Turn off MathJax
Article Contents

YAO Quan, TANG Xu, XIAO Mouliang, JIANG Zhenhui, WU Chunyan, LI Yan, YIN Chang, LI Yongfu. Effects of slow release nitrogen fertilizer combined with organic fertilizer on crop growth and soil nutrient content in rice-wheat rotation system[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240149
Citation: YAO Quan, TANG Xu, XIAO Mouliang, JIANG Zhenhui, WU Chunyan, LI Yan, YIN Chang, LI Yongfu. Effects of slow release nitrogen fertilizer combined with organic fertilizer on crop growth and soil nutrient content in rice-wheat rotation system[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240149

OnlineFirst articles are published online before they appear in a regular issue of the journal. Please find and download the full texts via CNKI.

Effects of slow release nitrogen fertilizer combined with organic fertilizer on crop growth and soil nutrient content in rice-wheat rotation system

doi: 10.11833/j.issn.2095-0756.20240149
  • Received Date: 2024-01-28
  • Accepted Date: 2024-10-11
  • Rev Recd Date: 2024-09-24
  •   Objective  Excessive application of inorganic nitrogen fertilizer could result in severe environmental problems whereas appropriate reduction of nitrogen fertilizer combined with organic fertilizer can avoid the decrease of yield, hence an important way to support the sustainable cultivation of rice-wheat rotation system.   Method  This study, using conventional nitrogen application rate as the standard (180 kg·hm−2 for wheat and 210 kg·hm−2 for rice) and with the controlled-release urea as the nitrogen fertilizer, is aimed to clarify the effects of nitrogen reduction combined with organic fertilizer on crop yield, plant nitrogen and soil nutrient content in a rice-wheat rotation system. This field experiment consisted of four treatments: no nitrogen application (ck), conventional nitrogen application (N100), 15% reduction of nitrogen combined with organic fertilizer (MN85), and 30% reduction of nitrogen combined with organic fertilizer (MN70).   Result  Contribution of nitrogen fertilizer to yield increase was 46.0% (wheat 66.2%, rice 25.8%) and nitrogen fertilization significantly increased crop yield (P<0.05), especially in the treatment of 15% nitrogen reduction combined with organic fertilizer. Compared with N100, MN85 treatment significantly increased the effective panicle number of rice by 16.8% while compared with MN70, the nitrogen content in wheat grains in N100 and MN85 treatments increased by 8.7% and 9.0% (P<0.05), and the nitrogen content in straw increased by 16.6% and 16.0%, respectively (P<0.05). Compared with N100 and MN70, the MN85 treatment exhibited a 23.5% and 19.9% increase in nitrogen content of rice grains, and a 25.5% and 26.6% increase in nitrogen content of straw, respectively (P<0.05). Nitrogen fertilizer application resulted in the accumulation of nitrogen in soil, especially in the treatments of reducing nitrogen combined with organic fertilizer, which had more nitrogen surplus. Compared with N100, the N apparent utilization rate (RE), N agronomic efficiency (AE), and N partial production rate (PFP) of wheat decreased by 61.7%, 57.6%, and 59.5% under MN85 treatment, respectively, and decreased by 152.8%, 122.9%, and 90.3% under MN70 treatment, respectively. During the rice planting season, the nitrogen reduction combined with organic fertilizer treatments showed a 27.0% to 33.2% increase (P<0.05) in N physiological efficiency (PE), while the AE of the MN85 treatment increased by 33.3% comparing to the N100 treatment. Compared with N100, the nitrogen reduction combined with organic fertilizer increased soil organic matter and total nitrogen content by 12.23%−13.96% and 10.5%−13.0%, respectively (P<0.05) whereas microbial biomass nitrogen and nitrate nitrogen increased by 37.9%−42.7% and 72.5%−107.9%, respectively (P<0.05). The soil available potassium and available phosphorus in MN85 treatment also increased by 45.9% and 152.5% (P<0.05), while water-soluble nitrogen increased by 68.9% (P<0.05).   Conclusion  A 15% reduction of controlled-release urea combined with organic fertilizer can increase soil nutrient content, promote crop nitrogen absorption, thereby improving crop yield and nitrogen fertilizer utilization efficiency. This approach can serve as an effective measure to reduce nitrogen fertilizer usage while increasing its efficiency. [Ch, 1 fig. 6 tab. 40 ref.]
  • [1] SONG Peng, LI Hui, JIANG Houlong, ZHAO Pengyu, LI Lixiang, ZHAO Biao, ZHANG Jun.  Effect of biochar-based fertilizer on root development, yield and quality of flue-cured tobacco in Chongqing tobacco growing area . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20230161
    [2] ZHOU Shuideng, SUN Jian, JIANG Jianming, SHAO Jiangwei, DENG Huimin, SHAO Qingsong, WANG Zhi’an.  Effects of fertilization at different growth stages on yield and quality of Fritillaria thunbergii . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20220613
    [3] ZHANG Hongju, MA Shanshan, ZHAO Keli, YE Zhengqian, WANG Zhiyong, BAI Shan.  Soil fertility and its spatial distribution for Carya cathayensis stands in Lin'an, Zhejiang Province . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2018.04.012
    [4] WEI Wei, GUO Jialian, WAN Lintao, XU Linfeng, DING Mingquan, ZHOU Wei.  Research progress on molecular regulation mechanism of grain weight formation in wheat . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2016.02.022
    [5] SUN Ying, WANG Xudong, WANG Ying, PAN Wujie, LU Rongjie, RUAN Zhongqiang, TU Wenwen.  Soil available nutrients and rice yield with silicon and phosphorus fertilization . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2015.04.009
    [6] WU Genliang, ZHENG Jirong, LI Xuke.  Effect of different LED sources on the quality and yield of overwintering pepper in the greenhouse . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2014.02.013
    [7] CHEN Feng, SU Shuchai, ZHANG Bing, CHEN Zhigang, WANG Wenhao.  Hazelnut yield and fruit quality with foliar N, P, K fertilizer . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2014.06.016
    [8] MENG Ci-fu, JIANG Pei-kun, CAO Zhi-hong, XU Qiu-fang, ZHOU Guo-mo.  Boron nutrition and application to Myrica rubra . Journal of Zhejiang A&F University,
    [9] LIU Xing-quan, MIN Fan-guo, YANG Jin-min, LI Jie, CHEN Xiao-jia.  PolyacryIamide made slow-release fertilizer’s effects on Zea ways . Journal of Zhejiang A&F University,
    [10] CHEN Yi-liang, NI Rong-xin, CHEN Min-hong, WANG Zhao-min, PANG Pin-zhen.  Plant thinning effect of Chinese fir seed orchard in Qingyuan . Journal of Zhejiang A&F University,
    [11] SHI Ya-zhen.  Effects of form pruning on yield at early stage in Chinese chestnut . Journal of Zhejiang A&F University,
    [12] WANG Bai-po, DAI Wen-sheng, CHENG Xiao-jian, YU Wei-wu, WANG Li-zhong, BAO Li-hong, YAN Rong-bao.  Adaptability of 8 types of commercial trees growing in the hilly regions and their effects on changes of soil nutrient . Journal of Zhejiang A&F University,
    [13] Wang Zhaomin, Zhang Jianzhong, Ni Rong xin, Chen Yiliang, Wu Longgao, Wang Weian, Chen Xilian.  Analysis of the Factors Affecting Output and Quality of Seeds From Chinese Fir Seed Orchard. . Journal of Zhejiang A&F University,
    [14] Wang Baipo, Cheng Xiaojian, Shen Xianlin, Zhu Guojun, Tong Pinzhang.  Flowering Properties in Varieties of Chinese Chestnut and Their Association With Low Yield. . Journal of Zhejiang A&F University,
    [15] Fan Yirong, Mao Yingchun, Fang Luming, Yu Qilong, Xi Xinji, Wang Guoying..  Forestation Techniques and First Results on Seed Orchard of Pinus taiwanensis. . Journal of Zhejiang A&F University,
    [16] Guan Kanglin, Guan Yu..  Analysis of Seed Yield Composition in Seed Orchard of Chinese Fir. . Journal of Zhejiang A&F University,
    [17] Liang Yuerong, Lu Jianliang, Zhang youjiong, Zhu Yongxing.  Effect of Tea Cuifasu on Spring Tea Flushing. . Journal of Zhejiang A&F University,
    [18] WangShoudong, QinYuliang, YaoXin′ai.  Relationship between Planting Density and Yield in Early stage of Hawthorn. . Journal of Zhejiang A&F University,
    [19] He Junchao, Fang Wei, Lu Xueke, Lou Jinshan, Li Xiaowu..  Rhizome Structure of Lei Bamboo Shoot-stand with High Yield and Good Benefit. . Journal of Zhejiang A&F University,
    [20] He Fuji, Wu Mingan, Ni Rongxin, Xie Zhengcheng, Zhang Jianzhong..  Effect of Canopy Density on Seed Yield of Chinese Fir in Seed Orchard. . Journal of Zhejiang A&F University,
  • [1]
    DHILLON A K, SHARMA N, DOSANJH N K, et al. Variation in the nutritional quality of rice straw and grain in response to different nitrogen levels [J]. Journal of Plant Nutrition, 2018, 41(15): 1946 − 1956.
    [2]
    GIL-ORTIZ R, NARANJO M A, RUIZ-NAVARRO A, et al. Enhanced agronomic efficiency using a new controlled-released, polymeric-coated nitrogen fertilizer in rice [J/OL]. Plants, 2020, 9 (9): 1183[2024-01-10]. doi: 10.3390/plants9091183.
    [3]
    HUANG Jing, DUAN Yinghua, XU Minggang, et al. Nitrogen mobility, ammonia volatilization, and estimated leaching loss from long-term manure incorporation in red soil [J]. Journal of Integrative Agriculture, 2017, 16(9): 2082 − 2092.
    [4]
    ZHAO Yanhui, XIONG Xiong, WU Chenxi. Effects of deep placement of fertilizer on periphytic biofilm development and nitrogen cycling in paddy systems [J]. Pedosphere, 2021, 31(1): 125 − 133.
    [5]
    NING Chuanchuan, LIU Rui, KUANG Xizhi, et al. Nitrogen fertilizer reduction combined with biochar application maintain the yield and nitrogen supply of rice but improve the nitrogen use efficiency [J/OL]. Agronomy, 2022, 12 (12): 3039[2024-01-10]. doi: 10.3390/agronomy12123039.
    [6]
    LI Yanqing, WEN Yanchen, LIN Zhi’an, et al. Effect of different organic manures combined with chemical fertilizer on nitrogen use efficiency and soil fertility [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1669 − 1678.
    [7]
    HOU Qiong, NI Yuemin, HUANG Shan, et al. Effects of substituting chemical fertilizers with manure on rice yield and soil labile nitrogen in paddy fields of China: a meta-analysis [J]. Pedosphere, 2023, 33(1): 172 − 184.
    [8]
    CHAI Jian, YU Aizhong, LI Yue, et al. Effects of green manure incorporation combined with nitrogen fertilizer reduction on wheat yield and nitrogen utilization in oasis irrigated area [J]. Acta Agronomica Sinica, 2023, 49(11): 3131 − 3140.
    [9]
    CHEN Danmei, YUAN Ling, LIU Yiren, et al. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties [J]. European Journal of Agronomy, 2017, 90: 34 − 42.
    [10]
    DONG Wenyi, ZHANG Xinyu, DAI Xiaoqin, et al. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China [J]. Applied Soil Ecology, 2014, 84: 140 − 147.
    [11]
    ZHANG Shijie, ZHANG Gang, WANG Dejian, et al. Investigation into runoff nitrogen loss variations due to different crop residue retention modes and nitrogen fertilizer rates in rice-wheat cropping systems [J/OL]. Agricultural Water Management, 2021, 247 : 106729[2024-01-10]. doi: 10.1016/j.agwat.2020.106729.
    [12]
    XU Xianju, MA Hongbo, NING Yunwang, et al. Effects of slow-released nitrogen fertilizers with different application patterns on crop yields and nitrogen fertilizer use efficiency in rice-wheat rotation system [J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 307 − 316.
    [13]
    LU Rukun. The Analysis Method of Soil Agricultural Chemistry [M]. Beijing: China Agriculture Science and Technology Press, 2000.
    [14]
    QIAO Jun, YANG Linzhang, YANA Tingmei, et al. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area [J]. Agriculture, Ecosystems and Environment, 2012, 146: 103 − 112.
    [15]
    MUHAMMAD Y N, ZHANG Jianwei, ZHOU Yan, et al. Quantifying the impact of reduced nitrogen rates on grain yield and nitrogen use efficiency in the wheat and rice rotation system of the yangtze river region [J/OL]. Agronomy, 2022, 12 (4): 920[2024-01-10]. doi: 10.3390/agronomy12040920.
    [16]
    LI Peipei, HAN Yanlai, HE Jizheng, et al. Soil aggregate size and long-term fertilization effects on the function and community of ammonia oxidizers [J]. Geoderma, 2019, 338: 107 − 117.
    [17]
    SHAHID M, NAYAK A K, PUREE C, et al. Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil [J]. Soil and Tillage Research, 2017, 170: 136 − 146.
    [18]
    HAN Zhe, DI Chengqian, RAHMAN M K U, et al. Repeated application of rice straw stabilizes soil bacterial community composition and inhibits clubroot disease [J/OL]. Agriculture, 2021, 11 (2): 108[2024-01-10]. doi: 10.3390/agriculture11020108.
    [19]
    YANG Yanhua, SU Yao, HE Zhenchao, et al. Transformation and distribution of straw-derived carbon in soil and the effects on soil organic carbon pool: a review [J]. China Journal of Applied Ecology, 2019, 30(2): 668 − 676.
    [20]
    HU Hongxiang, WANG Yufang, CHEN Zhu, et al. Effects of straw return with chemical fertilizer on nitrogen and phosphorus leaching from yellow cinnamon soil [J]. Journal of Soil and Water Conservation, 2015, 29(5): 101 − 105.
    [21]
    LAN Ting, XIE Nan, CHEN Cheng, et al. Effects of biological nitrification inhibitor in regulating NH3 volatilization and fertilizer nitrogen recovery efficiency in soils under rice cropping [J/OL]. Science of the Total Environment, 2022, 838 (1): 155857[2024-01-10]. doi: 10.1016/j.scitotenv.2022.155857.
    [22]
    PAN Lixia, JIANG Zhenhui, ZHANG Wenyi, et al. Effects of straw and its biochar application on soil ammonia-oxidizing microorganisms and N cycling related enzyme activities in a Phyllostachys edulis forest [J]. Journal of Zhejiang A&F University, 2024, 41(1): 1 − 11.
    [23]
    ZHANG Wenhan, CHEN Zhaoming, ZHANG Jinping, et al. Effects of nitrification inhibitors on soil N2O emission and nitrification in a paddy soil [J]. Journal of Zhejiang A&F University, 2023, 40(4): 820 − 827.
    [24]
    SHI Denglin, WANG Xiaoli, LIU Ankai, et al. Biological effects of biochar nitrogen replacing partial fertilizer nitrogen on rice in yellow soil [J]. Soil and Fertilizer Sciences in China, 2021(2): 199 − 205.
    [25]
    ZUO Ting, WANG Xinxia, HUO Qiong, et al. Variety of soil water-soluble nitrogen as affected by different fertilization and its relation to grain yields with a rice-wheat rotation [J]. Soil and Fertilizer Sciences in China, 2021(6): 112 − 119.
    [26]
    ZHANG Xiangming, SUN Yixiang, WANG Wenjun, et al. Organic manure partial replacing chemical fertilizer: effect on supply ability and apparent budget of rice soil nitrogen [J]. Journal of Agriculture, 2018, 8(12): 28 − 34.
    [27]
    LUO Chaoyi, JIANG Jingjing, CHEN Wen, et al. Effect of biochar on soil properties on the Loess Plateau: results from field experiments [J/OL]. Geoderma, 2020, 369 : 114323[2024-01-10]. doi: 10.1016/j.geoderma.2020.114323.
    [28]
    MALINSKA K, ZABOCHNICKA-SWIATEK M, DACH J. Effects of biochar amendment on ammonia emission during composting of sewage sludge [J]. Ecological Engineering, 2014, 71: 474 − 478.
    [29]
    LIU Zunqi, HE Tianyi, CAO Ting, et al. Effects of biochar application on nitrogen leaching, ammonia volatilization and nitrogen use efficiency in two distinct soils [J]. Journal of Soil Science and Plant Nutrition, 2017, 17: 515 − 528.
    [30]
    MAJOR J, RONDON M, MOLINA D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol [J]. Plant and Soil, 2010, 333: 117 − 128.
    [31]
    YANG Li, ZHANG Jianfeng, ZHANG Fulin, et al. Effects of reducing N application on crop N uptake’ utilization and soil N balance under rice-wheat rotation system on middle and lower reaches of Yangtze River Region [J]. Southwest China Journal of Agricultural Sciences, 2013, 26(1): 195 − 202.
    [32]
    ZHOU Chunhuo, ZHAO Zunkang, PAN Xiaohua, et al. Integration of growing milk vetch in winter and reducing nitrogen fertilizer application can improve rice yield in double-rice cropping system [J]. Rice Science, 2016, 23(3): 132 − 143.
    [33]
    HUANG Min, FAN Long, CHEN Jianan, et al. Continuous applications of biochar to rice: Effects on nitrogen uptake and utilization [J/OL]. Scientific Reports, 2018, 8 : 11461[2024-01-10]. doi: 10.1038/s41598-018-29877-7.
    [34]
    SONG Weifeng, SHU Aiping, LIU Jia, et al. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil [J]. Pedosphere, 2022, 32(4): 637 − 648.
    [35]
    DAI Xianglin, SONG Dali, ZHOU Wei, et al. Partial substitution of chemical nitrogen with organic nitrogen improves rice yield, soil biochemical indictors and microbial composition in a double rice cropping system in south China [J/OL]. Soil and Tillage Research, 2021, 205 : 104753[2024-01-10]. doi: 10.1016/j.still.2020.104753.
    [36]
    GAI Xiapu, LIU Hongbin, LIU Jian, et al. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain [J]. Agricultural Water Management, 2018, 208: 384 − 392.
    [37]
    MENG Lin, ZHANG Xiaoli, JIANG Xiaofang, et al. Effects of partial mineral nitrogen substitution by organic fertilizer nitrogen on the yields of rice grains and its proper substitution rate [J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 290 − 296.
    [38]
    LIU Yanling, LI Yu, ZHANG Yarong, et al. The dynamic of crop yield and nitrogen use efficiency under different long-term fertilization patterns in paddy soil from yellow earth in Southwest China [J]. Soil and Fertilizer Sciences in China, 2017(3): 20 − 27.
    [39]
    YANG Yonghui, LI Minjie, WU Jicheng, et al. Impact of combining long-term subsoiling and organic fertilizer on soil microbial biomass carbon and nitrogen, soil enzyme activity, and water use of winter wheat [J/OL]. Frontiers in Plant Science, 2022, 12 : 788651[2024-01-10]. doi: 10.3389/fpls.2021.788651.
    [40]
    MA Peng, FAN Ping, YANG Zhiyuan, et al. Increasing the contents of paddy soil available nutrients and crop yield via optimization of nitrogen management in a wheat-rice rotation system [J/OL]. Plants, 2022, 11(17): 2209[2024-01-10].doi: 10.3390/plants11172209.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(6)

Article views(85) PDF downloads(2) Cited by()

Related
Proportional views

Effects of slow release nitrogen fertilizer combined with organic fertilizer on crop growth and soil nutrient content in rice-wheat rotation system

doi: 10.11833/j.issn.2095-0756.20240149

Abstract:   Objective  Excessive application of inorganic nitrogen fertilizer could result in severe environmental problems whereas appropriate reduction of nitrogen fertilizer combined with organic fertilizer can avoid the decrease of yield, hence an important way to support the sustainable cultivation of rice-wheat rotation system.   Method  This study, using conventional nitrogen application rate as the standard (180 kg·hm−2 for wheat and 210 kg·hm−2 for rice) and with the controlled-release urea as the nitrogen fertilizer, is aimed to clarify the effects of nitrogen reduction combined with organic fertilizer on crop yield, plant nitrogen and soil nutrient content in a rice-wheat rotation system. This field experiment consisted of four treatments: no nitrogen application (ck), conventional nitrogen application (N100), 15% reduction of nitrogen combined with organic fertilizer (MN85), and 30% reduction of nitrogen combined with organic fertilizer (MN70).   Result  Contribution of nitrogen fertilizer to yield increase was 46.0% (wheat 66.2%, rice 25.8%) and nitrogen fertilization significantly increased crop yield (P<0.05), especially in the treatment of 15% nitrogen reduction combined with organic fertilizer. Compared with N100, MN85 treatment significantly increased the effective panicle number of rice by 16.8% while compared with MN70, the nitrogen content in wheat grains in N100 and MN85 treatments increased by 8.7% and 9.0% (P<0.05), and the nitrogen content in straw increased by 16.6% and 16.0%, respectively (P<0.05). Compared with N100 and MN70, the MN85 treatment exhibited a 23.5% and 19.9% increase in nitrogen content of rice grains, and a 25.5% and 26.6% increase in nitrogen content of straw, respectively (P<0.05). Nitrogen fertilizer application resulted in the accumulation of nitrogen in soil, especially in the treatments of reducing nitrogen combined with organic fertilizer, which had more nitrogen surplus. Compared with N100, the N apparent utilization rate (RE), N agronomic efficiency (AE), and N partial production rate (PFP) of wheat decreased by 61.7%, 57.6%, and 59.5% under MN85 treatment, respectively, and decreased by 152.8%, 122.9%, and 90.3% under MN70 treatment, respectively. During the rice planting season, the nitrogen reduction combined with organic fertilizer treatments showed a 27.0% to 33.2% increase (P<0.05) in N physiological efficiency (PE), while the AE of the MN85 treatment increased by 33.3% comparing to the N100 treatment. Compared with N100, the nitrogen reduction combined with organic fertilizer increased soil organic matter and total nitrogen content by 12.23%−13.96% and 10.5%−13.0%, respectively (P<0.05) whereas microbial biomass nitrogen and nitrate nitrogen increased by 37.9%−42.7% and 72.5%−107.9%, respectively (P<0.05). The soil available potassium and available phosphorus in MN85 treatment also increased by 45.9% and 152.5% (P<0.05), while water-soluble nitrogen increased by 68.9% (P<0.05).   Conclusion  A 15% reduction of controlled-release urea combined with organic fertilizer can increase soil nutrient content, promote crop nitrogen absorption, thereby improving crop yield and nitrogen fertilizer utilization efficiency. This approach can serve as an effective measure to reduce nitrogen fertilizer usage while increasing its efficiency. [Ch, 1 fig. 6 tab. 40 ref.]

YAO Quan, TANG Xu, XIAO Mouliang, JIANG Zhenhui, WU Chunyan, LI Yan, YIN Chang, LI Yongfu. Effects of slow release nitrogen fertilizer combined with organic fertilizer on crop growth and soil nutrient content in rice-wheat rotation system[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240149
Citation: YAO Quan, TANG Xu, XIAO Mouliang, JIANG Zhenhui, WU Chunyan, LI Yan, YIN Chang, LI Yongfu. Effects of slow release nitrogen fertilizer combined with organic fertilizer on crop growth and soil nutrient content in rice-wheat rotation system[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240149
  • 氮素是植物生长所必需的大量营养元素之一,然而自然环境中的氮素无法满足作物的需求。施用氮肥可以缓解作物生长中的氮限制,是提高作物产量的有效措施。目前中国是世界上最大的氮肥消费国之一,其氮肥投入约占世界总消费量的32%[1]。长期过量施用氮肥,会导致作物倒伏、产量品质下降等一系列问题[23],而适当减施氮肥不仅不会影响作物产量,还有助于提高氮肥利用效率,减轻环境负荷,是农业可持续发展的重要举措[46]。但减氮是否可行,取决于减氮量和土壤本身的供氮水平。值得注意的是,即使在高氮水平的稻田中,如果土壤氮素一直处于亏缺状态,短期内减少氮肥可能不会影响作物产量,但随着作物的连续种植,作物产量必然会下降[5]

    有机肥中富含植物所需的营养物质,增施有机肥可以大幅提高土壤中有机质的持续供应能力。然而,由于有机肥中速效养分水平较低且释放速度较慢,单独施用有机肥可能会因为土壤养分供应不足而导致作物产量降低[7]。与此同时,适当施用氮肥并配施有机肥可以提高土壤碳氮磷等养分质量分数,从而提高作物产量[89]。可见,有机肥和化肥的配合施用对促进作物生长、提高土壤的氮素供应能力和可持续性生产、改善土壤理化性质和土壤养分状况都具有积极影响[4]。不同地区的作物产量、土壤肥力和施肥方式等对氮肥配施有机肥的响应存在差异。全国每年的水稻Oryza sativa和小麦Triticum aestivum产量约占谷物生产总量的72%。稻麦轮作是长江中下游地区主要的农田耕作模式之一,对于保障粮食供给和维护粮食安全均具有重大意义[10]。其季节性的干湿交替导致土壤氧化与还原过程交替进行,影响了土壤养分的转化及其有效性,对肥料的响应在水旱两季存在差异[11]。因此,在水旱轮作条件下,探讨作物生长和土壤肥力如何响应施肥模式的变化具有重要意义。

    缓控释尿素是一种新型肥料,它通过减缓氮肥在土壤中的转化过程和释放速率,使氮素释放与作物需氮同步,从而减少施氮量及施肥次数,降低劳动力成本,实现高产高效的目的[12]。目前,对于缓控释尿素肥效的研究集中在单独施用或与普通尿素配施,而关于缓控释尿素和有机肥配施条件下对周年轮作作物和土壤肥力的影响报道较少。研究表明:减氮15%~30%并不会对作物产量造成影响[56]。因此,本研究以稻麦轮作田为试验区,在缓释氮肥和有机肥配施的条件下,研究不同氮肥减量水平配施有机肥对稻麦轮作体系作物产量、氮素吸收利用以及土壤养分的影响,以期为化肥减量和有机肥施用提质增效提供科学依据。

    • 浙江省嘉兴市海宁市许村镇杨渡村(30o26′07″N,120o24′23″E)处于浙北平原区,海拔为3~4 m;气候为北亚热带季风气候,年均气温为16~17 ℃,≥10 ℃的积温为4 800~5 200 ℃,年降水量为1 500~1 600 mm,无霜期为240~250 d,年日照时数为1 900~2 000 h,年太阳辐射量为100~115 J·cm−2。土壤属于水稻土类渗育型水稻土亚类黄松田土属。试验地块农田排灌便利,其耕层土壤(0~20 cm)基本理化性状:容重0.898 g·cm−3、pH 7.17、有机质35.00 g·kg−1、全氮1.87 g·kg−1、全磷0.82 g·kg−1、全钾14.70 g·kg−1、铵态氮5.01 mg·kg−1、硝态氮2.12 mg·kg−1、有效磷14.10 mg·kg−1和速效钾94.40 mg·kg−1

    • 试验设置4个处理:①对照(ck),不施氮肥;②常规施氮(N100),当地农户的习惯施肥量,小麦季氮(N)、磷(P2O5)、钾(K2O)肥用量分别为180.0、34.5和90.0 kg·hm−2,水稻季分别为210.0、40.5和90.0 kg·hm−2;③无机氮肥减施15%并配施有机肥(MN85);④无机氮肥减施30%并配施有机肥(MN70)。每个处理重复3次,共12个小区,每个小区面积为30 m2 (5 m×6 m),随机区组排列。各处理田块间使用塑料薄膜将田埂包裹住,使其单排单灌,避免串灌串排,试验区域外围设置保护行,保护行种植作物但不施肥,其他田间管理措施一致。

      氮肥用缓释尿素(N质量分数为44%,山东多益成肥料农业科技有限公司,释放期60 d),磷肥用过磷酸钙(P2O5质量分数为12%),钾肥用氯化钾(K2O质量分数为60%)。稻麦两季的有机肥施用量相同,以当地常用的有机肥施用量为依据,均设置为7 500 kg·hm−2,有机肥以猪粪为基质的颗粒有机肥,pH 7.60,其养分质量分数分别为:N 1.88%、P2O5 2.07%、K2O 1.58%和碳 (C) 32.3%。各处理有机无机养分投入量见表1。所有肥料均作为基肥在小麦播种或水稻移栽前随翻地一次性施入。

      项目 处理 氮素投入量/(kg·hm−2) 磷素投入量/(kg·hm−2) 钾素投入量/(kg·hm−2)
      有机 无机 合计 有机 无机 合计 有机 无机 合计
      小麦 ck 0 0 0 0 34.50 34.50 0 90.00 90.00
      N100 0 180.00 180.00 0 34.50 34.50 0 90.00 90.00
      MN85 141.00 153.00 294.00 155.25 34.50 189.75 118.50 90.00 208.50
      MN70 141.00 126.00 267.00 155.25 34.50 189.75 118.50 90.00 208.50
      水稻 ck 0 0 0 0 40.50 40.50 0 90.00 90.00
      N100 0 210.00 210.00 0 40.50 40.50 0 90.00 90.00
      MN85 141.00 178.50 319.50 155.25 40.50 195.75 118.50 90.00 208.50
      MN70 141.00 147.00 288.00 155.25 40.50 195.75 118.50 90.00 208.50
      总计 ck 0 0 0 0 75.00 75.00 0 180.00 180.00
      N100 0 390.00 390.00 0 75.00 75.00 0 180.00 180.00
      MN85 282.00 331.50 613.50 310.50 75.00 385.50 237.00 180.00 417.00
      MN70 282.00 273.00 555.00 310.50 75.00 385.50 237.00 180.00 417.00

      Table 1.  Amount of pure nutrient input in fertilization treatments

      田间管理按当地常规栽培措施进行。小麦于2021年11月1日播种,2022年5月19日收获,供试小麦品种为‘浙华1号’‘Zhehua No.1’,播种密度为187.5 kg·hm−2;水稻于2022年6月15日播种育苗,7月6日进行人工移栽,10月27日收获,供试水稻品种为‘秀水134’ ‘Xiushui 134’,种植密度为15×104株·hm−2

    • 采用人工收获,作物产量来源于整个小区,小麦收获的同时采集取样框内(0.5 m2)的所有植株样品,水稻收获的同时采集有代表性植株样品10穴,植株样品除选取部分样品用于室内考种外,其余样品经风干、脱粒后粉碎,用于植株全氮分析。

      水稻收获后,利用直径3.5 cm的不锈钢土钻采集耕层(0~20 cm)土壤样品,每个小区按“梅花型”采集5个点,混匀后,将其分成2份,一份过2.000 mm筛后,用作土壤微生物生物量氮、水溶性氮、铵态氮和硝态氮的测定;另一份在室内风干,分别过2.000和0.149 mm筛后用于土壤养分分析。

    • 根据鲁如坤[13]的土壤农业化学分析方法,容重采用环刀法测定,pH采用电位法(土水质量体积比为1.0∶2.5),有机质采用重铬酸钾外加热法测定,土壤全钾和全磷使用氢氧化钠熔融后分别采用火焰光度计和钼锑抗比色法测定,速效钾用乙酸铵浸提后采用火焰光度计测定,有效磷采用碳酸氢钠浸提-钼锑抗比色法测定,硝态氮采用双波长紫外分光光度法测定,铵态氮采用靛酚蓝比色法测定,土壤水溶性氮和微生物生物量氮分别采用去离子水浸提和氯仿熏蒸-硫酸钾浸提后,使用总有机碳(TOC)分析仪测定,植株全氮质量分数使用元素分析仪测定。

      参照QIAO等[14]的方法计算作物吸氮量、氮肥表观利用率(%)、氮肥农学效率(kg·kg−1)、氮肥偏生产率(kg·kg−1)、氮素内部效率(kg·kg−1)和氮素生理效率(kg·kg−1)。作物收获指数=籽粒产量/(籽粒产量+秸秆产量)×100;作物地上部吸氮量=(籽粒产量×籽粒氮质量分数+秸秆产量×秸秆氮质量分数)/1 000;氮肥表观利用率=(UNU0)/FN×100;氮肥农学效率=(YNY0)/FN;氮素内部效率=YN/UN;氮肥偏生产率=YN/FN;氮素生理效率=(YNY0)/(UNU0)。其中:UN指施氮肥处理的作物地上部吸氮量;U0指不施氮肥处理的作物地上部吸氮量;FN指施氮量;YN指施氮肥处理的作物产量;Y0指不施氮肥处理的作物产量。

    • 使用Excel整理数据,SPSS 22.0对数据进行统计分析。采用单因素方差分析(one-way ANOVA)检验模型,各处理间的显著性使用新复极差法(Duncan)分析。同时使用Origin 2019绘图。

    • 不施氮肥处理周年轮作体系作物产量为7 945 kg·hm−2 (小麦1 439 kg·hm−2、水稻6 506 kg·hm−2)(图1),占常规施氮处理(N100)的54%(小麦和水稻分别占33.8%和74.2%),这说明在本试验条件下的氮肥增产贡献率为46% (小麦66.2%、水稻25.8%)。与ck相比,施用氮肥处理下小麦和水稻产量分别提高了176.4%和50.5% (P<0.05)。无论是小麦还是水稻,MN85处理的产量均最高。尽管施氮处理间小麦产量差异不显著,但与N100相比,MN85处理的水稻产量提高了26.8% (P<0.05)。这说明在本研究条件下MN85处理能提高作物产量,稻季增产效果更好。

      Figure 1.  Effect of nitrogen reduction combined with organic fertilizer on crop yields

      在小麦种植季,作物收获指数无显著差异(表2);在水稻种植季,ck处理的水稻收获指数最高,为53.20%,比MN70处理的高了5.02% (P<0.05);与N100相比,减氮配施有机肥处理的收获指数无显著差异。无论是小麦还是水稻,ck处理的有效穗均最低,分别只有219和134万个·hm−2。MN85处理的有效穗高于N100和MN70,尤其是在水稻季,相比N100,MN85处理使有效穗提高了16.8% (P<0.05)。与有效穗变化规律相似,ck处理的千粒重和穗粒数均最低。水稻千粒重和穗粒数在施肥处理间无显著差异。

      作物处理收获指数/%有效穗/
      (万个·hm−2)
      千粒重/g穗粒数/粒
      小麦ck48.06±2.61 a219±70 b41.35±2.35 b22±6 b
      N10050.35±0.77 a306±90 a45.09±0.93 a38±3 a
      MN8550.09±2.50 a325±107 a45.48±2.28 a41±8 a
      MN7048.90±1.64 a281±43 a45.42±0.41 a40±11 a
      水稻ck53.20±2.52 a134±3 c20.80±0.42 a207±28 a
      N10049.32±0.26 ab196±27 b20.95±0.56 a233±5 a
      MN8550.07±0.76 ab229±36 a21.03±0.78 a230±3 a
      MN7048.18±1.12 b213±25 ab21.65±0.60 a213±21 a
        说明:数值为平均值±标准差。不同小写字母表示同一指     标相同作物在不同处理间差异显著(P<0.05)。

      Table 2.  Effect of nitrogen reduction combined with organic fertilizer on crop composition

    • 施氮肥提高了作物中氮质量分数(籽粒和秸秆)(表3)。与ck相比,施氮处理的水稻籽粒和秸秆氮质量分数分别提高了11.3%~15.3%和46.3%~73.3% (P<0.05)。与N100和MN85处理相比,MN70处理显著降低了小麦籽粒和秸秆氮质量分数(P<0.05)。

      作物
      处理
      氮质量分数/(g·kg−1) 吸氮量/(kg·hm−2)
      籽粒 秸秆 籽粒 秸秆
      小麦 ck 16.54±0.56 b 2.43±0.11 b 23.84±3.09 b 3.81±0.78 b
      N100 18.42±1.67 a 2.89±0.29 a 78.93±16.10 a 12.29±2.85 a
      MN85 18.47±2.11 a 2.88±0.38 a 80.23±22.90 a 12.85±5.60 a
      MN70 16.94±0.80 b 2.48±0.11 b 56.54±15.30 ab 8.63±2.44 ab
      水稻 ck 9.97±0.46 b 3.89±0.61 b 64.77±6.87 c 22.20±3.89 c
      N100 11.49±1.07 a 6.52±1.27 a 101.58±22.90 b 59.17±16.60 b
      MN85 11.27±0.25 a 6.74±0.25 a 125.47±25.20 a 74.27±9.84 a
      MN70 11.06±0.26 a 5.69±0.74 a 104.74±7.83 b 58.68±14.80 b
        说明:数值为平均值±标准差。不同小写字母表示同一指标相     同作物在不同处理间差异显著(P<0.05)。

      Table 3.  Effect of nitrogen reduction combined with organic fertilizer on crop nitrogen content and uptake

      与植株氮质量分数变化趋势相似,施氮肥促进了作物对氮的吸收(表3)。在小麦季,施氮处理下籽粒和秸秆吸氮量分别比ck提高了11.3%~15.3%和46.3%~73.3% (P<0.05);与N100处理相比,减氮配施有机肥处理的籽粒和秸秆吸氮量无显著差异。在水稻季,MN85处理下籽粒和秸秆吸氮量比其他处理提高了19.9%~93.7%和25.5%~234.7% (P<0.05)。

      此外,小麦吸收的86.4%氮和水稻吸收的66.1%氮被储存在籽粒中,而秸秆还田只能将13.6%和33.9%的氮素重新归还到土壤中(表3)。

    • 表4可见:不施氮处理土壤周年氮素亏缺114.63 kg·hm−2(小麦季27.66 kg·hm−2,水稻季86.97 kg·hm−2),水稻种植过程中土壤氮素亏损更严重。施氮能有效缓解氮素亏缺,甚至出现盈余,尤其在增施有机肥的MN85和MN70处理中,周年氮素盈余量比单施无机肥的(138.04 kg·hm−2)分别提高了182.64和188.36 kg·hm−2

      项目 处理 氮输出/
      (kg·hm−2)
      氮投入/
      (kg·hm−2)
      氮素表观平衡/
      (kg·hm−2)
      氮肥表观利
      用率/%
      氮素生理效率/
      (kg·kg−1)
      氮肥农学效率/
      (kg·kg−1)
      氮素内部效率/
      (kg·kg−1)
      氮肥偏生产率/
      (kg·kg−1)
      小麦 ck 27.66 0 −27.66 52.22±2.47 a
      N100 91.21 180.00 88.79 35.31±10.40 a 45.54±6.35 a 15.64±7.64 a 47.27±4.59 a 23.64±7.64 a
      MN85 93.07 294.00 200.93 22.25±9.67 b 45.33±7.88 a 9.95±4.39 b 47.24±5.30 a 14.84±4.39 b
      MN70 65.17 267.00 201.83 14.05±6.82 b 51.44±5.22 a 7.02±3.03 b 51.24±2.42 a 12.40±3.03 b
      水稻 ck 86.97 0 −86.97 74.90±6.72 a
      N100 160.75 210.00 49.25 35.14±18.11 a 29.75±7.07 b 10.78±6.23 b 55.51±6.64 b 41.76±6.23 a
      MN85 199.74 319.50 119.76 35.30±10.86 a 39.70±5.90 a 14.44±6.63 a 55.56±0.89 b 34.80±6.63 a
      MN70 163.42 288.00 124.58 26.55±7.57 b 38.82±3.35 a 10.34±3.17 b 58.22±2.51 b 32.93±3.17 a
      周年 ck 114.63 0 −114.62 69.27±4.60 a
      N100 251.96 390.00 138.04 35.22±14.54 a 37.91±4.56 b 13.02±4.62 a 52.50±5.69 b 33.39±4.62 a
      MN85 292.82 613.50 320.68 29.05±7.43 b 42.05±1.59 a 12.29±3.51 a 52.97±1.10 b 25.23±3.51 b
      MN70 228.60 555.00 326.40 20.54±1.00 b 42.54±1.91 a 8.74±0.69 b 55.97±0.88 b 23.05±0.69 b
        说明:数值为平均值±标准差。−表示无数据。不同小写字母表示同一指标相同项目在不同处理间差异显著(P<0.05)。

      Table 4.  Effect of nitrogen reduction combined with organic fertilizer on nitrogen apparent balance and use efficiency

      小麦在所有处理中,N100处理下氮肥表观利用率、氮肥农学效率和氮肥偏生产率均最高。配施有机肥的处理间氮素生理效率和内部效率没有显著变化。施氮处理下小麦氮素内部效率为47.27~51.24 kg·kg−1,平均为48.58 kg·kg−1,说明在施氮肥条件下每生产100.00 kg小麦籽粒,需要吸收氮2.06 kg。施氮处理的氮肥偏生产率为12.40~23.64 kg·kg−1,平均为16.96 kg·kg−1,与N100处理相比,MN85和MN70处理的氮肥偏生产率分别降低了59.5%和90.3% (P<0.05)。

      水稻在所有处理中,MN85处理下氮肥表观利用率为35.3%,比MN70处理提高了33.2% (P<0.05)。与N100相比,MN85和MN70处理的氮素生理效率分别提高了33.2%和30.2% (P<0.05)。在3个施氮处理中,MN85处理的氮肥农学效率最高,分别比N100和MN70处理提高了33.3%和39.8% (P<0.05)。ck处理的水稻氮素内部效率最高,比施氮处理显著提高了32.8% (28.7%~35.0%)。施氮处理间水稻氮素内部效率为55.51~58.20 kg·kg−1,说明在施氮肥条件下每生产100.00 kg籽粒,需要水稻吸收氮1.83 kg。同样,施氮处理间氮肥偏生产率也没有显著差异。

      周年轮作的氮肥效率中,N100处理的氮肥表观利用率、氮肥偏生产率分别比MN85和MN70处理提高了21.4%、32.5%和71.7%、44.6% (P<0.05)。与N100处理相比,减氮配施有机肥处理的氮肥生理效率提高了11.1%~12.1%。MN70处理的氮肥农学效率最低,分别比N100和MN85处理降低了32.9%和28.9% (P<0.05)。与ck处理相比,施氮处理使内部利用效率降低了19.2%~24.2% (P<0.05),而不同施氮处理间没有显著差异。

    • 表5可见:土壤pH为7.14~7.16,平均为7.14,均为中性,处理间无显著差异。减氮配施有机肥处理的土壤容重有变小的趋势,但处理间差异不显著。MN85处理的速效钾和有效磷质量分数显著高于其他3个处理(P<0.05),而其他处理间没有显著差异。与N100相比,配施有机肥使土壤有机质和全氮质量分数显著提高(P<0.05)。

      处理 pH 容重/
      (g·cm−3)
      速效钾/
      (mg·kg−1)
      有效磷/
      (mg·kg−1)
      有机质/
      (g·kg−1)
      全氮/
      (g·kg−1)
      ck 7.16±0.08 a 0.859±0.064 a 65.96±1.44 b 8.35±1.93 b 34.01±0.56 b 1.90±0.07 b
      N100 7.14±0.16 a 0.857±0.034 a 64.40±6.84 b 7.96±2.60 b 35.01±1.67 b 2.02±0.02 b
      MN85 7.14±0.08 a 0.851±0.024 a 93.94±19.46 a 20.06±9.54 a 39.29±1.99 a 2.29±0.13 a
      MN70 7.15±0.07 a 0.844±0.040 a 76.81±10.99 b 12.39±2.74 b 39.89±2.54 a 2.23±0.13 a
        说明:数值为平均值±标准差。不同小写字母表示不同处理间差异显著(P<0.05)。

      Table 5.  Effect of nitrogen reduction combined with organic fertilizer on soil physical and chemical properties

    • 表6可见:施氮处理提高了土壤中微生物生物量氮、水溶性氮、铵态氮和硝态氮质量分数,尤其是在氮肥减量配施有机肥的处理中增幅更大。其中,MN85处理的土壤微生物生物量氮、水溶性氮和硝态氮质量分数最高,分别比N100处理提高了42.7%、68.7%和107.4% (P<0.05)。此外,与N100相比,MN70处理的土壤微生物生物量氮和硝态氮质量分数也提高了37.9%和72.2% (P<0.05)。

      处理 微生物生物量氮/(mg·kg−1) 水溶性氮/(mg·kg−1) 铵态氮/(mg·kg−1) 硝态氮/(mg·kg−1)
      ck 9.98±3.27 b 6.57±0.67 c 4.99±0.61 a 1.99±0.29 c
      N100 10.26±1.18 b 7.41±3.06 bc 5.09±1.33 a 3.09±1.13 b
      MN85 14.74±4.13 a 12.51±4.53 a 6.24±0.77 a 6.41±2.08 a
      MN70 14.17±4.56 a 10.76±4.35 ab 5.37±1.29 a 5.32±3.22 a

      Table 6.  Effect of nitrogen reduction combined with organic fertilizer on soil active nitrogen

    • 施用有机肥可以改善土壤结构,促进团粒结构的形成,为土壤微生物的活动提供能量,提高土壤微生物的活性和养分供应能力[15]。有研究指出:有机无机配施能够显著提高土壤中的有机质、全氮等质量分数[1618]。在本研究中,缓释氮肥减量配施有机肥能提高土壤的有机质、全氮、速效钾和有效磷质量分数,这是由于有机肥中可利用的养分直接或间接地刺激了微生物的活动,加速有机质分解为土壤有效养分[19]。此外,施入的无机氮会改善土壤氮素的供给水平,降低土壤中的碳氮比,这更有利于微生物的增殖和土壤中可溶性物质的转化,从而增强了土壤中养分的可利用性,提升了土壤中速效养分的质量分数[20]。LAN等[21]研究表明:配施有机肥增加了土壤有机质和全氮质量分数,并且提高了氮利用率。因此,减氮配施有机肥不仅可以提高土壤碳、氮、磷、钾质量分数,同时也能保持较高水平的作物产量。

      土壤微生物生物量氮是土壤活性氮的重要储备库,是植物氮营养的重要来源,是评估土壤活性养分库的重要指标[2223]。在本研究中,减氮配施有机肥增加了土壤微生物生物量氮、水溶性氮和硝态氮质量分数。可能是施加有机肥改善了土壤结构,且有机肥中的有效养分可以激活微生物活性,引起激发效应,从而促进土壤中有机氮的释放[24],因此,土壤水溶性氮和硝态氮质量分数随之提高,这些速效氮可以直接被作物吸收利用,有利于作物的生长发育[2526]。此外,有机肥可以通过吸附土壤中的氮,减少氮淋溶,增加氮矿化,对提高土壤氮质量分数和有效性具有积极作用[2728]。有机肥中的氮主要以有机氮的形态存在,速效氮质量分数较低,并且有机肥的种类和施用量、试验时间、土壤性质甚至气候等因素都会影响研究结果[29]。因此,土壤氮对缓释氮肥减量配施有机肥的响应仍需进一步监测。

    • 在本研究中,与常规施氮处理的作物产量相比,减氮配施有机肥处理使水稻增产8.2%~26.8%,但减氮30%配施有机肥处理的小麦产量比常规施氮处理的降低了28.5%,这可能是因为减氮30%所供应的速效养分较少,小麦季有机肥分解所提供的养分不能满足小麦生长所需[3031]。而在水稻种植期间,由于有机肥经过较长时间转化,土壤中积累的养分可以补足由于减氮处理而缺少的速效养分,使得养分供应可以满足水稻生长的需求[3233]。以往研究表明:有机氮肥占比大于30%时,作物产量基本呈下降趋势[34]。而DAI等[35]的长期研究表明:有机氮肥占比较高的处理反而提高了作物产量,这可能是因为有机肥改良土壤是一个长期的工程,随着种植年限的增长,有机肥发挥的作用越强,对作物的增产效果越明显[36]

    • 在本研究中,无机肥比例为85%的处理中,作物地上部吸氮量最高;随着无机肥比例降到70%时,作物地上部吸氮量也随之降低。这可能是因为随着减氮比例的提高,土壤中的速效氮质量分数就会降低,从而影响作物生长,导致吸氮量下降[6]。不同施氮处理均有较多氮素盈余,尤其是2个配施有机肥处理,且减氮30%配施有机肥处理中的氮素盈余更多,这主要是因为速效氮肥减少,而配施有机肥中氮的有效性较低,释放缓慢,大部分氮素以有机氮形态留存于土壤[37],使得土壤中有了更多的氮素盈余。而在养分充足的情况下,作物可以将吸收的养分分配至其他部分,提高作物地上部整体的氮素积累量,作物产量也不会减少,从而保证作物的正常发育[38]。因此,不施氮肥处理的氮素内部利用率比施氮处理提高了23.8%~32.0%,尤其是在水稻季。其主要原因可能是由于不施氮肥处理土壤中氮供应不足,作物可吸收的氮较少,使不施氮肥处理的作物吸氮量较低,为了保障作物生殖生长,需要相对比例的氮素转移到籽粒中[39]。因此,较低的地上部氮素积累量往往会导致较高的氮素内部利用率[6]

      在本研究中,小麦减氮配施有机肥处理的氮素表观利用率、氮肥农学效率和氮肥偏生产率均低于单施化肥处理,尤其是减氮30%配施有机肥的处理。但是水稻减氮15%配施有机肥处理的氮素表观利用率、氮素生理效率和氮素农学效率要高于单施化肥处理。这是由于速效氮质量分数减少,有机肥中氮的有效性较低,再加上小麦种植季气温较低,微生物活性降低,分解能力减弱,使可供小麦吸收的氮始终处于较低水平,进而出现施用有机肥处理的小麦吸氮量处于较低水平[40]。在水稻种植季,气温较高,微生物活性增强,有机氮分解较快,氮素吸收利用的水平较高,且无机氮减量较少的情况下(减氮15%),速效氮养分能充分满足水稻对氮的生长需求,进而提高了水稻的产量和吸氮量,从而获得较高的利用效率[32]。综上所述,缓释氮肥减量配施有机肥增强了氮素的利用效率,尤其是减氮15%配施有机肥处理。

    • 施用有机肥对于提升土壤养分质量分数作用显著,缓释氮肥减量配施有机肥的土壤中有机质、全氮、水溶性氮和硝态氮均显著提高。并且缓释氮肥减量配施有机肥增强了作物对氮素的吸收能力,从而提高了作物产量和吸氮量,提高了氮素的利用效率,尤其是缓释氮肥减量15%配施有机肥,对作物产量和氮素吸收的提升最为显著。此外,使用缓释肥料还可以通过减少肥料使用量和施用次数来降低生产成本和人工成本。因此,合理的施用缓释氮肥,通过化肥减量配施有机肥的方式,可以提高土壤肥力,促进粮食增收增产。

Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return