-
联合国政府间气候变化专门委员会(IPCC)2007年报告指出,全球未来平均降水强度和降水量将继续变化。经模型预测,随着全球气候变化,降雨格局也将发生改变,其中单次降雨量的增大意味着干旱半干旱地区极端降雨事件将会增加[1]。土壤作为地球表层最大的有机碳库,其二氧化碳(CO2)排放是大气CO2的重要来源,在全球碳循环中起着至关重要的作用,土壤碳库的微小变化都会在很大程度上影响大气CO2浓度的变化。而水蚀是引起土壤有机碳流失及影响有机碳矿化速率的重要因素之一。随着全球极端降雨事件的持续增加,水蚀成为引发土壤退化的一个重要因素[2],土壤侵蚀将影响全球碳循环和碳平衡[3]。土壤中的有机碳以粗有机碳、细颗粒状有机碳和与土壤矿物质的结合态存在,而且粗颗粒有机碳相对来说容易移动[4]。土壤受到侵蚀时,粗颗粒易被破坏,导致土壤有机碳的释放。侵蚀造成土壤中有机碳的损失包括随径流移走的可溶性有机碳和与黏粒结合的有机碳以及有机残体的碎屑[5]。水蚀主要通过雨滴的击溅作用和径流的剥蚀作用引起侵蚀区土壤有机碳的流失。随着研究的深入,有关学者认为,水蚀虽然造成侵蚀区有机碳减少,但在沉积区有机碳富集[3, 6-7]。水蚀是一个无处不在的过程,但其对全球碳循环过程的影响依然存在很大的不确定性,其如何影响土壤中各层次有机碳的含量,不同水土保持工程及植物措施对土壤有机碳的保护起到怎样的作用?这些都是学术界很关心的问题,然而在很大程度上仍然没有答案[8-9]。土壤侵蚀对土壤碳循环和碳平衡的影响是全球变化研究的前沿领域之一,合理认识水蚀对土壤有机碳排放的影响具有重要意义。目前,国内关于水蚀及水土保持措施对土壤有机碳影响的研究还不多,主要集中于黄土高原区及南方红壤区,例如贾松伟[10]对黄土丘陵区不同坡度下土壤有机碳流失规律进行了研究,认为土壤有机碳流失的变化趋势与侵蚀强度一致, 有机碳流失主要受侵蚀强度的影响,减少地表径流和土壤侵蚀是降低土壤有机碳流失的关键;刘学彤等[11]对黄土高原水蚀风蚀交错带不同退耕模式对土壤有机碳的影响进行了研究,结果表明:不同退耕模式均能提高0~10 cm土层土壤有机碳含量,表明农地退耕、植被恢复与重建可以减少水土流失并显著增加土壤固存碳的能力;陆银梅等[12]就红壤缓坡地径流对土壤有机碳流失的影响进行了研究,结果表明:坡面产流过程对泥沙态有机碳流失过程具有明显影响,产流开始后,有机碳流失率随降雨历时延长而增加,而后逐步趋于平稳;肖胜生等[1]研究了自然降雨条件下红壤坡面有机碳的选择性迁移,认为径流有机碳含量与径流量之间、泥沙含碳量与泥沙量之间均呈负相关关系,即随着土壤侵蚀模数的降低,有机碳富集比也减小,泥沙有机碳富集比均随雨强的增大而减小;王义祥等[13]分析了经过水保措施处理的油桃Prunus persica var. nectarina园土壤有机碳库及其组分,得到结论为相对顺坡开垦,长期采用梯台开垦方式有利于增加果园土壤有机碳库,生草处理加速了土壤有机质的转化,从而使果园土壤中颗粒有机碳、轻组有机碳和水溶性有机碳均有增加。目前,北方土石山区自然及人工林地水蚀对土壤有机碳影响的研究还未见报道,而典型水土保持措施对土壤有机碳影响的相关研究也相对较少。本研究在北京周边土石山区选择有代表性的水蚀及水土保持措施典型样地,开展野外不同降雨历时的原位人工降雨模拟试验,对水蚀及水土保持措施对土壤有机碳的影响进行研究。期望本研究可为北方土石山区水土保持措施的选择及水土流失治理提供借鉴。
-
在北京周边土石山区分别选择有代表性的水蚀及水土保持措施典型样地。水蚀样地分别选取了油松Pinus tabulaeformis-侧柏Platycladus orientalis混交林坡面及油松-槲栎Quercus aliena混交林坡面。其中,油松-侧柏混交林地供采样的坡面,坡向为阳坡,坡度31°,为自然林地覆盖的沟道边坡。坡顶植被郁闭度约40%,侵蚀类型为雨滴击溅侵蚀及细沟状侵蚀;坡中植被郁闭度约70%,侵蚀类型主要为细沟状侵蚀;坡底为沟道,郁闭度约35%,侵蚀类型为强度较大的冲刷性侵蚀;平地对照样地郁闭度70%,侵蚀较弱,只存在雨滴击溅侵蚀。油松-槲栎混交林供采样坡面为自然坡面,坡向为西南半阳坡,坡度19°,坡顶主要为溅蚀与细沟侵蚀;坡中主要为溅蚀及较坡顶更为剧烈的细沟侵蚀;坡底地势较为平缓,基本不发生侵蚀,并有一定土壤堆积,该坡面植被郁闭度较低,约为10%;平地对照样地郁闭度10%,侵蚀较弱,只存在雨滴击溅侵蚀。水土保持措施样地分别选择了不同植物配置鱼鳞坑(无植被鱼鳞坑、灌木鱼鳞坑、乔木鱼鳞坑、有枯枝落叶乔木鱼鳞坑、中华卷柏Selaginella sinensis鱼鳞坑、不同配置石坎梯田(石坎农田、石坎果园)及不同配置水土保持经济林(岸边台地苗圃、平地苗圃、平地果园)及严重侵蚀沟道对照样地。样地均位于同一流域,其中侵蚀沟道宽度10 m左右,深度2.5 m,平时沟道中无流水。分别在沟道沟底、沟道边坡1.5 m处及沟道和沟道上部台地人工林进行土壤取样。沟底及沟边土壤砾石含量极高,达90%以上,两处常年遭受剧烈冲刷性侵蚀;沟林(沟边林地),种植树种为火炬树Rhus typhina,郁闭度较大,约95%,侵蚀类型主要为轻微溅蚀。农田石坎种植作物为玉米Zea mays,果园石坎种植树种为樱桃Cerasus tomentosa,果园平地种植树种为桃树Amygdalus persica,苗圃平地种植树种为油松,苗圃岸边台地种植树种为白蜡Fraxinus chinensis及檞树Quercus dentata。样地土壤类型为山地淋溶褐土,样地土壤质地见表 1,土壤基本理化性质详见表 2。
表 1 样地土壤质地表
Table 1. Soil texture of sample plot
土层/cm 不同土壤质地百分比/% 砂粒 粉粒 黏粒 0~10 62.73 27.34 9.93 10~20 48.30 40.72 10.98 20~30 34.53 50.75 14.72 30~50 28.30 55.97 15.73 表 2 样地土壤基本理化性质表
Table 2. Soil physical and chemical properties of sample plots
土壤容重/(g·cm-3) 土壤总孔隙度/% 土壤体积含水率/% 土壤相对含水率/% pH 土壤碱解氮/(mg·kg-1) 土壤有效磷/(mg·kg-1) 土壤速效钾/(mg·kg-1) 1.09~1.41 40.11~48.23 3.85~6.73 3.83~7.93 6.5~7.1 92.43~140.56 1.12~8.06 92.67~157.31 -
在样地对水蚀影响下各样地进行土壤采样,其中坡面样地分为上、中、下坡位,每个坡位选取3个样点,进行土壤样本采集,并在油松-侧柏混交林坡面布设2处植被情况相似的10 m × 10 m样地,采用自制喷头进行人工降雨模拟,分别进行15,30,45,60 min等4种不同历时相同雨强人工降雨,另设1组无降雨空白对照。实验分2 d进行,每天进行1个样地降雨,因模拟降雨范围较小,不同降雨历时样点间不会相互影响,每个降雨样点随机布设3处侵蚀针,降雨结束后30 min对侵蚀针进行读数记录并进行土壤样本采集(双份)。对于不同水土保持措施样地,每种措施随机选取3个样点进行土壤样本采集。试验在2017年7-8月进行,样地采样点蛇形分布,做到尽量均匀和随机。采样前进行土壤表面清理,尽量去除低矮植物及枯枝落叶覆盖。每个样点挖取深度为50 cm的土壤剖面,分4层采样(0~10,10~20,20~30,30~50 cm),每层采样约500 g,装进塑封袋并标号。土样带回室内进行自然风干、研磨、过筛等处理,土壤有机碳测定采用重铬酸钾氧化-分光光度法(HJ 615-2011)。
-
采用Excel 2010进行数据整理分析与图表制作,应用SPSS 19.0及SigmaPlot 12.0等进行数据统计分析、相关性分析、线性回归分析,并应用最小显著性差异(LSD)多重比较在0.05的显著水平上进行显著性检验,分析总结不同条件下土壤有机碳质量分数规律。
Effect of water erosion and soil conservation measures on soil organic carbon content in rocky mountainous areas of northern China
-
摘要: 土壤侵蚀是土壤有机碳退化的主要因素。为探究水蚀对土壤有机碳的影响及寻求有效的水土保持措施对土壤有机碳进行保护,在北京周边选取4处典型样地,进行土壤有机碳调查及野外人工模拟降雨实验,分析了水蚀及水土保持措施对土壤有机碳的影响。结果表明:①不同样地土壤有机碳质量分数大小顺序为:土壤堆积区、轻微溅蚀区、细沟侵蚀区、强烈冲刷侵蚀区。水蚀对浅层土壤有机碳质量分数影响较大,程度剧烈的侵蚀,会造成深层土壤有机碳流失;②土壤平均有机碳质量分数随降雨历时的增加(土壤侵蚀量增长)呈减少趋势,并且减少趋势随降雨历时增加(土壤侵蚀量增长)逐渐变缓而趋于稳定;③不同鱼鳞坑配置对土壤有机碳的累积规律为:乔木枯枝落叶覆盖(32.7 g·kg-1)>乔木低矮植被覆盖(27.9 g·kg-1)>乔木种植(23.5 g·kg-1)>无措施(21.9 g·kg-1)>灌木(21.5 g·kg-1)。其中地表覆盖(枯枝落叶及低矮植被)能有效增加土壤有机碳;④不同植被措施对土壤有机碳恢复作用从大到小依次为人工林、苗圃、果园和农田,因此要选取适合的水土保持措施进行土壤有机碳的保护。Abstract: Soil erosion is the main factor contributing to soil organic carbon (SOC) degradation. To explore the effect of water erosion on SOC and to seek effective soil and water conservation measures to protect SOC, four typical sample plots around Beijing were studied and manual simulation rainfall experiments were carried out. The results showed that (1) The order of soil organic carbon content in different plots was: soil accumulation zone, slight splash zone, rill erosion zone and strong erosion zone, water erosion had a great influence on the content of organic carbon in surface soil, and soil organic carbon loss in deep soil caused by severe erosion. (2) The average soil organic carbon content decreased with the increase of rainfall duration (soil erosion amount), and these decreases gradually diminished with the increase of rainfall duration (soil erosion amount). (3) For the accumulative regularity of soil organic carbon with different fish scale pit configurations, dry branches and fallen leaves coverage (32.7 g·kg-1) shows the highest content, followed by trees and low vegetation coverage (27.9 g·kg-1), trees only (23.5 g·kg-1), no measures (21.9 g·kg-1) and shrubs (21.5 g·kg-1). Among them, the surface coverage of dry branches, fallen leaves and low vegetation can effectively increase soil organic carbon. (4) The effects of different vegetation measures on soil organic carbon restoration from large to small were plantation, nursery, orchard and farmland, thus, suitable soil and water conservation measures should be taken to restore soil organic carbon.
-
表 1 样地土壤质地表
Table 1. Soil texture of sample plot
土层/cm 不同土壤质地百分比/% 砂粒 粉粒 黏粒 0~10 62.73 27.34 9.93 10~20 48.30 40.72 10.98 20~30 34.53 50.75 14.72 30~50 28.30 55.97 15.73 表 2 样地土壤基本理化性质表
Table 2. Soil physical and chemical properties of sample plots
土壤容重/(g·cm-3) 土壤总孔隙度/% 土壤体积含水率/% 土壤相对含水率/% pH 土壤碱解氮/(mg·kg-1) 土壤有效磷/(mg·kg-1) 土壤速效钾/(mg·kg-1) 1.09~1.41 40.11~48.23 3.85~6.73 3.83~7.93 6.5~7.1 92.43~140.56 1.12~8.06 92.67~157.31 -
[1] 肖胜生, 汤崇军, 王凌云, 等.自然降雨条件下红壤坡面有机碳的选择性迁移[J].土壤学报, 2017, 54(4):874-884. XIAO Shengsheng, TANG Chongjun, WANG Lingyun, et al. Soil erosion-induced selective transfer of organic carbon in red soil slope field under natural rainfall[J]. Acta Pedol Sin, 2017, 54(4):874-884. [2] KEMMITT S J, LANYON C V, WAITE L S, et al. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass-a new perspective[J]. Soil Biol Biochem, 2008, 40(1):61-73. [3] LAL R. Soil erosion and the global carbon budget[J]. Environ Int, 2003, 29(4):437-50. [4] 潘根兴, 曹建华, 周运超.土壤碳及其在地球表层系统碳循环中的意义[J].第四纪研究, 2000, 20(4):325-334. PAN Genxing, CAO Jianhua, ZHOU Yunchao. Soil carbon and its significance in carbon cycling of earth surface system[J]. Quaternary Study, 2000, 20(4):325-334. [5] JACINTHE P A, LAL R, KIMBLE J M. Organic carbon storage and dynamics in croplands and terrestrial deposits as influenced by subsurface tile drainage[J]. Soil Sci, 2001, 166(5):322-335. [6] 张亚锋, 许明祥, 陈盖, 等.黄土丘陵区水蚀坡面土壤有机碳矿化动态模拟[J].中国水土保持科学, 2016, 14(4):9-17. ZHANG Yafeng, XU Mingxiang, CHEN Gai, et al. Modelling the dynamics of soil organic carbon mineralization on water-eroded sloping land in the Loess Hilly Region[J]. Sci Soil Water Conserv, 2016, 14(4):9-17. [7] KUHN N J, HOFFMANN T, SCHWANGHART W, et al. Agricultural soil erosion and global carbon cycle:controversy over?[J]. Earth Surf Processes Landforms, 2009, 34(7):1033-1038. [8] LAL R, PIMENTEL D. Soil erosion:a carbon sink or source?[J]. Science, 2008, 319(5866):1040-1042. [9] QUINTON J N, GOVERS G, OOST K V, et al. The impact of agricultural soil erosion on biogeochemical cycling[J]. Nat Geosci, 2010, 3(5):311-314. [10] 贾松伟.黄土丘陵区不同坡度下土壤有机碳流失规律研究[J].水土保持研究, 2009, 16(2):30-33. JIA Weisong. Soil organic carbon loss under different slope gradients in loess hilly region[J]. Res Soil Water Conserv, 2009, 16(2):30-33. [11] 刘学彤, 魏艳春, 杨宪龙, 等.水蚀风蚀交错带不同退耕模式对土壤有机碳及全氮的影响[J].应用生态学报, 2016, 27(1):91-98. LIU Xuetong, WEI Yanchun, YANG Xianlong, et al. Effects of different re-vegetation patterns on soil organic carbon and total nitrogen in thewind-water erosion crisscross region[J]. Chin J Appl Ecol, 2016, 27(1):91-98. [12] 陆银梅, 李忠武, 聂小东, 等.红壤缓坡地径流与土壤可蚀性对土壤有机碳流失的影响[J].农业工程学报, 2015, 31(19):135-141. LU Yinmei, LI Zhongwu, NIE Xiaodong, et al. Effects of overland flow and soil erodibility on soil organic carbon loss in red soil sloping land[J]. Transac Chin Soc Agric Eng, 2015, 31(19):135-141. [13] 王义祥, 黄毅斌, 叶菁, 等.水保措施对油桃园土壤有机碳库及其组分的影响[J].农业环境科学学报, 2014, 33(4):803-809. WANG Yixiang, HUANG Yibin, YE Jing, et al. Effects of different soil conservation measures on soil organic carbon pools in nectarine orchard[J]. J Agro-Environ Sci, 2014, 33(4):803-809. [14] 丁咸庆, 马慧静, 朱晓龙, 等.大围山不同海拔森林土壤有机碳垂直分布特征[J].水土保持学报, 2015, 29(2):258-262. DING Xianqing, MA Huijing, ZHU Xiaolong, et al. The veitical distribution characterisitic of soil organic carbon in different altitude of Dawei Mountain[J]. J Soil Water Conserv, 2015, 29(2):258-262. [15] 王超华.黄土丘陵区水蚀对坡面土壤有机碳及土壤水热环境的影响[D].杨凌: 西北农林科技大学, 2016. WANG Chaohua. Effects of Water Erosion on Soil Organic Carbon and Soil Hydrothermal Environment in the Loess Hilly Region[D]. Yangling: Northwest Agriculture and Forestry University, 2016. [16] 郝瑞军, 方海兰, 沈烈英, 等.上海典型植物群落土壤有机碳矿化特征[J].浙江林学院学报, 2010, 27(5):664-670. HAO Ruijun, FANG Hailan, SHEN Lieying, et al. Soil organic carbon mineralization with urban plant communities in Shanghai[J]. J Zhejiang For Coll, 2010, 27(5):664-670. [17] 赵鹏志, 陈祥伟, 王恩姮.黑土坡耕地有机碳及其组分累积-损耗格局对耕作侵蚀与水蚀的响应[J].应用生态学报, 2017, 28(11):3634-3642. ZHAO Pengzhi, CHEN Xiangwei, WANG Enheng. Responses of accumulation-loss atterns for soil organic carbon and its fractions to tillage and water erosion in black soil area[J]. Chin J Appl Ecol, 2017, 28(11):3634-3642. [18] 孙文义, 邵全琴, 刘纪远, 等.三江源典型高寒草地坡面土壤有机碳变化特征及其影响因素[J].自然资源学报, 2011, 26(12):2072-2087. SUN Wenyi, SHAO Quanqin, LIU Jiyuan, et al. The variation characteristics of soil organic carbon of typical alpine slope grasslands and its influencing factors in the "Three-River Headwaters" Region[J]. J Nat Resour, 2011, 26(12):2072-2087. [19] 王茹.不同坡度条件下紫色土坡面土壤侵蚀特征研究[D].重庆: 西南大学, 2013. WANG Ru. Study on Soil Erosion Characteristics of Purple Soil Slope Under Different Slope Conditions[D]. Chongqing: Southwestern University, 2013. [20] 方熊, 刘菊秀, 张德强, 等.降水变化、氮添加对鼎湖山主要森林土壤有机碳矿化和土壤微生物碳的影响[J].应用与环境生物学报, 2012, 18(4):531-538. FANG Xiong, LIU Juxiu, HANG Deqiang, et al. Effects of precipitation change and nitrogen addition on organic carbon, mineralization and soil microbial carbon of the forest soils in Dinghushan, Southeastern China[J]. Chin J Appl Environ Biol, 2012, 18(4):531-538. [21] 张文菊, 童成立, 杨钙仁, 等.水分对湿地沉积物有机碳矿化的影响[J].生态学报, 2005, 25(2):249-253. ZHANG Wenju, TONG Chengli, YANG Gairen, et al. Effects of water on mineralization of organic carbon in sediment from wetlands[J]. Acta Ecol Sin, 2005, 25(2):249-253. [22] 郭太龙, 谢金波, 孔朝晖, 等.华南典型侵蚀区土壤有机碳流失机制模拟研究[J].生态环境学报, 2015, 24(8):1266-1273. GUO Tailong, XIE Jinbo, KONG Chaohui, et al. Experimental study on soil organic carbon loss in red soil erosion under different simulated rainfall intensity and alope fradient[J]. Ecol Environ Sci, 2015, 24(8):1266-1273. [23] 喻为.红壤坡地水力侵蚀对土壤有机碳及微生物影响规律研究[D].长沙: 湖南大学, 2015. YU Wei. Study on The Influence of Water Erosion on Soil Organic Carbon and Microorganism in Red Soil Slope Land[D]. Changsha: Hunan University, 2015. [24] 程曼.黄土丘陵区典型植物枯落物分解对土壤有机碳、氮转化及微生物多样性的影响[D].杨凌: 西北农林科技大学, 2015. CHENG Man. Effects of Litter Decomposition on Soil Organic Carbon, Nitrogen Transformation and Microbial Diversity in the Loess Hilly Region[D]. Yangling: Northwest Agriculture and Forestry University, 2015. [25] 黄尚书, 成艳红, 钟义军, 等.水土保持措施对红壤缓坡地土壤活性有机碳及酶活性的影响[J].土壤学报, 2016, 53(2):468-476. HUANG Shangshu, CHENG Yanhong, ZHONG Yijun, et al. Effects of soil and water conservation measures on soil labile organic carbonand soil enzyme activity in gentle slope land of red soil[J]. Acta Pedol Sin, 2016, 53(2):468-476. [26] 李金芬.云雾山草地土壤有机碳全氮含量与分布特征[D].杨凌: 西北农林科技大学, 2009. LI Jinfen. Total Nitrogen Content and Distribution Characteristics of Soil Organic Carbon in the Meadow of Cloud and Fog Mountains[D]. Yangling: Northwest Agriculture and Forestry University, 2009. [27] 陈敏全, 王克勤.坡耕地不同水土保持措施对径流泥沙与土壤碳库的影响[J].广东农业科学, 2015, 42(6):124-129. CHEN Minquan, WANG Keqin. Properties of runoff, sediment and soil carbon stock under different soil and water conservation measures in sloping farmland[J]. Agric Sci Guangdong, 2015, 42(6):124-129. [28] 成艳红, 武琳, 孙慧娟, 等.稻草覆盖和香根草篱对红壤水稳性团聚体组成及有机碳含量的影响[J].生态学报, 2016, 36(12):3518-3524. CHENG Yanhong, WU Lin, SUN Huijuan, et al. Effects of straw mulching and vetiver grass hedgerows on the size distribution of the soil water stable aggregates and aggregate-associated organic carbon in redsoil[J]. Acta Ecol Sin, 2016, 36(12):3518-3524. [29] 刘玉林, 朱广宇, 邓蕾, 等.黄土高原植被自然恢复和人工造林对土壤碳氮储量的影响[J].应用生态学报, 2018, 29(7):2163-2172. LIU Yulin, ZHU Guangyu, DENG Lei, et al. Effects of natural vegetation restoration and afforestation on soil carbon and nitrogen storage in the Loess Plateau, China[J]. Chin J Appl Ecol, 2018, 29(7):2163-2172. [30] 王海燕, 张洪江, 杨平, 等.不同水土保持林地土壤有机碳研究[J].长江流域资源与环境, 2010, 19(5):535-539. WANG Haiyan, ZHANG Hongjiang, YANG Ping, et al. Soil organic carbon under different forests for water and soil comservation[J]. Resour Environ Yangtze Basin, 2010, 19(5):535-539. [31] LAL R, GRIFFIN M, APT J, et al. Managing soil carbon[J]. Science, 2004, 304(5669):393-393. [32] 邓瑞芬, 王百群, 刘普灵, 等.黄土坡面不同土地利用方式对土壤有机碳流失的影响[J].水土保持研究, 2011, 18(5):104-107. DENG Ruifen, WANG Baiqun, LIU Puling, et al. Effects of different land use methods on soil organic xarbon loss on the loess alope[J]. Res Soil Water Conserv, 2011, 18(5):104-107. [33] 赵彤, 闫浩, 蒋跃利, 等.黄土丘陵区植被类型对土壤微生物量碳氮磷的影响[J].生态学报, 2013, 33(18):5615-5622. ZHAO Tong, YAN Hao, JIANG Yueli, et al. Effects of vegetation types on soil microbial biomass C, N, P on the Loess Hilly Area[J]. Acta Ecol Sin, 2013, 33(18):5615-5622. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.04.003