”景观廊道以及生态节点,最终形成具备“补偿-运输-作用”功能的多层级景观网络格局,确定需要重点保护的生态用地、重要廊道以及关键节点,提出优化策略,为成都市生态网络空间的构建提供有效支撑。
-
通过计算城市区域与周边地区的平均温度之差来确定相对热岛强度,相对热岛强度越高,相应区域内热岛效应越明显[17]。在ArcGIS中通过计算不同用地类型的相对热岛强度来判别“源-汇”景观。按照LAL等[18]和贾玉雪等[19]的研究将计算结果中相对热岛强度(H)≥0的斑块定义为对城市热环境有促进作用的“源”景观,H<0的景观定义为“汇”景观。
-
将“源”景观作为前景,赋值为2,“汇”景观作为背景,赋值为1,并将其转化为30 m×30 m栅格数据;运用Guidos Toolbox软件对其进行MSPA分析,设置8邻域的连通规则,边缘宽度为1,获得7种景观类型:核心区、边缘、孤岛、桥接区、环道、支线和孔隙。按相同步骤将“汇”景观作为前景,“源”景观作为背景,得到“汇”景观的空间形态格局。
-
景观连通性指数可以衡量不同空间单元之间景观要素的连通性。量化景观要素在生态源地之间进行扩散或者迁移的难易程度,也是衡量生态过程之间联系程度的重要指标[20]。利用Conefor 2.6软件,通过计算IIC、PC以及斑块重要性(dI’)来衡量不同核心斑块的重要程度[21]。考虑研究区内斑块的面积和连通性,通过反复测试计算,设定斑块连接性阈值为2 000,连通概率为0.5。最后,基于景观连通性指数dI’值大小综合评估核心区斑块的景观重要程度。
-
根据研究区现状以及数据的可获取性,最终选取用地类型、高程、坡度以及归一化植被指数(NDVI)来构建综合阻力面。其中高程决定了城市内不同区域的温度分布,坡度影响空气流动和热量累积,不同用地类型对城市热环境产生不同影响,而NDVI则反映了植被覆盖情况,对城市温度、热岛效应和空气质量有重要影响。采用专家打分法确定因子阻力值,并采用层次分析法(AHP)计算其权重值(表1),通过叠加分析最终生成综合阻力面(图2)。可以看出,研究区内阻力值的呈现由中心向四周扩散,逐渐递减,尤其是东南方向的递减最为明显。
影响因子 类型分级 赋予阻力值 所占权重 影响因子 类型分级 赋予阻力值 所占权重 用地分类 林地 10 0.520 坡度/( º ) 0~10 10 0.078 水地 20 10~20 30 草地 30 20~30 50 耕地 50 30~40 70 未利用土地 70 40~50 90 建设用地 100 >50 100 高程/m <200 10 0.078 归一化植被
指数(NDVI)−1.00~−0.20 10 0.201 200~400 30 −0.20~0.30 30 400~600 50 0.30~0.50 50 600~800 70 0.50~0.70 70 800~1 000 90 0.70~1.00 90 >1 000 100 Table 1. Resistance values assigned to different impact factors
-
在ArcGIS中,利用Cost-distance工具构建研究区的累积耗费距离表面。利用Cost-path构建多对多的潜在生态廊道,以连接不同的“源-汇”景观。最后,利用重力模型[22]计算生态廊道间的相互作用强度,通过筛选合适的强度阈值,确保所有的“源-汇”景观均被连通,从而提取出“源-源”“汇-汇”“源-汇”生态廊道。
-
识别生态廊道中的关键点和障碍点能够为物种的迁徙及物种保护区的划分和规划提供科学依据[23−24]。在ArcGIS中,运用水文分析模块,对累积耗费距离表面进行水流方向、汇流累积量等一系列分析计算。通过对比不同阈值设定下最小阻力路径的完整性与连通性,最后确定阈值为500构建研究区内的低阻力廊道。运用ArcGIS中的Intersect工具将低阻力值廊道与“源-源”“汇-汇”廊道进行相交分析从而获得不同生态节点,包括生态障碍点与生态关键点,其中生态关键点是生态廊道中能量流动密度较大的点,需要对关键点进行有效利用与保护;对障碍点则需进行生态修复来提升廊道整体的连接度,以保障冷热能的有效传递。
-
将“源-源”“汇-汇”“源-汇”廊道共同相交[25],得到一级补偿廊道;将“汇-汇”“源-汇”廊道进行相交,得到二级输送引导廊道;将“源-源”“源-汇”廊道进行相交,得到三级作用廊道,完成廊道的“补偿-运输-作用”的完整体系,构建完整的多层级“源-汇”生态景观网络。
-
从图3A可以看出:“源”景观在研究区中部呈现聚集特征,“汇”景观大多分散分布在研究区的西北部以及东南部。其中,“汇”景观斑块总计
98342 个,占研究区域总面积的62.1%,以大面积的带状水域和块状绿地为主;“源”景观斑块总计212 231个,占研究区域总面积的37.9%,由大面积建设用地组成。 -
从“源-汇”景观的MSPA格局分析(图3B)可以看出:“源”核心景观密集地分布在研究区中部,多为城市建设用地;研究区西北以及东南两侧的“源”景观核心斑块较为破碎,景观连通性较差。研究区中部的“汇”景观由于城市绿地破碎化严重导致空间连通性较差。对比不同景观要素类型面积比(表2)发现:“源”景观核心区面积为1 169.33 km2,占“源”景观前景要素总面积的31.83%;“汇”景观核心区面积为2 053.78 km2,占“汇”景观前景要素总面积的55.91%,对城市热岛效应起重要作用。最终,分别筛选面积在0.01 km2以上的源、汇核心斑块作为重要核心斑块,以进行景观连通性分析。
景观类型 “汇”景观面
积占比/%“源”景观面
积占比/%核心区 55.91 31.83 孤岛 0.07 0.14 孔隙 2.46 1.61 边缘区 3.32 3.77 环岛 0.06 0.04 桥接区 0.06 0.08 支线 0.21 0.26 Table 2. Area proportion of different types of “source” “sink” landscape elements
-
将dI’值大于0.1的斑块作为研究的生态源地,分别筛选出24 个“源”“汇”生态源地(图3C),其中“源”景观生态源地占研究区总面积的28.81%,“汇”景观生态源地占研究区总面积的53.60%。“汇”生态源地主要分布在青白江生态带、龙泉山国家森林片区、三圣乡片区、青龙湖湿地公园片区、兴隆湖湿地公园片区以及江安河流域段,而“源”景观生态源地主要分布在金牛区、成华区、锦江区、青羊区以及武侯区(简称“五城区”)。
-
基于最小成本路径构建“源-源”廊道276条,“汇-汇”廊道266条,“源-汇”廊道690条。利用重力模型最终筛选出“源-源”廊道102条,总长度为2 081.6 km,“汇-汇”廊道141条,总长度为1 907.8 km,“源-汇”廊道325条,总长度为7 698.0 km (图4)。其中“源”景观23、24号生态源点与“汇”景观23号生态源点仅由单条景观廊道连通,表明它们在整个热环境中相对独立,呈孤岛状分布,受到其他景观斑块的影响较小,导致在整个热传导的过程中不能发挥良好的作用。
-
统计不同行政区内各廊道的占比情况(表3)发现:新都区、郫都区与双流区内各类“源-汇”重要廊道最多,主要以毗河、岷江等河流,部分廊道呈簇团状分布,说明在研究区冷热交换过程中起到了重要作用;由于五城区分布有大片的“源”景观生态源地,且建筑密度相对较高,区域内各层级“源-汇”重要廊道分布较少,导致其在冷热交换过程中发挥的作用较小。尤其是成华区建筑密度为14.49%,各层级廊道占比都相对较低,区域内大量热空气堆积不易扩散,热岛效应明显。
行政区 建筑密度/% “源-源”廊道长度/km 所占比例/% “汇-汇”廊道长度/km 所占比例/% “源-汇”廊道长度/km 所占比例/% 新都区 20.50 825.32 26.6 642.65 17.2 23 563.22 21.87 郫都区 20.43 518.02 16.7 810.47 21.8 17 422.12 16.17 双流区 12.72 509.82 16.4 689.71 18.6 23 944.23 22.22 温江区 19.12 357.46 11.5 233.84 6.2 9 438.32 8.76 龙泉驿区 11.16 345.57 11.1 171.33 4.6 9 768.86 9.06 金牛区 18.99 229.24 7.3 379.07 6.2 5 423.08 5.03 青白江区 15.01 201.95 6.5 31.16 0.8 3 699.39 3.43 成华区 14.49 90.75 2.9 18.13 0.5 2 827.71 2.62 锦江区 18.01 11.05 0.3 177.75 4.7 3 295.24 3.06 青羊区 28.09 7.04 0.2 303.22 8.2 3 500.85 3.25 武侯区 22.20 5.26 0.2 409.52 11.0 4 882.50 4.53 Table 3. Distribution of landscape corridors in each administrative district
-
利用水文分析模块获取低阻力廊道95条,将低阻力廊道与“源-汇”廊道相交分析得到生态障碍点148个,生态关键点103个(图5A),其中生态关键点在青羊区、武侯区以及锦江区与双流区交汇处出现堆积现象,导致该区域出现功能廊道不能充分利用的问题。生态关键点整体分布与“汇”景观生态源地分布情况大致相同,这意味着加强“汇”景观源地的生态建设,降低周边阻力值,将会有效提升网络连通性。而生态障碍点大多聚集在建筑密度相对较高的区域,生态障碍点堆积处出现大量的热能无法有效被传输,加强生态障碍点的生态修复对城市热量的传导具有重要作用。
-
多层级“源-汇”景观网络中(图5B),一级补偿廊道36条,主要由岷江、毗河和其他河流廊道构成,分布在研究区西部以及北部,在城市中发挥着冷热空气交换的重要作用,是补充能量的主要途径;二级输送引导廊道125条,主要分布在西部、南部以及北部的三环路附近,起到将冷空气运输和分配的作用,是实现能量传递的次要路线;三级作用廊道86条,主要分布在研究区西北以及东北部,主要承担实现热空气的运输和分配的任务,是“源-汇”景观能量交换过程的末端环节。3种廊道共同作用,实现了廊道的“补偿-输送-作用”的功能,以达到缓解城市热岛效应的作用。
Research on optimization of urban thermal environment ecological network based on MSPA and minimum cumulative resistance model
doi: 10.11833/j.issn.2095-0756.20230505
- Received Date: 2023-10-16
- Accepted Date: 2024-04-22
- Rev Recd Date: 2024-04-09
- Available Online: 2024-09-25
- Publish Date: 2024-09-25
-
Key words:
- morphological spatial pattern analysis (MSPA) /
- minimum cumulative resistance model /
- “source-sink” theory /
- urban thermal environment /
- landscape ecological network
Abstract:
Citation: | PAN Zhenhua, ZHOU Yuan, YAO Jing, NING Shunbin, LUO Yushu, WANG Manlin. Research on optimization of urban thermal environment ecological network based on MSPA and minimum cumulative resistance model[J]. Journal of Zhejiang A&F University, 2024, 41(5): 1085-1093. doi: 10.11833/j.issn.2095-0756.20230505 |