Volume 41 Issue 4
Jul.  2024
Turn off MathJax
Article Contents

YAN Shi, YANG Zhengyong, ZHOU Xiaojian, CHEN Xinyi, YANG Jiefang, HE Lei, HUANG Hui. Effects of bamboo age and longitudinal position on wood and fiber properties of Bambusa blumeana[J]. Journal of Zhejiang A&F University, 2024, 41(4): 861-869. doi: 10.11833/j.issn.2095-0756.20230586
Citation: YAN Shi, YANG Zhengyong, ZHOU Xiaojian, CHEN Xinyi, YANG Jiefang, HE Lei, HUANG Hui. Effects of bamboo age and longitudinal position on wood and fiber properties of Bambusa blumeana[J]. Journal of Zhejiang A&F University, 2024, 41(4): 861-869. doi: 10.11833/j.issn.2095-0756.20230586

Effects of bamboo age and longitudinal position on wood and fiber properties of Bambusa blumeana

doi: 10.11833/j.issn.2095-0756.20230586
  • Received Date: 2023-12-06
  • Accepted Date: 2024-04-01
  • Rev Recd Date: 2024-03-26
  • Available Online: 2024-07-12
  • Publish Date: 2024-07-12
  •   Objective  This study aims to explore the effects of bamboo age and longitudinal position on wood and fiber properties of Bambusa blumeana, so as to provide theoretical and practical basis for the development and utilization of B. blumeana.   Method  The density, fiber morphology, chemical composition, mechanical properties and fiber bundle tensile properties of B. blumeana of different ages (1, 2, 3 and 4 years old) and different longitudinal parts (base, middle and tip) were analyzed by normal form washing, fiber segregation and microscopic observation and alkali boiling.   Result  With the increase of age, the air-dry density, total dry density, lignin mass fraction, tensile strength and longitudinal shear strength of B. blumeana increased, while the cellulose mass fraction gradually decreased. The average length difference of different longitudinal parts of B. blumeana aged 2, 3 and 4 were extremely significant (P<0.01). The fiber morphology of B. blumeana was significantly influenced by the longitudinal position. From the base to the tip of the longitudinal parts of B. blumeana, the air-dry density, total dry density, lignin mass fraction, bending strength, longitudinal shear strength, fiber bundle tensile strength and modulus all increased, while the cellulose mass fraction gradually decreased. The effects of bamboo age and longitudinal position on the mass fraction of semi fiber and benzenol extract were not obvious.   Conclusion  B. blumeana fiber has excellent properties and great potential in the development and utilization of fibrosis. There are significant differences in the properties of B. blumeana at different ages and longitudinal parts, among which B. blumeana of 3 and 4 years old can be used as the preferred material for processing and development. [Ch, 5 fig. 3 tab. 40 ref.]
  • [1] NIU Sijie, WANG Na, CUI Baixiang, WANG Chuangui, WU Heng, ZHANG Shuangyan.  Effects of different ages and positions on fiber morphology and crystallinity of Phyllostachys edulis . Journal of Zhejiang A&F University, 2023, 40(2): 446-452. doi: 10.11833/j.issn.2095-0756.20220749
    [2] DU Keke, YONG Cheng, SUN Enhui, HUANG Hongying, QU Ping, XU Yueding, CHEN Ling, SUN Qian, GUAN Mingjie.  Properties of bio-pretreated straw fiber and its composite materials . Journal of Zhejiang A&F University, 2022, 39(4): 869-875. doi: 10.11833/j.issn.2095-0756.20210647
    [3] LI Rongrong, HE Chujun, PENG Bo, WANG Chuangui.  Differences in fiber morphology and partial physical properties in different parts of Phyllostachys edulis . Journal of Zhejiang A&F University, 2021, 38(4): 854-860. doi: 10.11833/j.issn.2095-0756.20200649
    [4] ZHA Yao, RAO Jun, GUAN Ying, ZHANG Liping, GAO Hui.  Preparation and properties of bamboo leaf/HDPE composites . Journal of Zhejiang A&F University, 2020, 37(2): 343-349. doi: 10.11833/j.issn.2095-0756.2020.02.020
    [5] BAO Minzhen, YU Wenji, CHEN Yuhe, YU Yanglun, WU Zaixing, HE Sheng, LI Neng.  Effects of CuAz preservative on the antiseptic performance and physical and mechanical properties of poplar scrimber . Journal of Zhejiang A&F University, 2020, 37(1): 165-170. doi: 10.11833/j.issn.2095-0756.2020.01.022
    [6] MO Jue, MA Zhongqing, NIE Yujing, MA Lingfei.  Physical and mechanical properties of Phyllostachys edulis with fast hot-pressing and high temperature . Journal of Zhejiang A&F University, 2019, 36(5): 974-980. doi: 10.11833/j.issn.2095-0756.2019.05.017
    [7] XIA Yu, NIU Shuaihong, LI Yanjun, XIA Li, MA Junmin, WANG Li, YU Xiaohong.  Physical and mechanical properties of Phyllostachys iridescins under normal pressure and heat temperature . Journal of Zhejiang A&F University, 2018, 35(4): 765-770. doi: 10.11833/j.issn.2095-0756.2018.04.023
    [8] LI Hongji, CAI Xianfeng, YUAN Jiali, ZENG Yingying, YU Xiaopeng, WEN Guosheng.  Photosynthetic carbon fixation in Phyllostachys edulis during its fast growth period . Journal of Zhejiang A&F University, 2016, 33(1): 11-16. doi: 10.11833/j.issn.2095-0756.2016.01.002
    [9] CHAI Xiaojuan, SU Yan, CHEN Hui, GUO Weilong, JIN Shuihu.  Anatomical structure and mechanical properties from stem bottoms of Juncus effusus . Journal of Zhejiang A&F University, 2016, 33(6): 1058-1066. doi: 10.11833/j.issn.2095-0756.2016.06.019
    [10] LI Huiyuan, ZHOU Dingguo, WU Qinglin.  Properties of wood plastic composite with different photo-stabilizer and/or zinc borate . Journal of Zhejiang A&F University, 2015, 32(6): 914-918. doi: 10.11833/j.issn.2095-0756.2015.06.014
    [11] GONG Yingchun, REN Haiqing, TANG Zhengjie, WU Zhangkang, HUANG Wei.  Effect of three flame retardants on the performance of PE wood plastic composites flooring . Journal of Zhejiang A&F University, 2015, 32(3): 410-414. doi: 10.11833/j.issn.2095-0756.2015.03.012
    [12] YANG Xuetong, GUO Wenjing, CHEN Qiaohua, WANG Zheng.  Feasibility study on making composite board with recycled paper processing residue . Journal of Zhejiang A&F University, 2014, 31(6): 954-958. doi: 10.11833/j.issn.2095-0756.2014.06.019
    [13] LI Beilei, SONG Zhaoliang, JIANG Peikun, ZHOU Guomo, LI Zimin.  Phytolith distribution and carbon sequestration in China with Phyllostachys edulis . Journal of Zhejiang A&F University, 2014, 31(4): 547-553. doi: 10.11833/j.issn.2095-0756.2014.04.009
    [14] TANG Ying, LI Junbiao, SHEN Yucheng, JIN Yongnan, WANG Yunfang, LI Yanjun.  Phyllostachys edulis with high temperature heat treatments . Journal of Zhejiang A&F University, 2014, 31(2): 167-171. doi: 10.11833/j.issn.2095-0756.2014.02.001
    [15] CHEN Lifang, MA Hongxia, ZHANG Yanjun, WANG Jianjing, CAO Yongjian.  Treated wood physical properties after reagent-impregnation with heat-treatment technology . Journal of Zhejiang A&F University, 2013, 30(6): 955-959. doi: 10.11833/j.issn.2095-0756.2013.06.023
    [16] JI Wei-bing, YAO Wen-bin, MA Ling-fei.  Analysis on gradual mechanical properties by the depth of bamboo wall of Dendrocalamus giganteus and Dendrocalamopsis oldhami . Journal of Zhejiang A&F University, 2007, 24(2): 125-129.
    [17] ZHANG Ye-tian, HE Li-ping.  Comparison of mechanical properties for glued laminated bamboo wood and common structural timbers . Journal of Zhejiang A&F University, 2007, 24(1): 100-104.
    [18] LU Feng-zhu, XU Yue-biao, QIAN Jun, XU Qun-fang, YAN Jian-min.  Combustion properties of Phyllostachys pubescens wood at different ages . Journal of Zhejiang A&F University, 2005, 22(2): 198-202.
    [19] LI Yan-jun, ZHANG Hong, ZHANG Bi-guang, XU Mei-rong.  Mechanical properties and micro conformation of small Chinese fir cell before and after combing . Journal of Zhejiang A&F University, 2004, 21(2): 125-129.
    [20] YU You-ming, FANG Wei, YANG Yun-fang, YU Xue-jun, JIN Yong-ming.  Comparative study on physico-mechanical properties of Phyllostachys iridenscens wood under different sites . Journal of Zhejiang A&F University, 2001, 18(4): 380-383.
  • [1]
    WANG Ge, FEI Benhua, FANG Changhua, et al. Implement “the bamboo as a substitute for plastic initiative” to help the bamboo industry to speed up and improve the efficiency [J]. World Bamboo Rattan, 2022, 20(4): 1 − 4.
    [2]
    FEI Benhua, QI Lianghua. Thoughts on the strategic planning of implementing national bamboo reserve [J]. World Forestry Research, 2020, 33(3): 38 − 42.
    [3]
    XU Qing, JIANG Zehui. Harnessing spatial informatics to address the challengesin resource supply of “bamboo as a substitute for plastic” [J]. World Bamboo Rattan, 2024, 22(1): 1 − 7.
    [4]
    LI Yanjun, XU Bin, ZHANG Qisheng, et al. Present situation and the countermeasure analysis of bamboo timber processing industry in China [J]. Journal of Forestry Engineering, 2016, 1(1): 2 − 7.
    [5]
    DIERICK D, HÖLSCHER D, SCHWENDENMANN L. Water use characteristics of a bamboo species (Bambusa blumeana) in the Philippines [J]. Agricultural &Forest Meteorology, 2010, 150(12): 1568 − 1578.
    [6]
    SHI Junyi, ZHOU Dequn, MA Lisha, et al. Bamboo resources in China: species diversity, geographical zoning and development trend [J]. World Bamboo Rattan, 2022, 20(4): 5 − 10.
    [7]
    LOBREGAS M O S, BUNIAO E V D, LEAÑO Jr J L. Alkali-enzymatic treatment of Bambusa blumeana textile fibers for natural fiber-based textile material production [J]. Industrial Crops and Products, 2023, 194(11): 62 − 68.
    [8]
    LI Zhiyong, Trinh Thang Long, LI Nan, et al. Main bamboo species and their utilization in Asia countries [J]. World Bamboo Rattan, 2020, 18(4): 1 − 7.
    [9]
    XU Youming, TENG Fangling. Research progress on high-performance reconstituted bamboo lumber in China and its development suggestions [J]. World Bamboo Rattan, 2015, 13(3): 1 − 7.
    [10]
    WANG Pengcheng, DAI Yonggang, WANG Youhong, et al. Effect of age on the fiber morphological characteristics of Dendrocalamus farinosus [J]. Journal of Anhui Agricultural University, 2018, 45(5): 853 − 860.
    [11]
    YAO Kaitai, TAN Wei, ZHOU Haiyang, et al. Effects of age and culm longitudinal position on physical and mechanical properties of Bambusa textilis McClure bamboo [J]. Journal of Forestry Engineering, 2021, 6(5): 76 − 81.
    [12]
    ZHU Zongwei, LI Bingyun, LI Hailong. Effects of bamboo growth-age on its chemical components and kraft pulping performance [J]. China Pulp &Paper, 2023, 42(4): 8 − 13.
    [13]
    NIU Sijie, WANG Na, CUI Baixiang, et al. Effects of different ages and positions on fiber morphology and crystallinity of Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2023, 40(2): 446 − 452.
    [14]
    YAN Yan, LIU Huanrong, ZHANG Xiubiao, et al. The effect of Phyllostachys pubescens f. lutea Wen property on the E-Rated classification of laminated bamboo board [J]. Journal of Anhui Agricultural University, 2017, 44(2): 260 − 264.
    [15]
    ZHOU Xin, LU Jingwen, YUE Fengxia, et al. Chemical composition analysis and isolated lignin structural characterization of 10 wild bamboo species in Guangxi [J]. China Pulp &Paper, 2023, 42(8): 46 − 54, 68.
    [16]
    OSORIO L, TRUJILLO E, van VUURE A W. Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites [J]. Journal of Reinforced Plastics and Composites, 2011, 30(5): 396 − 408.
    [17]
    HUANG Hui, WANG Yu, SUN Fengwen, et al. Effect of splitting method on bamboo fiber extraction and its mechanical properties [J]. Journal of Forestry Engineering, 2016, 1(6): 23 − 28.
    [18]
    CHEN Guanjun, YUAN Jing, YU Yan, et al. Study on interspecific differences of the compression performance parallel to the grain of bamboo and its influencing factors [J]. Wood Processing Machinery, 2018, 29(6): 23 − 27.
    [19]
    DIXON P G, GIBSON L J. The structure and mechanics of moso bamboo material [J/OL]. Journal of the Royal Society Interface, 2014, 11(99): 20140321[2024-12-01]. doi: 10.1098/rsif.2014.0321.
    [20]
    FANG Xuqin, WANG Chuangui, ZHANG Shuangyan. Properties of bamboo in different cutting periods [J]. Journal of Northeast Forestry University, 2019, 47(2): 70 − 73.
    [21]
    ZHANG Wenbo, FEI Benhua, TIAN Genlin, et al. Comparative study on physical mechanic properties of Phyllostachys edulis in different latitudes [J]. Journal of Beijing Forestry University, 2019, 41(4): 136 − 145.
    [22]
    FUJII T. Cell wall structure of the culm of azumanezasa (Pleioblastus chino Max. ) [J]. Mokuzai Gakkaishi, 1985, 31: 865 − 872.
    [23]
    ZHANG Yi, WANG Bingbing, WANG Chuangui. Contribution rate of Phyllostachys heterocycle to basic density and compressive strength of parallel to grain [J]. Journal of Northeast Forestry University, 2022, 50(9): 105 − 108.
    [24]
    YOU Longjie, YOU Longhui, TU Yongyuan, et al. Comparative study on air-dried density, mechanical properties and combustion performance of Dendrocalamus latiflorus Munro in different ages [J]. Journal of Central South University of Forestry &Technology, 2017, 37(10): 124 − 132.
    [25]
    GROSSER D, LIESE W. On the anatomy of Asian bamboos, with special reference to their vascular bundles [J]. Wood Science and Technology, 1971, 5(4): 290 − 312.
    [26]
    YUE Panpan, FU Genque, HU Yajie, et al. Changes of chemical composition and hemicelluloses structure in differently aged bamboo (Neosinocalamus affinis) culms [J]. Journal of Agricultural and Food Chemistry, 2018, 66(35): 9199 − 9208.
    [27]
    PENG Bo, WANG Chuangui, ZHANG Shuangyan. Analysis of physical & chemical properties and fiber configuration of 2 species of bamboos from Sichuan Province [J]. World Bamboo Rattan, 2018, 16(3): 15 − 19.
    [28]
    CHEN Yongdi, QIN Wenlong, LI Xiuling. Studies on the chemical composition of ten bamboo materials [J]. Chemistry and Industry of Forest Products, 1985, 5(4): 32 − 39.
    [29]
    LEI Gang, WANG Pengcheng, WANG Youhong, et al. Main properties of serveral monopodial bamboos in southern Anhui Province [J]. Journal of Northwest Forestry University, 2022, 37(2): 223 − 228.
    [30]
    XIANG Elin. Study on the Cell Wall Structure and Property during the Growth of Moso Bamboo [D]. Chengdu: Sichuan Agricultural University, 2018.
    [31]
    FUJII Y, AZUMA J I, MARCHESSAULT R H, et al. Chemical composition change of bamboo accompanying its growth [J]. Holzforschung, 1993, 47(2): 109 − 115.
    [32]
    CHEN Ming, GUO Lin, HENG Xiao, et al. Comparison of cell morphology of moso bamboo fibers from fifteen main producing regions in China [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(6): 7 − 12.
    [33]
    CAI Yi, WANG Baojin, GUAN Jieru, et al. Fiber morphylogy and chemical composition of moso bamboo from Jinzhai [J]. Journal of Northeast Forestry University, 2020, 48(2): 81 − 86.
    [34]
    LI Rongrong, HE Chujun, PENG Bo, et al. Differences in fiber morphology and partial physical properties in different parts of Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2021, 38(4): 854 − 860.
    [35]
    HUANG Junjie, TAN Jingyin, HU Chuanshuang, et al. Research on the physico-mechanical properties of four bamboo species in Guangdong Province [J]. China Forest Products Industry, 2023, 60(4): 25 − 32.
    [36]
    YU Qionghua, YU Youming, JIN Yongming, et al. Physical and mechanical properties of bamboo timber in plantation forests of Phyllostachys praecox [J]. Journal of Zhejiang Forestry College, 2004, 21(2): 130 − 133.
    [37]
    WANG Xianke, FANG Changhua, LIU Rong, et al. The longitudinal tensile properties of bamboo units with different scales [J]. Journal of Bamboo Research, 2020, 39(4): 14 − 24.
    [38]
    OKAHISA Y, KOJIRO K, KIRYU T, et al. Nanostructural changes in bamboo cell walls with aging and their possible effects on mechanical properties [J]. Journal of Materials Science, 2018, 53(6): 3972 − 3980.
    [39]
    GAO Xun, ZHU Deju, FAN Shutong, et al. Structural and mechanical properties of bamboo fiber bundle and fiber/bundle reinforced composites: a review [J]. Journal of Materials Research and Technology, 2022, 19: 1162 − 1190.
    [40]
    LI Xinghui, LUO Bei, HE Rui. Anatomical characteristics of Bambusa texlilis McClure and Bambusa emeiensis in different growth periods [J]. World Bamboo Rattan, 2017, 15(4): 9 − 12.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(3)

Article views(298) PDF downloads(18) Cited by()

Related
Proportional views

Effects of bamboo age and longitudinal position on wood and fiber properties of Bambusa blumeana

doi: 10.11833/j.issn.2095-0756.20230586

Abstract:   Objective  This study aims to explore the effects of bamboo age and longitudinal position on wood and fiber properties of Bambusa blumeana, so as to provide theoretical and practical basis for the development and utilization of B. blumeana.   Method  The density, fiber morphology, chemical composition, mechanical properties and fiber bundle tensile properties of B. blumeana of different ages (1, 2, 3 and 4 years old) and different longitudinal parts (base, middle and tip) were analyzed by normal form washing, fiber segregation and microscopic observation and alkali boiling.   Result  With the increase of age, the air-dry density, total dry density, lignin mass fraction, tensile strength and longitudinal shear strength of B. blumeana increased, while the cellulose mass fraction gradually decreased. The average length difference of different longitudinal parts of B. blumeana aged 2, 3 and 4 were extremely significant (P<0.01). The fiber morphology of B. blumeana was significantly influenced by the longitudinal position. From the base to the tip of the longitudinal parts of B. blumeana, the air-dry density, total dry density, lignin mass fraction, bending strength, longitudinal shear strength, fiber bundle tensile strength and modulus all increased, while the cellulose mass fraction gradually decreased. The effects of bamboo age and longitudinal position on the mass fraction of semi fiber and benzenol extract were not obvious.   Conclusion  B. blumeana fiber has excellent properties and great potential in the development and utilization of fibrosis. There are significant differences in the properties of B. blumeana at different ages and longitudinal parts, among which B. blumeana of 3 and 4 years old can be used as the preferred material for processing and development. [Ch, 5 fig. 3 tab. 40 ref.]

YAN Shi, YANG Zhengyong, ZHOU Xiaojian, CHEN Xinyi, YANG Jiefang, HE Lei, HUANG Hui. Effects of bamboo age and longitudinal position on wood and fiber properties of Bambusa blumeana[J]. Journal of Zhejiang A&F University, 2024, 41(4): 861-869. doi: 10.11833/j.issn.2095-0756.20230586
Citation: YAN Shi, YANG Zhengyong, ZHOU Xiaojian, CHEN Xinyi, YANG Jiefang, HE Lei, HUANG Hui. Effects of bamboo age and longitudinal position on wood and fiber properties of Bambusa blumeana[J]. Journal of Zhejiang A&F University, 2024, 41(4): 861-869. doi: 10.11833/j.issn.2095-0756.20230586
  • 竹材绿色、低碳、速生、可再生、可降解,是优良的生物质材料,竹材砍伐后加工成竹制品可起到碳转移、缓冲碳排放等作用。在全球可持续发展背景下,竹材的开发利用受到广泛关注,可替代木材、塑料、钢材、人造纤维等[12]。中国竹林面积较大,但在竹类划分中,仅分为毛竹Phyllostachys edulis和杂竹。这种划分不能满足竹产品对竹资源以及竹种差异性的需求[3],且很多国家的竹资源开发仅限于简单利用或初级加工利用,大量竹资源尤其是丛生竹资源的应用价值未得到充分挖掘[4]

    簕竹Bambusa blumeana也称箣竹,隶属禾本科Poaceae竹亚科Bambusoideae簕竹属Bambusa,地下茎合轴丛生,茎秆下部枝条繁茂多刺,原产于印度尼西亚和马来西亚东部,在菲律宾、泰国、越南均有栽培,中国福建、台湾、广西、云南、海南等省也有栽培[56]。簕竹秆型高大、秆径中等、节间较长,属秆型优良的大型高产丛生竹种,具有较高的经济利用价值[7],目前已被应用于家具、观赏园艺、手工艺品制作、住房建设等,但精深加工利用较少[89]。竹材理化性能、力学性质等材性数据是竹材开发利用的基础,决定了竹材的应用范畴。王鹏程等[10]对梁山慈竹Dendrocalamus farinosus不同径向位置的纤维形态研究发现:竹龄为3 a的梁山慈竹纤维形态较优。姚开泰等[11]对不同竹龄和纵向部位的青皮竹B. textilis物理力学性能研究发现:随竹龄增大,青皮竹的密度逐渐增大,竹龄为4 a的青皮竹全干密度和纤维束拉伸强度最高,随着竹秆纵向部位升高,纤维趋于细短,纤维束拉伸性能下降。朱宗伟等[12]研究表明:对于麻竹D. latiflorus的综纤维素,冷水、热水和质量分数为1%的氢氧化钠(NaOH)抽出物质量分数随竹龄的增长逐渐减小;苯醇抽提物质量分数随竹龄的增长变化不大。牛思杰等[13]研究发现:竹龄可作为筛选原材料的优先指标。综上所述,竹龄和部位对竹材理化性质有较大影响。鉴于此,本研究探究竹龄及纵向部位对簕竹竹材气干密度、全干密度、纤维形态、化学组分、抗弯性能、顺纹抗剪强度、纤维束拉伸性能的影响及变化规律,以期为簕竹的工业化利用提供理论依据。

    • 簕竹采自云南省临沧市沧源瓦族自治县(23°21′N,99°27′E)。在同一片竹林中,分散选取有代表性、无明显缺陷、竹龄为1、2、3、4 a的簕竹,各竹龄采集8~10株。簕竹的胸径、节高以及壁厚如表1所示。截取离地面高度分别在1~3 m (基部)、3~5 m (中部)、5~7 m (梢部)的竹段样本进行后续研究。

      竹龄/a胸径/cm节高/cm壁厚/mm
      140.2~70.823.6~45.64.6~10.0
      233.9~52.220.4~36.53.5~7.9
      336.3~63.733.3~41.54.8~9.9
      445.2~70.630.9~43.84.5~12.7

      Table 1.  Diameter at breast height, node height and wall thickness of B. blumeana of different ages

    • 参照严彦等[14]的方法,从不同竹龄、不同纵向部位的簕竹竹筒上截取试样。测试气干密度和全干密度。

    • 随机选取不同竹龄、不同纵向部位的簕竹试样,去青并粉碎,过40~60目筛。采用范氏洗涤法测定纤维素、半纤维素和木质素质量分数。参照周鑫等[15]的方法,测定苯醇抽提物质量分数。每组样品测定3个重复,取平均值。

    • 将竹条劈成火柴棒大小,浸泡在质量分数为95%的冰乙酸与质量分数为30%的过氧化氢的体积比为1∶1的混合液中,于80 ℃水浴中处理10 h,至试样变白。使用去离子水洗涤试样至中性,将纤维充分打散。在OlmpusBX 51光学显微镜下测定纤维长度和纤维宽度。纤维长度每组测定100根,纤维宽度每组测定50根。

    • 调节竹材含水率为12%。抗弯性能、顺纹抗剪强度参考严彦等[14]的方法进行加工测定。

    • 将竹片放入到质量分数为5%的NaOH溶液中,60 ℃水浴加热20 h,经温水冲洗数遍至中性,含水率控制在30%~60%,之后用平板硫化压机平压和双锟混炼挤压将竹片松散疏解,使用梳子进一步分丝,获得簕竹纤维束。将纤维束用纤维切断器切断至80 mm长,抽取30根无明显缺陷的纤维束进行测试。为防止测试时纤维束发生滑移,对试样进行一定的处理[16]。参照黄慧等[17]的方法测定纤维束拉伸性能,加载速率为2 mm·min−1,夹持长度为80 mm,标距为60 mm,测定前在光学显微镜下测量纤维束直径。

    • 采用SPSS 27对纤维形态进行单因素方差分析(one-way ANOVA),显著性水平为0.01,采用Origin 2022绘图,采用gauss函数对纤维束拉伸强度进行拟合。

    • 密度是评估竹材品质和质量的基本指标之一,与竹材力学性能、硬度等密切相关[18]。一般而言,密度越高,则竹材纤维结构更坚硬和紧密,机械性能越好[19]。如图1所示:不同竹龄和竹秆纵向部位的簕竹气干密度、全干密度最大值可达0.723、0.739 g·cm−3,平均气干密度为0.587 g·cm−3,平均全干密度为0.669 g·cm−3,低于毛竹的全干密度(0.700 g·cm−3)和气干密度(0.759 g·cm−3)[2021]。簕竹的气干密度随着竹龄的增长而呈增大趋势,其中竹龄为1 a的簕竹平均气干密度为0.566 g·cm−3,而竹龄为4 a的簕竹平均气干密度可达0.615 g·cm−3,簕竹的全干密度随竹龄的增长也呈增大趋势。这种变化主要是由于竹材生长的过程中,其细胞壁和内部组成物质在生长过程中不断生成和累积,纤维壁厚也随着竹龄显著增长,导致气干密度及全干密度增加[22],这与毛竹、麻竹的变化趋势一致[2324]。另外,簕竹竹材的气干密度、全干密度随着竹秆纵向部位的增加呈逐步增加的趋势,基部至梢部气干密度从0.554 g·cm−3增加到0.619 g·cm−3,全干密度从0.590 g·cm−3增加到0.723 g·cm−3。这种变化可能是随着竹秆高度的增加,单位横截面积内维管束分布数量不断增多,维管束分布密度逐渐增大,从而使竹秆梢部密度更高[25]

      Figure 1.  Air-dry density and total dry densityof longitudinal part of B. blumeana under different bamboo ages

    • 竹材化学组成的不同可能会引起竹材结构和性能间的差异[26]。如表2所示:簕竹纤维素平均质量分数为41.4%,与慈竹相当[27];半纤维素质量分数为12.2%~17.2%,木质素质量分数为26.6%~32.4%,均值为29.6%,高于慈竹(24.0%)、毛竹(22.4%)。因此,在竹浆造纸方面,可选择竹龄为1和2 a的簕竹。苯醇抽提物平均质量分数为2.6%,低于毛竹(3.6%)[28]。苯醇抽提物是以苯、乙醇混合物进行抽提,可从原料中溶解树脂、脂肪、蜡、色素及可溶性单宁等。簕竹的苯醇抽提物低,表明簕竹的耐虫、抗菌等性能可能优于毛竹和慈竹[29]。随竹龄增加,纤维素质量分数先降低后略微增大,竹龄为1 a的簕竹纤维素质量分数最高,均值达45.3%,竹龄为3 a的簕竹纤维素质量分数最低。半纤维素质量分数随竹龄的增加先减少后增大,但总体变化较小。木质素质量分数随竹龄的增加逐渐增大,这是由于随竹龄增大,竹材木质化加剧所致[30]。苯醇抽提物质量分数随竹龄增大而增加。从基部至稍部,纤维素质量分数逐渐降低,半纤维素质量分数差异不大,木质素质量分数逐渐增大,苯醇抽提物质量分数无明显变化规律。簕竹化学组分随竹秆位置的变化趋势与毛竹相似[31]

      竹龄/a纵向部位纤维素质
      量分数/%
      半纤维素质
      量分数/%
      木质素质
      量分数/%
      苯醇抽提物
      质量分数/%
      竹龄/a纵向部位纤维素质
      量分数/%
      半纤维素质
      量分数/%
      木质素质
      量分数/%
      苯醇抽提物
      质量分数/%
      1基部49.0±0.913.9±0.224.8±0.62.1±0.23基部40.8±1.314.6±0.329.4±0.92.6±0.8
      中部44.4±0.413.2±2.328.2±2.12.0±0.3中部38.3±1.014.2±1.432.2±2.02.7±0.0
      梢部44.2±1.614.1±0.427.4±1.63.3±0.6梢部36.2±2.415.8±1.231.4±2.82.6±0.3
      2基部48.6±1.412.2±0.626.6±1.72.0±0.14基部41.3±0.614.3±0.429.6±0.43.4±0.5
      中部42.2±0.913.2±0.329.8±0.52.9±0.4中部38.8±1.614.8±0.332.0±1.72.8±0.1
      梢部39.0±1.114.2±1.432.4±1.12.7±0.1梢部34.1±1.817.2±0.531.6±0.82.6±0.1
        说明:数值为平均值±标准差。

      Table 2.  Chemical fractions of longitudinal part of B. blumeana under different bamboo ages

    • 表3可知:簕竹纤维长度为0.42~5.99 mm,纤维宽度为6.50~38.87 μm。整体纤维形态特征与同属的油簕竹B. lapidea较为接近,属细长、柔性型纤维,是制浆造纸的上等原料,在纤维化利用方面极具开发潜力[32]。不同竹龄之间簕竹纤维长度和宽度有一定差异,竹龄为1 a的簕竹相对较小,竹龄为2和3 a的簕竹趋于稳定,竹龄为 4 a时,簕竹纤维长度和宽度最大,竹龄为1 a的簕竹平均纤维长度为2.01 mm,竹龄为4 a的簕竹平均纤维长度为2.83 mm。簕竹纤维长度纵向变化从大到小依次为中部、梢部、基部,纤维宽度基部到梢部呈逐渐减小的趋势,长宽比梢部最大。显著性分析表明:竹龄为1、2、3 a的簕竹纵向部位的平均纤维宽度差异不显著。竹龄为4 a的簕竹不同纵向部位的平均纤维长度差异极显著(P<0.01),竹龄为1 a的差异不显著。牛思节等[13]研究发现纤维形态受竹龄影响最大,纤维长度随竹龄增大,但在轴向高度上纤维长度未见明显差异。蔡燚等[33]研究认为:毛竹的纤维长宽比在轴向高度上呈先减小后增加再减小的趋势,并在5.5 m处达最大值。姚开泰等[11]研究表明:青皮竹不同竹龄间纤维长度和宽度差异较小,但竹龄为3 a的纤维形态差异明显,青皮竹纤维长度和宽度随竹秆部位高度增加而减小。可见,关于竹龄和纵向部位对竹材纤维形态的影响没有统一变化趋势,本研究簕竹纤维形态变化趋势也与其他研究有所差异。

      竹龄/a纵向部位纤维长度/mm纤维宽度/μm平均纤维长度/mm平均纤维宽度/μm纤维长宽比
      1基部0.42~5.406.50~31.901.90±0.91 a14.14±5.37 a134
      中部0.46~5.117.57~26.632.10±1.13 a13.85±4.49 a152
      梢部0.59~3.606.66~27.812.02±0.80 a15.00±4.47 a135
      2基部0.58~5.008.65~30.892.39±1.13 a17.45±5.41 ab137
      中部0.68~4.677.59~29.272.43±0.77 a16.57±6.19 b147
      梢部0.49~5.467.89~35.742.40±1.07 a19.48±8.39 a123
      3基部0.60~4.6310.15~28.792.20±0.93 a15.80±4.47 a139
      中部0.68~4.508.56~33.832.32±0.85 a19.90±6.15 a117
      梢部0.71~5.069.19~30.412.29±1.02 a17.02±5.33 b134
      4基部0.54~5.9913.16~38.312.74±1.35 a23.39±7.21 a117
      中部0.77~5.9611.78~33.873.18±1.20 b19.58±5.20 b162
      梢部0.62~5.307.29~25.532.56±1.10 b13.64±3.89 c188
        说明:平均纤维长度和宽度为平均值±标准差。不同字母表示相同竹龄不同部位间差异极显著(P<0.01)。

      Table 3.  Fiber morphology of longitudinal part of B. blumeana under different bamboo ages

    • 图2所示:簕竹的平均抗弯强度为110.7 MPa,与广泛应用的毛竹(109.1 MPa)相近,平均抗弯模量为11.53 GPa,较毛竹(7.91 GPa)高45.8%,表明簕竹比毛竹具有更好的韧性[34]。平均顺纹抗剪强度为9.9 MPa,较毛竹(16.6 MPa)低46.8%。簕竹抗弯强度随着竹龄的增加呈增大趋势,竹龄为4 a的簕竹抗弯强度可达135.9 MPa,抗弯模量高达14.24 GPa,这与毛竹等的变化规律相似[35]。此外,簕竹抗弯强度和抗弯模量随着竹秆高度的增高呈上升趋势,梢部抗弯强度均值为123.6 MPa,抗弯模量均值为13.46 GPa。簕竹顺纹抗剪强度随竹龄的增加同样呈增大趋势,最大顺纹抗剪强度可达12.6 MPa;随着竹秆高度的增加呈现上升趋势,梢部顺纹抗剪强度均值为11.6 MPa。竹秆从基部至梢部,维管束横截面积逐渐减小,维管束密度增加,导管直径变窄,自由水含率随之减少,这些变化会导致竹材密度的增加,从而使竹材的力学性能得到相应的提高[3637]。簕竹不同竹龄和竹秆纵向部位力学性能的变化与竹材密度、含水率、不同类型细胞的径向分布以及细胞壁厚度和化学组分的变化有关[38]

      Figure 2.  Mechanical properties of longitudinal part of B. blumeana under different bamboo ages

    • 图3图4可知:簕竹纤维束直径主要分布在0.1~0.4 mm,纤维束拉伸强度主要分布在100.0~600.0 MPa,平均拉伸强度为250.1 MPa,拉伸模量主要分布在10.00~60.00 GPa,平均拉伸模量为23.14 GPa。通过肉眼和手感观察,簕竹纤维束相较毛竹纤维束更细、柔韧性更好。纤维束拉伸强度与竹材本身性能、制备工艺、测试方法等有关[39]。纤维束直径对纤维束拉伸性能有着明显的影响,较小的直径有着较大的力学强度。随着竹龄的增加,簕竹纤维束拉伸强度以及模量都呈增大趋势,竹龄为1 a的簕竹纤维束平均拉伸强度和拉伸模量分别达191.7 MPa和21.73 GPa,竹龄为3 a的簕竹分别为325.4 MPa和25.23 GPa。与竹龄1 a的簕竹相比,竹龄3 a的纤维束直径分布更为均匀,说明竹龄3 a的簕竹力学性能范围分布较广。簕竹纤维束最大拉伸强度及模量可分别达1089.4 MPa和80.65 GPa。随着竹龄的增加,纤维细胞壁变厚,纤维长度变长,这都会对纤维束拉伸强度造成正面影响[40]。由图5可知:与基部相比,竹秆中部和梢部的纤维束直径分布更为集中,说明中部和梢部的拉伸性能比基部更稳定。拉伸强度及拉伸模量随竹秆高度增加而逐渐增大,基部变化趋势与纤维长度和宽度基本一致,其拉伸性能可能受到纤维形态的影响。

      Figure 3.  Tensile strength of fiber bundles of B. blumeana under different bamboo ages

      Figure 4.  Tensile modulus of fiber bundles of B. blumeana under different bamboo ages

      Figure 5.  Tensile properties of fiber bundles of B. blumeana under different longitudinal parts

    • 竹龄以及纵向部对簕竹气干密度、全干密度、竹材力学性能、竹纤维束拉伸性能有较明显影响。竹龄和纵向部位对半纤维素、长宽比影响不明显。竹龄为1和2 a的簕竹是竹浆造纸的优良选择,竹龄为3和4 a的簕竹竹材的中上部位是竹集成材、竹重组材的优先选择。簕竹纤维束有增强热塑性和热固性树脂的潜质,对于复合材料的性能有一定增强作用。

Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return