-
香榧Torreya grandis ‘Merrillii’是红豆杉科Taxaceae榧树Torreya grandis的优良变异类型,经人工选育后嫁接繁殖栽培的优良品种,也是目前榧树中唯一进行人工规模栽培的品种[1-2]。它集果用、油用、药用、材用和绿化观赏为一体,经济价值非常高[3],老产区在浙江会稽山区的诸暨、柯桥、嵊州、东阳和磐安等5县(市、区),分布范围狭窄,产量极其有限,产品供不应求。全国10余个省(市、自治区)均在引种栽植[4]。近年来,随着香榧产业的发展,香榧绿藻病害日趋严重,给榧农造成重大经济损失,尤其是人工林中,其对香榧叶片的光合作用产生极大影响并造成落花落果,甚至导致香榧树死亡,逐渐引起了榧农的重视。吾中良等[4]首次报道了香榧绿藻病害。香榧绿藻Chlorella sp.为小球藻属Chlorella的变异类型,是附着在榧树枝和叶上形成表面粗糙的灰绿色苔状物[5],因病原归属于绿藻门Chlorophyta,且在香榧枝叶上分布较多,生产上一般称之为香榧绿藻,但也有研究者认为其是青苔(moss)和地衣(lichens)[6]。专家学者对其防治方法进行了研究[5, 7],但研究仍处于起步阶段,其危害机理尚不明确,病原种类也尚无定论。本研究结合传统形态学方法和分子生物学技术,通过对香榧绿藻的培养观察及18S rDNA和内转录间隔区(ITS)基因序列分析,探索了香榧绿藻的生活习性,初步鉴定了香榧绿藻的种属类别,为香榧绿藻的综合防治和香榧产业的健康发展提供新的思路。
Biological characteristics and species identification of Chlorella sp. with Torreya grandis 'Merrillii'
-
摘要: 香榧绿藻Chlorella sp.是一种附着在香榧Torreya grandis ‘Merrillii’枝、叶上的藻类。为探明香榧绿藻的种属类别及亲缘关系,探究香榧绿藻的生物学特性,以3个不同地区的香榧树上采集的香榧绿藻为试验对象,通过室内培养,观察香榧绿藻的形态特征及生活习性,提取香榧绿藻DNA并进行18S rDNA序列和内转录间隔区(ITS)基因序列特异性扩增,最终序列进行BLAST比对,绘制系统进化树。结果表明:香榧绿藻由A组和B组2种不同形态的绿藻组成,不同地区香榧绿藻形态存在差异,但主要以A组形态绿藻为主。根据形态学鉴定结果表明:A组香榧绿藻与引起番茄绿藻病的椭圆小球藻Chlorella ellipsoidea形态相近,B组香榧绿藻与引起黄瓜绿藻病的丝藻Ulothrix sp.形态相近;但香榧绿藻对pH值的反应规律与斜生栅藻Scenedesmus obliquus相近。通过序列比对发现,2种形态的香榧绿藻的18S rDNA和ITS区基因序列也与栅藻科Scenedesmace的Asterarcys quadricellulare的同源性高,相似率达100%。结合传统形态学方法和分子生物学技术,将A组香榧绿藻初步鉴定为栅藻科的Asterarcys quadricellulare,B组香榧绿藻为其变种,且2组香榧绿藻与同属于栅藻科的Scenedesmus sp. SM15_4(KT778094.1)的ITS区基因序列相同。香榧绿藻具有较好的耐碱性,生长周期长且不容易腐烂。这些生物学特性赐予香榧绿藻在香榧树上长期寄生的能力。Abstract: Chlorella sp. is an algal attached to the branches and leaves of Torreya grandis 'Merrillii'. To explore the relationship the Chlorella sp. to Torreya grandis 'Merrillii' and to study the biological characteristics of the Chlorella sp., the Chlorella sp. was collected from T. grandis 'Merrillii' trees in three different regions and tested. According to an indoor culture, the morphological characteristics and living habits of the Chlorella sp. were observed, and the DNA of the Chlorella sp. extracted had a sequence specific amplification of 18S rDNA. An Internal Transcribed Spacer (ITS) gene sequence was also performed. The final sequence was aligned with the Basic Local Alignment Search Tool (BLAST) to draw a phylogenetic tree in neighbor-joining (NJ) method with three replications. Results showed two different forms of green algae, A and B. There were differences in the species of green algae in different areas, but they were mainly in the form of the A-type green algae. According to morphological identification results, the A-type Chlorella sp. was similar to the morphology of Chlorella ellipsoidea which could cause tomato green algae disease; the B-type Chlorella sp. was similar to the morphology of Ulothrix sp. which could cause cucumber green algae disease. However, the response of Chlorella sp. to pH was similar to that of Scenedesmus obliquus. The sequence alignment showed that the 18S rDNA and ITS gene sequences of the two forms of Chlorella sp. also had a high homology with Asterarcys quadricellulare of the Scenedesmaceae family with the similarity rate being 100%. Combining traditional morphological methods and molecular biology techniques, group A Chlorella sp. was identified as Asterarcys quadricellulare of the Scenedesmaceae family and group B Chlorella sp. identified as its variant. The two groups of Chlorella sp. had the same ITS region gene sequence as Scenedesmus sp. SM15_4 (KT778094.1) belonging to the Scenedesmaceae family. In conclusion, Chlorella sp. had favorable biological properties such as alkali resistance, a long growth cycle, and resistance to decay which helped it live on the Torreya grandis 'Merrillii' tree for a long time.
-
-
[1] 黎章矩, 程晓建, 戴文圣, 等.香榧品种起源考证[J].浙江林学院学报, 2005, 22(4):443-448. LI Zhangju, CHENG Xiaojian, DAI Wensheng, et al. Origin of Torreya grandis 'Merrillii'[J]. J Zhejiang For Coll, 2005, 22(4):443-448. [2] 黎章矩, 程晓建, 戴文圣, 等.浙江香榧生产历史、现状与发展[J].浙江林学院学报, 2004, 21(4):471-474. LI Zhangju, CHENG Xiaojian, DAI Wensheng, et al. History and status and development of Torreya grandis in Zhejiang Province[J]. J Zhejiang For Coll, 2004, 21(4):471-474. [3] 龚丽, 胡恒康, 胡渊渊, 等.香榧幼胚发育与胚性感受态之间的相关性[J].浙江农林大学学报, 2018, 35(5):861-867. GONG Li, HU Hengkang, HU Yuanyuan, et al. Immature embryo development and embryogenic frequency in Torreya grandis 'Merrillii'[J]. J Zhejiang A&F Univ, 2018, 35(5):861-867. [4] 吾中良, 徐志宏, 陈秀龙, 等.香榧病虫害种类及主要病虫害综合控制技术[J].浙江林学院学报, 2005, 22(5):545-552. WU Zhongliang, XU Zhihong, CHEN Xiulong, et al. Species and controls of main diseases and insect pests of Torreya grandis 'Merrillii'[J]. J Zhejiang For Coll, 2005, 22(5):545-552. [5] 吕军美, 郑文彪, 刘金龙, 等.石硫合剂防治香榧绿藻的试验[J].南方林业科学, 2015, 43(3):30-32, 54. LÜ Junmei, ZHENG Wenbiao, LIU Jinlong, et al. Test of LSSS control of Chlorella[J]. South China For Sci, 2015, 43(3):30-32, 54. [6] 徐志宏, 吾中良.香榧病虫害防治彩色图谱[M].北京:中国农业科学技术出版社, 2014. [7] 陈李红, 陈秀龙, 金国龙.香榧绿藻的发生及防治试验[J].浙江林业科技, 2005, 25(2):44-45. CHEN Lihong, CHEN Xiulong, JIN Guolong. Primary report on occurrence and control of Chlorella on Torreya grandis[J]. J Zhejiang For Sci Technol, 2005, 25(2):44-45. [8] JI Jing, LONG Zhifeng, LIN Daohui. Toxicity of oxide nanoparticles to the green algae Chlorella sp.[J]. Chem Eng J, 2011, 170(2/3):525-530. [9] CHEN Jianmeng, MA Jianyi, CAO Wei, et al. Sensitivity of green and blue-green algae to methyl tert-butyl ether[J]. J Environ Sci, 2009, 21(4):514-519. [10] 卡丽比努尔·艾依提, 艾山江, 努尔古丽·热合曼, 等. 4组沙漠绿藻分子生物学鉴定及其生物学特性研究[J].食品与机械, 2017, 33(5):25-29. Kalibinuel Ayit, Aishanjiang, Nurguri Rahman, et al. Morphological and molecular identification of four groups desert green algae[J]. Food Mach, 2017, 33(5):25-29. [11] 周楠.水体中微囊藻毒素的分析提纯及去除实验研究[D].哈尔滨: 哈尔滨工业大学, 2009.. ZHOU Nan. Studies on the Analysis Extraction and Purification and Removal Experiment of Microcystin in Water[D]. Harbin: Harbin Institute of Technology, 2009. [12] 卢梦瑶, 刘书亮, 胡凯弟, 等.酵素中1株高产酸醋酸菌的鉴定及其产酸特性[J].食品与机械, 2016, 32(12):64-69. LU Mengyao, LIU Shuliang, HU Kaidi, et al. Identification of a strain of high yieldacetic acid bacteria from ferment and its acid-producing characteristics[J]. Food Mach, 2016, 32(12):64-69. [13] BHATTACHARYA D, FRIEDL T, DAMBERGER S. Nuclear-encoded rDNA group Ⅰ introns:origin and phylogenetic relationships of insertion site lineages in the green algae[J]. Mol Biol Evol, 1996, 13(7):978-989. [14] 苏敏. Fulgensia fulgens绿藻细胞的分离培养研究[J].安徽农业科学, 2008, 36(2):413-414. SU Min. Isolation and culture of Fulgensia fulgens green algae cells[J]. J Anhui Agric Sci, 2008, 36(2):413-414. [15] KUMAR S, NEI M, DUDLEY J, et al. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Brief Bioinform, 2008, 9(4):299-306. [16] NOVAKOVSKAYA I V, PATOVA E. Green algae in spruce forests in the north-east of European Russia[J]. Biologia, 2008, 63(6):836-842. [17] 熊源新, 罗应春, 林跃光.贵州中部石灰岩地区气生藻生态研究[J].贵州农学院学报, 1994, 13(3):29-38. XIONG Yuanxin, LUO Yingchun, LIN Yueguang. A study on ecology of aerophtische from limestone region in Guizhou Province[J]. J Guizhou Agric Sch, 1994, 13(3):29-38. [18] 李润霞, 刘学敏, 赵祉鹤, 等.黄瓜的一种新病害——"绿藻病"[J].吉林农业大学学报, 2002, 24(2):106-107. LI Runxia, LIU Xuemin, ZHAO Zhihe, et al. A new cucumber disease:"green algae disease"[J]. J Jilin Agric Univ, 2002, 24(2):106-107. [19] 李芳芳, 隋正红, 龚春霞, 等. 5种沙漠微藻的分离鉴定及其18S rDNA保守区片段差异分析[J].石河子大学学报(自然科学版), 2012, 30(3):265-270. LI Fangfang, SUI Zhenghong, GONG Chunxia, et al. Isolation and identification of five desert microalgae and analysis of 18S rDNA conserved fragment[J]. J Shihezi Univ Nat Sci, 2012, 30(3):265-270. [20] 龚春霞, 王丹, 苟亚峰, 等. 4株沙漠土壤衣藻的分离培养及形态和分子鉴定[J].石河子大学学报(自然科学版), 2013, 31(3):294-300. GONG Chunxia, WANG Dan, GOU Yafeng, et al. Study on morphology and molecular phylogeny of four desert chlamydomonas[J]. J Shihezi Univ Nat Sci, 2013, 31(3):294-300. [21] 徐娜, 逄少军. 3种海洋浮游微藻的分子鉴定及培养条件研究[J].海洋科学, 2012, 36(10):13-25. XU Na, PANG Shaojun. Molecular identification and culture trials of three marine microalgae[J]. Mar Sci, 2012, 36(10):13-25. [22] 王雪青, 赵培, 胡萍, 等.金藻3011的培养条件优化及扩大培养研究[J].食品科学, 2006, 27(12):253-259. WANG Xueqing, ZHAO Pei, HU Ping, et al. Optimization of cultural conditions of Isochrysis galbana Parks 3011 and its mass-cultural[J]. Food Sci, 2006, 27(12):253-259. [23] 欧阳峥嵘, 温小斌, 耿亚红, 等.光照强度、温度、pH、盐度对小球藻(Chlorella)光合作用的影响[J].植物科学学报, 2010, 28(1):49-55. OUYANG Zhengrong, WEN Xiaobin, GENG Yahong, et al. The effects of light intensities, temperatures, pH and salinities on photosynthesis of Chlorella[J]. Plant Sci J, 2010, 28(1):49-55. [24] 李艳红.环境因子对铜绿微囊藻生长和光合作用的影响[D].南昌: 南昌大学, 2010. LI Yanhong. The Effects of Environmental Factors on Growth and Photosynthesis of Microcystis aeruginosa[D]. Nanchang: Nanchang University, 2010. [25] 张虎, 张桂艳, 温小斌, 等. pH对小球藻Chlorella sp. XQ-200419光合作用、生长和产油的影响[J].水生生物学报, 2014, 38(6):1084-1091. ZHANG Hu, ZHANG Guiyan, WEN Xiaobin, et al. Effects of pH on the photosynthesis, growth and lipid production of Chlorella sp. XQ-200419[J]. Acta Hydrobiol Sin, 2014, 38(6):1084-1091. [26] 赵娜, 冯鸣凤, 朱琳.不同pH值条件下Cr6+对小球藻和斜生栅藻的毒性效应[J].东南大学学报(医学版), 2010, 29(4):382-386. ZHAO Na, FENG Mingfeng, ZHU Lin. Toxic effects of chromium(Cr6+) on Chlorella vulgaris and Scenedesmus obliquus at different pH[J]. J Southeast Univ Med Sci Ed, 2010, 29(4):382-386. [27] 袁丽娜, 宋炜, 肖琳, 等.多环境因素全面正交作用对铜绿微囊藻生长的效应研究[J].南京大学学报(自然科学), 2008, 44(4):77-83. YUAN Lina, SONG Wei, XIAO Lin, et al. The overall orthogonal design study of multifactor interaction on the growth of Microcystis aeruginosa in the presence of adnascent Pseudomonas sp.[J]. J Nanjing Univ Nat Sci, 2008, 44(4):77-83. [28] EVANS E H, FOULDS I, CARR N G. Environmental conditions and morphological variation in the blue-green alga Chlorogloea fritschii[J]. J Gen Microbiol, 1976, 92(1):147-155. [29] 刘京, 胡章立, 雷安平.藻类快速鉴定研究进展[J].生物技术通讯, 2005, 16(6):700-702. LIU Jing, HU Zhangli, LEI Anping. The advances in identification for the algae[J]. Lett Biotechnol, 2005, 16(6):700-702. [30] HONG J W, KIM S A, CHANG J W, et al. Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential[J]. Algae, 2012, 27(3):197-203. [31] OLMOS-SOTO J, PANIAGUA J, CONTRERAS R. Molecular identification of Dunaliella sp. utilizing the 18S rDNA gene[J]. Lett Appl Microbiol, 2000, 30(1):80-84. [32] 李芳芳, 隋正红, 周伟, 等.两种沙漠微藻的形态学和分子生物学鉴定[J].干旱区资源与环境, 2013, 27(3):167-172. LI Fangfang, YAN Zhenghong, ZHOU Wei, et al. Two kinds of desert microalgae identification according to morphological and molecular biology[J]. J Arid Land Resour Environ, 2013, 27(3):167-172. [33] 徐芬.利用RAPD和18S rDNA基因序列对几种索科线虫系统发育分析[D].武汉: 华中师范大学, 2005. XU Fen. Phylogenetic Analysis of Several S. elegans Using RAPD and 18S rDNA Gene Sequences[D]. Wuhan: Huazhong Normal University, 2005. [34] FAGGIAN R, BULMAN S R, LAWRIE A C, et al. Specific polymerase chain reaction primers for the detection of Plasmodiophora brassicae in soil and water[J]. Phytopathology, 1999, 89(5):392-397. [35] 罗立明, 胡鸿钧, 李夜光, 等.东海原甲藻的分子鉴定[J].海洋学报, 2006, 28(1):127-131. LUO Liming, HU Hongjun, LI Yeguang, et al. Molecular identification on Prorocentrum donghaiense[J]. Acta Oceanologica Sin, 2006, 28(1):127-131. [36] 郑俊斌, 张凤英, 马凌波, 等.米氏凯伦藻18S rDNA和转录间隔区序列分析[J].上海海洋大学学报, 2009, 18(6):680-685. ZHENG Junbin, ZHANG Fengying, MA Lingbo, et al. Sequence analysis of Karenia mikimotoi based on ribosomal18S rDNA and internal transcribed space regions[J]. J Shanghai Ocean Univ, 2009, 18(6):680-685. [37] ZOU Shanmei, FEI Cong, WANG Chun, et al. How DNA barcoding can be more effective in microalgae identification:a case of cryptic diversity revelation in Scenedesmus (Chlorophyceae)[J]. Sci Rep, 2016, 6:36822. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.04.001