-
土壤是人类赖以生存的自然环境,也是农业生产的重要资源。然而,随着国民经济的加速发展,城市化、工业化进程的不断加快,农药、化肥的长期使用和污水灌溉等,农田土壤中的重金属不断累积,引发农田土壤重金属污染问题,导致农产品重金属积累和污染,并通过食物链进入人体,威胁人类的健康。农产品重金属污染问题变得越来越严峻[1-4]。土壤重金属污染具有隐蔽性、不可逆性和长期性的特点[5-6],治理难度大。对土壤重金属污染状况进行监测,预防土壤重金属污染,开展土壤重金属污染农产品的风险评价极为重要,这也是国内外研究和社会关注的热点[7-9]。土壤重金属污染状况的正确评价可以为土壤安全利用、保障农产品安全生产及政府制定土壤保护政策等提供科学依据。评价土壤重金属污染的方法较多,常见的有内梅罗综合指数法、富集系数法、地累积指数法、潜在生态危害指数法等,迄今尚未形成一个成熟的方法和统一的标准[10-13]。水稻Oryza sativa是世界第二大粮食作物,也是中国第一大粮食作物。镉容易被水稻吸收,也是目前中国水稻生产中最主要的重金属污染元素[14]。在浙江省农产区不同土地利用类型中,稻田土壤中重金属平均含量最高[15],但对稻米重金属污染状况的调查,特别是土壤和稻米协同采样的调查和污染评价研究却甚少[16]。嘉兴是浙江省杭嘉湖平原区重要产粮基地之一。已有文献报道:嘉兴市稻田土壤重金属总体状况良好,也存在着一些零星分布的土壤重金属超标区域,但尚未开展土壤-水稻系统协同采样和进行风险评价。基于此,本研究于2018年在水稻收获季,以已报道嘉兴市受重金属污染的稻田土壤区域及重点企业周边区域为主要对象,开展土壤-水稻样品协同采样,测定土壤和稻米中镉、铅、铬、砷等4种重金属元素质量分数,结合GB 15618−2018《土壤环境质量 农用地土壤污染风险管控标准(试行)》、GB/T 36869−2018《水稻生产的土壤镉、铅、铬、汞、砷安全阈值》和GB 2762−2017《食品中污染物限量》,对土壤重金属污染状况和对水稻安全生产的污染风险进行评价,旨在进一步保护和利用土壤,为今后嘉兴市水稻土质量安全管理和土壤重金属污染治理方案的确定提供科学依据。
HTML
-
土壤重金属的生物有效性受诸多因子的影响。在水稻生产上,土壤pH和有机质质量分数对土壤重金属有效性的影响极为重要。相同的重金属质量分数,土壤高pH、高有机质有利于重金属有效性的降低,抑制水稻吸收积累重金属,稻米重金属污染风险下降。因此,国家标准中将土壤pH和有机质质量分数状况列为2个参数,制定土壤中重金属元素镉、铅、铬、汞、砷的最大允许质量分数,其允许值(阈值)随土壤pH和有机质质量分数的提高而增大,如当pH<5、有机质质量分数<20 g·kg−1时,土壤镉的安全阈值定为0.2 mg·kg−1;而当土壤pH≥7、有机质质量分数≥20 g·kg−1时,土壤镉的安全阈值定为0.5 mg·kg−1(GB/T 36869−2018《水稻生产的土壤镉、铅、铬、汞、砷安全阈值》)。调研结果显示:本研究所调查的水稻土土壤pH和有机质质量分数的变化都较大,土壤pH为5.0~8.0,pH相差达3个单位,而土壤有机质质量分数为6.8~61.0 g·kg−1,相差近10倍(表1),因而,允许的土壤重金属阈值不同。
项目 pH 有机质/(g·kg−1) 项目 pH 有机质/(g·kg−1) 最小值 4.96 6.84 标准差 0.74 14.43 最大值 7.99 60.97 变异系数/% 12.06 39.91 平均值 6.15 36.15 Table 1. Soil pH and organic matter content
-
本研究所调查区域水稻土重金属质量分数变幅较大,因不同元素而异。测定结果及描述性统计分析见表2和表3。土壤镉、铅、铬、砷质量分数范围分别为0.01~1.92、17.60~34.80、47.00~123.00、3.97~9.89 mg·kg−1,平均分别为0.36、25.78、72.73、7.55 mg·kg−1。土壤重金属质量分数与浙江省土壤重金属背景值相比,镉、铅、铬、砷分别有68.18%、13.64%、22.73%、54.55%的样品超过浙江省土壤背景值;与土壤环境质量标准[GB 15618−2018《土壤环境质量 农用地土壤污染风险管控标准(试行)》]中农用地土壤污染风险筛选值相比,只有部分稻田土壤镉质量分数有所超标,点位超标率为22.73%,但都低于风险管制值;与水稻安全生产标准(GB/T 36869−2018《水稻生产的土壤镉、铅、汞、砷安全阀值》)的土壤安全阈值相比,也只有镉质量分数超过规定限值,点位超标率为31.82%。
序号 土壤重金属/(mg·kg−1) 稻米镉/
(mg·kg−1)序号 土壤重金属(mg·kg−1) 稻米镉/
(mg·kg−1)镉 铅 铬 砷 镉 铅 铬 砷 1 1.07 28.00 69.00 6.86 0.056 12 0.17 27.70 68.00 7.47 0.024 2 0.14 25.60 68.00 7.69 0.006 13 0.01 24.90 123.00 7.30 0.029 3 0.22 23.80 78.00 7.53 0.019 14 0.17 22.20 65.00 6.95 0.045 4 0.09 19.90 69.00 7.64 0.004 15 0.11 27.30 69.00 7.63 0.061 5 0.45 17.60 63.00 6.92 0.024 16 0.15 27.60 73.00 7.98 0.026 6 0.30 27.90 67.00 8.35 0.015 17 0.09 23.30 59.00 5.89 0.005 7 0.27 29.40 90.00 9.64 0.041 18 0.56 23.90 61.00 6.56 0.030 8 0.24 29.10 69.00 7.85 0.018 19 0.09 20.30 73.00 7.86 0.028 9 0.17 34.20 64.00 7.40 0.009 20 0.33 23.80 98.00 8.19 0.025 10 0.47 34.80 73.00 9.89 0.051 21 0.18 21.00 47.00 3.97 0.049 11 0.29 24.10 61.00 8.13 0.009 22 1.92 30.70 93.00 8.49 0.062 Table 2. Contents of heavy metals in paddy soils and rice grains
重金属 重金属/(mg·kg−1) 标准差 变异系数/% 超标率Ⅰ/% 超标率Ⅱ/% 最小值 最大值 平均值 镉 0.01 1.92 0.36 0.41 120.10 31.82 22.73 铅 17.60 34.80 25.78 4.30 16.70 0 0 铬 47.00 123.00 72.73 15.66 21.53 0 0 砷 3.97 9.89 7.55 1.18 15.56 0 0 说明:超标率Ⅰ以水稻生产的安全阈值(GB/T 36869−2018)为参比值;超标率Ⅱ以风险筛选值(GB 15618−2018)为参比值。 Table 3. Variation of heavy metal contents and exceeding standard rate in paddy soils
变异系数可以反映一定区域内重金属元素的分布和污染程度的差异,变异系数越大代表元素质量分数差异越大、离散度越高,重金属质量分数受外界因素影响越大[26]。由表2可以看出:土壤重金属质量分数变异系数最大的是镉,达120.10%,表明土壤中镉的空间分布差异比较大,可能受人类活动及周边环境(企业工厂)的影响所致,其他重金属元素铅、铬、砷的变异系数都很小,为15.56%~21.53%,在空间上存在相似的污染程度。
表2与图1结果表明:除部分样点镉质量分数高于对应的风险筛选值和安全阈值外,土壤镉、铅质量分数水平均未超出对应安全阈值,说明被调查的土壤重金属污染(疑似)区域内水稻土虽然存在普遍的镉、铬、铅富集,但铬、铅未超出国家相关标准限值。土壤砷质量分数均低于水稻生产安全阈值和农用土壤污染风险筛选值。因此,对水稻安全生产而言,土壤镉累积现象最为凸显,可能会影响水稻的安全生产。
虽然研究区域内有部分稻田土壤镉超过国家标准限值,但是稻米测定结果显示所采集的稻谷稻米镉质量分数为0.006~0.062 mg·kg−1,平均为0.029 mg·kg−1,均在安全范围以内,没有超过GB 2762–2017《食品中污染物限量》限额(0.200 mg·kg−1)。说明目前的土壤环境对所栽水稻品种是安全的。除了水稻自身因素外,稻米镉质量分数积累低还可能与重金属镉污染土壤的环境条件特别是土壤pH和有机质质量分数较高有关[27]。但是在本研究中,研究区稻米镉质量分数与土壤全量镉、有效态镉质量分数和土壤pH、有机质质量分数的相关性都不高,显示水稻土中全量镉、有效态镉、有机质质量分数和pH都不是影响稻米中镉质量分数高低的决定性因素(表4)。虽然稻米镉积累与有效态镉、有机质质量分数有一定的正相关性,而与pH呈负相关,但许多研究表明重金属的有效性会随着有机质的增加而降低[28]。说明稻米镉质量分数、土壤镉有效性与土壤环境条件关系复杂,同时这些结果还可能与水稻品种有关。因为水稻基因型是影响土壤-水稻系统中重金属的转移和生物利用度的主要因素,不同的水稻品种对土壤重金属的吸收、转移、富集能力不同,导致籽粒中重金属质量分数的差异。镉低积累水稻品种籽粒吸收积累镉少,在一定的土壤镉污染超标条件下,大米镉不会超标[19, 29]。
项目 土壤全量镉 土壤有效态镉 稻米镉 土壤pH 有机质 土壤全量镉 1 土壤有效态镉 0.508* 1 稻米镉 −0.090 0.138 1 pH 0.007 −0.169 −0.013 1 有机质 −0.233 −0.107 0.296 −0.306 1 说明:*表示在0.05水平上相关 Table 4. Correlation analysis of total soil Cd, available Cd, rice grain Cd, soil pH and SOM
-
以国家水稻生产的土壤安全阈值(GB/T 36869−2018《水稻生产的土壤镉、铅、铬、汞、砷安全阈值》)为依据,计算研究区域水稻土土壤重金属的单项污染指数和综合污染指数。从表5可以看出:土壤重金属镉、铅、铬、砷的单项污染指数平均值分别为0.96、0.25、0.42、0.36。所有重金属单因子污染指数均小于1.00,属于清洁水平,说明研究区域水稻土处于安全水平。与稻米重金属质量分数测定结果一致。
统计指标 单因子污染指数 综合指数 镉 铅 铬 砷 最大值 3.84 0.46 0.82 0.52 2.84 最小值 0.04 0.09 0.24 0.20 0.28 平均值 0.96 0.25 0.42 0.36 0.81 标准差 0.84 0.10 0.12 0.08 0.57 变异系数/% 86.92 40.15 28.72 21.66 70.36 Table 5. Heavy metal pollution index of paddy soil
根据各重金属元素不同污染级别样点数占比可知(表6),有68.18%的样点土壤镉单因子污染指数小于1.00,其余31.82%样点的土壤镉超标,其中轻度污染、中度污染、重度污染样点数分别占样点总数的22.73%、4.55%、4.55%。铅、铬、砷等3种元素的单因子污染指数全部都小于1.00,不存在污染情况。由此,镉是4种元素中积累最为严重的重金属元素。从内梅罗综合指数(表5和表6)看,研究区域土壤镉、铅、铬、砷重金属综合指数为0.28~2.84,各点位差异较明显。所有点位中63.64%的样点综合污染指数均小于0.70,也说明嘉兴市水稻土环境状况整体良好。处于警戒线的占13.64%,受污染的占22.72%,其中轻度污染的占18.18%,中度污染的占4.54%,无重度污染。对于处于警戒线,特别是部分已处于中、轻度污染的土壤应当引起高度重视。
单因子指数 污染等级 各污染等级点位占比/% 综合指数 污染等级 各污染等级
点位占比/%镉 铅 铬 砷 P≤1 清洁 68.18 100 100 100 Pi≤0.7 安全 63.64 1<P≤2 轻度污染 22.72 0 0 0 0.7< Pi≤1.0 警戒 13.64 2<P≤3 中度污染 4.55 0 0 0 1.0< Pi≤2.0 轻度污染 18.18 P>3 重度污染 4.55 0 0 0 2.0< Pi≤3.0 中度污染 4.54 Table 6. Proportion of heavy metal pollution based on pollution index method
-
以浙江省土壤背景值作为依据,以锰元素作为校准元素进行对比,计算富集系数。对4种重金属元素的富集系数(E)进行分析比较(表7),可以得出:4种重金属元素富集程度从大到小依次为镉、砷、铬、铅。铅、铬、砷区域富集污染程度为Ⅱ级,属于轻微富集、轻微污染;镉区域富集污染程度为Ⅲ级,属于中度富集、中度污染。镉、铅、铬、砷分别有18.18%、36.36%、27.27%、13.64%的采样点呈现无富集、无污染状态;分别有31.82%、59.09%、68.18%、81.82%的采样点表现为重金属轻微富集、轻微污染;分别有31.82%、4.55%、4.55%、4.55%的采样点表现为重金属中度富集、中度污染;还有18.18%的样点存在镉元素显著富集、强污染。
重金属 E E≤1 1<E≤2 2<E≤5 5<E≤20 20<E≤40 变化范围 平均值 样品数/个 比率/% 样品数/个 比率/% 样品数/个 比率/% 样品数/个 比率/% 样品数/个 比率/% 镉 0.10~9.86 2.81 4 18.18 7 31.82 7 31.82 4 18.18 0 0 铅 0.60~2.13 1.23 8 36.36 13 59.09 1 4.55 0 0 0 0 铬 0.84~2.40 1.33 6 27.27 15 68.18 1 4.55 0 0 0 0 砷 0.87~2.13 1.41 3 13.64 18 81.82 1 4.55 0 0 0 0 重金属 Igeo Igeo≤0 0<Igeo≤1 1<Igeo≤2 2<Igeo≤3 3<Igeo≤4 变化范围 平均值 样品数/个 比率/% 样品数/个 比率/% 样品数/个 比率/% 样品数/个 比率/% 样品数/个 比率/% 镉 −4.51~3.07 −0.11 12 54.55 6 27.27 2 9.09 1 4.55 1 4.55 铅 −1.37~−0.39 −0.84 22 100.00 0 0 0 0 0 0 0 0 铬 −1.31~0.08 −0.71 21 95.45 1 4.55 0 0 0 0 0 0 砷 −1.52~−0.20 −0.61 22 100.00 0 0 0 0 0 0 0 0 Table 7. Evaluation eigen value statistics of heavy metal element enrichment coefficient and geoaccumulation idex in paddy soil
仍以浙江省土壤背景值进行参比。4种重金属的地累积指数法统计结果如表7所示。可以看出:4种元素Igeo从大到小依次为镉、砷、铬、铅。在所有样点中,砷、铅的地累积指数均小于0,呈现无富集无污染状态。污染最严重的重金属为镉,其平均地累积指数为−0.11,处于轻微污染的边界。但是各样点指数差异悬殊,特别是镉,在研究区中仅有54.55%的样点处于无富集、无污染状态,27.27%的样点处于轻微富集状态,9.09%的样点处于中度富集状态,4.55%的样点处于中强富集状态,4.55%的样点处于强富集状态。总体而言,该地区在人类生产、生活活动的影响下,镉元素积累明显,富集程度高;个别样点存在镉元素轻微富集污染,其他元素富集污染程度均为无污染。
-
以水稻生产的土壤安全阈值(GB/T 36869−2018《水稻生产的土壤镉、铅、铬、汞、砷安全阈值》)指标为参比值,根据生态风险划分标准,对水稻土重金属污染进行潜在生态风险评价,评价结果(表8)显示:研究区域水稻土不同重金属单项潜在生态危害指数(Er)平均值从大到小表现为镉、砷、铅、铬。所有样点铅、铬、砷的潜在生态风险指数(IR)均小于40,处于轻微风险水平。土壤镉的潜在生态危害程度最高,平均值为28.83,生态危害系数变化幅度大,最高值为115.2,最低值为1.2,变异系数为86.92%。达到中等、较强生态危害的样点数分别占样点总数的18.18%、4.55%。土壤重金属综合潜在生态风险指数(IR)变化范围为9.08~121.36,平均值为35.73,变异系数为70.01%,呈现轻微生态风险水平,主要贡献因子是镉。从变异系数可以看出:研究区域内生态危害分布差异性大。但是所有样点的IR均小于150,全部样点均处于轻微生态风险水平。而土壤生态风险预警指数(IER)变化范围为−2.97~0.73,平均值为−2.01,处于无风险至预警级,仅有1个样点最大的IER为0.73,也在轻度预警级别。因此,采用潜在生态风险评价指数法和生态风险预警指数法都表明:研究区土壤重金属处于安全级别,污染风险较小。
统计指标 潜在生态危害指数(Er) 潜在生态风险
指数(IR)土壤生态风险
预警指数(IER)镉 铅 铬 砷 最大值 115.20 4.56 1.64 5.24 121.36 0.73 最小值 1.20 0.90 0.48 1.99 9.08 −2.97 平均值 28.83 2.47 0.84 3.58 35.72 −2.01 标准差 25.06 0.99 0.24 0.78 25.02 0.83 变异系数/% 86.92 40.15 28.72 21.66 70.01 −41.15 Table 8. Potential ecological risk assessment of heavy metals in paddy soil
采用不同的方法对研究区域稻田土壤重金属污染风险评价的结果都表明:研究区域总体上处于安全水平;就单个重金属而言,土壤铅、铬、砷属于没有污染风险或轻微风险水平,而镉在某些点位稻田土壤中呈显著富集、轻中度污染,对水稻安全生产构成一定的风险。本研究协同采样测定结果显示:稻米各项指标均符合国家粮食安全标准(GB 2762−2017《食品中污染物限量》)。考虑到不同水稻品种对土壤镉吸收积累的差异,以及土壤环境条件特别是pH易受人为施肥管理等措施的影响,对土壤镉质量分数较高的点位,在今后的水稻生产管理中需要加强动态监测,关注土壤镉形态转化和有效性的变化,以保障水稻粮食生产安全[26, 28]。