-
黄薇Heimia myrtifolia为千屈菜科Lythraceae黄薇属Heimia的落叶灌木[1],原产南美洲和非洲的热带、亚热带地区,人类的迁移致使南亚、东亚地区有零星分布[2],为中国引种植物。其花色金黄,夏季开花,花量丰富,花期较长,观赏价值极高。此外,黄薇植株可塑性强,繁殖简便,生长迅速,具有耐高温、耐水湿和耐轻微干旱的特性,抗逆能力强,生态适应性广,是一种待开发的优良观赏植物。迄今为止,关于黄薇生态适应性的研究国内外未见报道。黄薇原生环境夏季高温多雨,冬季少雨。目前,中国引种地区夏季易出现高温天气并伴随干旱发生,在两者的共同作用下,植物的生长和发育会受到较大的影响,甚至无法恢复导致植株死亡[3]。研究表明:植物遭受胁迫后体内的活性氧含量会不断积累,过量的活性氧一方面会导致生物膜脂过氧化,形成有害物质;另一方面会破坏植株叶绿体结构,削弱光合作用能力,对植物造成伤害[4]。植物会依靠植株体内的酶促和非酶促两大类保护系统对过量的活性氧进行清除,以维持正常代谢和减轻受到的损伤[5-6]。酶促清除系统主要包括超氧化物歧化酶(SOD),过氧化氢酶(CAT),抗坏血酸过氧化物酶(APX)及作用范围较广的过氧化物酶(POD),还包括保持抗氧化物质还原性所必须的酶如抗坏血酸—谷胱甘肽循环酶类等;非酶促清除系统主要包括抗坏血酸(AsA),类胡萝卜素及一些含巯基的低分子化合物(如还原型谷胱甘肽GSH)等物质[6]。本研究通过研究高温干旱胁迫对黄薇抗氧化酶活性和抗坏血酸-谷胱甘肽(AsA-GSH)循环的影响,探究高温干旱胁迫下黄薇抗氧化系统的响应机制,以期揭示黄薇在高温干旱胁迫下的耐胁迫能力,进而为黄薇的推广和栽培提供理论依据。
-
实验材料为1年生黄薇扦插苗,于2017年4月选择健壮枝条扦插于浙江农林大学风景园林与建筑学院温室中,当年7月移栽入塑料花盆(12.0 cm × 8.8 cm × 10.8 cm)中,栽培基质为m(泥炭土):m(蛭石):m(珍珠岩)=2:1:1的混合基质。2018年4月,选择健壮、长势基本一致的苗采用相同基质定植于塑料花盆(16.0 cm × 11.0 cm × 14.0 cm)中,当年6-7月放入人工气候箱(宁波莱福,中国)进行处理,处理前在人工气候箱中适应性培养7-10 d。
模拟自然高温干旱条件下土壤水分不断流失并无法补充的过程对实验材料的影响。实验时采用人工气候箱精确控制温度,分为3个温度梯度进行处理:T1(30 ℃/22 ℃),T2(36 ℃/26 ℃)和T3(42 ℃/30 ℃),15盆·组-1,光周期为12 h光照/12 h黑暗,光合有效辐射为240 μmol·m-2·s-1。每日早中晚使用便携式土壤水分测定仪(Spectrum公司,美国)对每盆苗进行土壤含水量测定,水分分为4个梯度:正常状态(对照,70%~80%田间持水量),轻度干旱(LD,55%~65%田间持水量),中度干旱(MD,35%~45%田间持水量),重度干旱(HD,10%~30%田间持水量)。根据测定,当每个温度梯度到达相应田间持水量时选取中上部完整的功能叶进行抗氧化系统相关指标测定。
-
超氧化物歧化酶(SOD)采用氮蓝四唑法[7]、过氧化物酶(POD)采用愈创木酚法[7]、丙二醛(MDA)采用硫代巴比妥酸(TBA)法[7]、过氧化氢酶(CAT)采用紫外吸收法[7]。
-
抗坏血酸(AsA)和脱氢抗坏血酸(DHA)质量摩尔浓度测定采用二联吡啶法[8],氧化型谷胱甘肽(GSSG)和还原型谷胱甘肽(GSH)质量摩尔浓度测定参考NAGALAKSHMI等[9]的DTNB循环检测法。抗坏血酸过氧化物酶(APX)活性测定参考NAKANO等[10]的方法,单脱氢抗坏血酸还原酶(MDHAR)活性测定采用KRIVOSHEEVA等[11]的方法,谷胱甘肽还原酶(GR)活性和脱氢抗坏血酸还原酶(DHAR)活性采用试剂盒(苏州科铭,中国)进行测定。
-
将数据分为高温胁迫、干旱胁迫和高温干旱胁迫3组,使用SPSS Stastics 18(IBM,美国)进行方差分析。
-
高温胁迫下黄薇叶片SOD活性,在轻度干旱和中度干旱下呈上升趋势,在重度干旱和对照组中呈现下降趋势,但变化不显著(P>0.05);干旱胁迫下黄薇叶片SOD活性随着干旱程度的增加,呈先上升后下降的趋势,且于中度干旱下达到最大;协同胁迫下在中度干旱时达到峰值,为对照的125.0%(P<0.05)(图 1A)。
图 1 高温干旱胁迫对黄薇SOD,POD,CAT活性及MDA质量摩尔浓度的影响
Figure 1. Effects of heat and drought stress on SOD activity, POD activity, CAT activity and MDA contents of Heimia myrtifolia
高温胁迫下黄薇叶片POD活性随着温度的增加而呈现上升趋势,且变化显著,42与30 ℃相比较,对照、轻度干旱、中度干旱、重度干旱4个水分组分别增加了49.1%(P<0.05),99.0%(P<0.05),89.1%(P<0.05)和173.5%(P<0.05);干旱胁迫下,POD活性随着胁迫程度呈先上升后下降的趋势,且变化显著,在中度干旱时值达到最大,与对照相比分别增加31.7%(P<0.05),53.0%(P<0.05)和67.1%(P<0.05);协同胁迫下在中度胁迫时达到峰值,为42 ℃干旱对照组的167.1%(P<0.05)(图 1B)。
高温胁迫下黄薇叶片CAT活性随着温度的增加而呈现上升趋势,且变化显著,42与30 ℃相比较,对照、轻度干旱、中度干旱、重度干旱分别增加了68.1%(P<0.05),42.5%(P<0.05),23.7%(P<0.05)和131.3%(P<0.05);干旱胁迫下,CAT活性在30和36 ℃时随着胁迫程度呈先上升后下降的趋势,在中度干旱时值达到最大,分别为增加了40.1%(P<0.05)和4.1%(P>0.05),42 ℃呈现上升趋势但变化不显著;协同胁迫下在重度干旱时达到峰值,为42 ℃干旱对照组的104.6%(P>0.05)(图 1C)。
高温胁迫下黄薇叶片MDA质量摩尔浓度随着温度的增加而呈现先下降后上升的趋势,在重度胁迫时达到峰值,且变化显著(P<0.05);干旱胁迫下MDA都呈现上升趋势,于重度胁迫下达到峰值,与对照相比分别增加了133.4%(P<0.05),117.5%(P<0.05)和79.6%(P<0.05)(图 1D)。
-
高温胁迫下黄薇叶片AsA质量摩尔浓度随着温度的增加呈现不同的趋势,均无显著变化(P>0.05);干旱胁迫下,AsA质量摩尔浓度在30和36 ℃时随着胁迫程度呈先上升后下降的趋势,在轻度干旱时值达到最大,重度干旱时值最小,重度干旱胁迫比对照组分别减少19.3%(P>0.05)和37.4%(P<0.05);协同胁迫下AsA质量摩尔浓度随胁迫程度逐渐下降,重度干旱胁迫时与42 ℃干旱对照组相比减少了38.2%(P<0.05)(图 2A)。
图 2 高温干旱胁迫对黄薇AsA和DHA质量摩尔浓度及AsA/DHA比值的影响
Figure 2. Effects of heat and drought stress on AsA contents, DHA contents and AsA/DHA of Heimia myrtifolia
高温胁迫下黄薇叶片DHA质量摩尔浓度随着温度的增加而呈现不同的趋势,对照、轻度干旱、中度干旱3组呈现先上升后下降趋势,重度干旱组呈现上升趋势;干旱胁迫下,DHA质量摩尔浓度在30和36 ℃时随着胁迫程度呈先上升后下降的趋势,在中度干旱时达最大值,分别增加了162.5%(P<0.05)和115.4%(P<0.05);协同胁迫下DHA质量摩尔浓度随胁迫程度逐渐上升,重度干旱胁迫时与42 ℃干旱对照组相比增加了115.8%(P<0.05)(图 2B)。
AsA/DHA比值在高温胁迫下随着温度的增加呈不同趋势,均无明显差异性;干旱胁迫下,AsA/DHA比值随着胁迫程度均呈下降趋势,在重度干旱分别减少了68.8%(P<0.05),65.3%(P<0.05)和72.6%(P<0.05)(图 2C)。
-
高温胁迫下黄薇叶片GSH质量摩尔浓度随着温度的增加而呈不同趋势,对照、中度干旱、重度干旱3组呈现先上升后下降趋势,各组内差异显著(P<0.05),轻度干旱组呈现上升趋势,差异不显著;干旱胁迫下,GSH质量摩尔浓度随着胁迫程度呈现先上升后下降的趋势,在30和36 ℃时在中度干旱时达最大值;协同胁迫下GSH质量摩尔浓度随胁迫程度先上升后下降,重度干旱胁迫时与42 ℃干旱对照组相比减少了58.8%(P<0.05)(图 3A)。
图 3 高温干旱胁迫对黄薇GSH和GSSG质量摩尔浓度及GSH/GSSG比值的影响
Figure 3. Effects of heat and drought stress on GSH contents, GSSG contents and GSH/GSSG of Heimia myrtifolia
高温胁迫下黄薇叶片GSSG质量摩尔浓度随着温度的增加而呈现不同的趋势,对照组和轻度干旱组呈现先下降后上升趋势,中度干旱组和重度干旱组呈现下降趋势;干旱胁迫下,在30和36 ℃时GSSG质量摩尔浓度随着胁迫程度上升而上升,在重度干旱时达最大值,分别增加了46.0%(P<0.05)和52.4%(P<0.05);协同胁迫下GSSG质量摩尔浓度随胁迫程度先上升后下降,中度干旱胁迫时达最大值,与42 ℃干旱对照组相比增加了26.4%(P<0.05)(图 3B)。
GSH/GSSG比值在高温胁迫下随着温度升高呈现先上升后下降的趋势,于36 ℃达最大值,42 ℃达最小值,两者相比各组分别减少了27.8%(P<0.05),21.3%(P<0.05),33.3%(P<0.05)和40.1%(P<0.05);干旱胁迫下,GSH/GSSG比值随着胁迫程度均呈现下降的趋势,在重度干旱分别减少了28.8%(P<0.05),37.5%(P<0.05)和48.1%(P<0.05)(图 3C)。
-
高温胁迫下黄薇叶片APX活性随着温度的增加而呈现不同的趋势,对照组和轻度干旱组呈上升趋势,中度干旱组和重度干旱组呈先上升后下降趋势,各组差异性均较显著;干旱胁迫下,APX活性均呈先上升后下降的趋势,在30和36 ℃时在中度干旱时达最大值,分别增加了60.0%(P<0.05)和208.3%(P<0.05);协同胁迫下APX活性于轻度干旱胁迫时达到最大值,与42 ℃干旱对照组相比增加了8.7%(P>0.05)(图 4A)。
图 4 高温干旱胁迫对黄薇APX,GR,DHAR和MDHAR活性的影响
Figure 4. Effects of heat and drought stress on APX activity, GR activity, DHAR activity and MDHAR activity of Heimia myrtifolia
高温胁迫下黄薇叶片GR活性随着温度的增加而呈现不同的趋势,对照组、轻度干旱组呈上升趋势,中度干旱组呈下降趋势,重度干旱组呈先下降后上升趋势,各组差异性均显著;干旱胁迫下,GR活性均呈先上升后下降的趋势,在30和36 ℃时,中度干旱下达最大值,分别增加了128.3%(P<0.05)和71.8%(P<0.05);协同胁迫下GR活性于轻度干旱胁迫时达到最大值,与42 ℃干旱对照组相比增加了28.7%(P<0.05)(图 4B)。
高温胁迫下黄薇叶片DHAR活性随着温度的增加而呈不同趋势,对照组呈先上升后下降趋势,轻度干旱组、中度干旱组、重度干旱组呈现先下降后上升趋势,除重度干旱组外各组差异性均较显著;干旱胁迫下,DHAR活性均呈先上升后下降的趋势,在30和36 ℃时,中度干旱下达最大值,分别增加了69.4%(P<0.05)和47.2%(P<0.05);协同胁迫下DHAR活性于轻度干旱胁迫时达到最大值,与42 ℃干旱对照组相比增加了145.0%(P<0.05)(图 4C)。
高温胁迫下黄薇叶片MDHAR活性随着温度的增加而呈不同趋势,中度干旱组呈先上升后下降趋势,对照、轻度干旱、重度干旱3组呈先下降后上升趋势,中度干旱组和重度干旱组差异较显著;干旱胁迫下,MDHAR活性均呈现先上升后下降的趋势,在30和36 ℃时,中度干旱下达最大值,分别增加了150.0%(P<0.05)和561.5%(P<0.05);协同胁迫下MDHAR活性于轻度干旱胁迫时达到最大值,与42 ℃干旱对照组相比增加了100.0%(P<0.05)(图 4D)。
-
植物体内活性氧的产生与清除始终处于一种动态平衡,植物在遭受逆境时会产生并积累大量的活性氧导致动态平衡被打破,造成活性氧代谢失调[12]。植物刚遭受到逆境胁迫时,会通过增加体内抗氧化酶的活性来减轻活性氧造成的伤害,但随着胁迫加深活性氧的增加和积累,抗氧化酶活性下降,多余的活性氧无法被清除而导致植物体受到不可逆的伤害[13]。高温胁迫往往伴随干旱胁迫同时发生,多重胁迫对植物的伤害明显大于单一胁迫[14]。本研究中,单一胁迫下SOD,POD和CAT活性总体上呈增加趋势,高温胁迫下的增幅高于干旱胁迫,说明黄薇对高温胁迫更加敏感;高温干旱协同胁迫下,3种酶活性总体高于单一胁迫,POD活性的变化明显较SOD和CAT活性显著,说明POD是黄薇对抗高温干旱胁迫的主要氧化酶;MDA质量摩尔浓度随着胁迫程度增加而显著增加且明显高于单一胁迫,表明协同胁迫下活性氧对植物细胞膜产生的伤害较大。裴斌等[15]对沙棘Hippophae rhamnoides的干旱胁迫研究表明:SOD,POD和CAT活性随着胁迫程度呈现先升后降的趋势,其中SOD活性明显高于POD和CAT活性,MDA质量摩尔浓度则是随着胁迫程度而逐渐增加。干旱胁迫下,黄薇叶片中MDA质量摩尔浓度随着胁迫程度增加而增加,3种酶活性虽都呈现先增强后下降趋势,但SOD和CAT活性增强不明显,POD的活性增强显著,这与裴斌等[15]的研究结果不一致,可能是由于POD在活性氧的清除中效果较好。高温胁迫下,SOD,POD和CAT活性总体上呈现上升趋势,POD和CAT活性增幅显著,SOD活性增幅较小,这与周广等[16]对井冈山杜鹃Rhododendron jinggangshanicum高温胁迫的研究结果相似;MDA质量摩尔浓度总体呈先降后升趋势,这与周广等[16]的研究结果不同,可能是黄薇在高温环境下具有一定的适应性,减缓了细胞膜脂质过氧化的速度。
AsA-GSH循环是植物体内清除活性氧自由基的重要途径[17],植物通过增加抗氧化剂含量和相关酶活性提高AsA-GSH循环的效率以适应环境胁迫[18]。高温干旱协同胁迫下,中度胁迫时黄薇叶片内APX活性相对平稳随胁迫加重而下降,GR和MDHAR活性虽有增强但远不如单一胁迫,而DHAR活性远强于单一胁迫,黄薇叶片内DHA,GSH和GSSG质量摩尔浓度不断显著增加,AsA质量摩尔浓度不断显著下降,DHAR活性增强与DHA增加,AsA减少,这与韩一林等[18]和SILVA等[19]的研究结果不一致,可能因为DHAR活性虽然增加但循环仍以APX的清除优先,不能及时补充为AsA,故AsA质量摩尔浓度被大量消耗,无法及时得到补充从而不断下降。重度协同胁迫下,植物细胞已经遭到破坏,各物质的量和酶的活性均下降,部分达到最低值,这与许馨露等[20]的研究结果相似。此外AsA/DHA比值和GSH/GSSG比值随着胁迫呈下降趋势,表明胁迫造成AsA还原力不断增强。单一干旱胁迫下,APX,GR,MDHAR和DHAR活性均呈先升高后下降的趋势,这与董守坤等[21]的研究结果一致。AsA,GSH和DHA质量摩尔浓度总体上呈现先增加后下降趋势,GSSG质量摩尔浓度总体呈上升趋势,实验表明:面对干旱胁迫时黄薇叶内的AsA-GSH循环能够及时进行活性氧的清除,减轻其细胞的损伤。高温胁迫下,APX,GR活性和AsA质量摩尔浓度呈上升趋势,DHAR活性和DHA质量摩尔浓度先上升后下降,MDHAR活性和GSSG质量摩尔浓度先下降后上升,表明高温胁迫下循环内以APX清除为主,其余的酶则维持着循环内的平衡,保证对活性氧的清除能力;比较各水分组发现各酶活性总体上都在中度干旱组内达到最大值,表明黄薇对高温胁迫下的干旱也具备一定的抵抗能力。
综上所述,单一高温或干旱胁迫下,黄薇内的抗氧化防御系统可及时进行响应,维持着植物体的正常生长发育。但在两者共同胁迫下,受到轻度胁迫的黄薇仍具有有效的防御能力,而中度和重度胁迫下,活性氧的积累逐渐超出黄薇的承受能力,较单一胁迫造成更大的伤害。研究也发现,在30和36 ℃时黄薇对环境变化的承受力仍较强,在42 ℃时如不能及时补充水分则会造成较大的伤害。黄薇在轻度和中度干旱下适应性相对较强,可以适应由高温情况下短暂缺水情况,在长江以南地区的景观规划或生态修复中可扩大其栽培及应用。
Heat and drought stress with an antioxidant defense system in Heimia myrtifolia
-
摘要: 黄薇Heimia myrtifolia是具有较高价值的引种植物,但对其引种后的适应性研究仍较缺乏。为了探究黄薇对高温干旱及协同胁迫的响应,采用人工模拟自然状态下干旱(对照、轻度干旱、中度干旱和重度干旱),高温(30,36和42℃)及高温干旱协同胁迫对黄薇叶片抗氧化防御系统的影响。结果显示:干旱胁迫下,过氧化物酶(POD)活性和丙二醛(MDA)质量摩尔浓度显著增加(P < 0.05),脂膜过氧化程度加深,抗坏血酸-谷胱甘肽(AsA-GSH)循环相关酶活性和相关还原物质均呈先上升后下降趋势,在中度胁迫下达到顶峰,与对照相比均显著增加(P < 0.05)。高温胁迫下,抗氧化酶效率和AsA-GSH循环效率均有提高。高温干旱协同胁迫下,黄薇受到的伤害明显大于单一胁迫,超氧化物歧化酶(SOD)和POD显著上升(P < 0.05)并于中度胁迫时达到顶峰,MDA质量摩尔浓度显著增加(P < 0.05),AsA-GSH循环效率均有提高但在中度胁迫下开始下降,脂膜过氧化随着胁迫加深显著加剧,重度胁迫下已无法维持正常生长。黄薇在高温干旱胁迫下可以通过调节抗氧化酶系统和AsA-GSH循环共同清除氧化物质,提高抗胁迫能力,维持正常生长发育。Abstract: To determine the effects of drought stress and heat stress both individually and combined on the antioxidant defense system of Heimia myrtifolia, an introduced plant with high value but poor distribution. Soil moisture loss with natural high temperature and drought conditions without replenishment were artificially simulated using drought stress of a control (no stress), light, moderate, and heavy stresses and heat stress of 30℃ (control), 36℃, and 42℃. The upper complete functional leaf was carried out when the moisture gradient reaches the sampling requirement under heat treatment. Experimental results showed that, firstly, with drought treatments, peroxidase (POD) activity and malondialdehyde (MDA) molar concentration increased significantly (P < 0.05), lipid membrane peroxidation deepened, ascorbic Acid-glutathione (AsA-GSH) cyclerelated enzyme activity and related reductants increased first and then decreased, peaking with moderate stress and significantly increased compared with the control (P < 0.05). Secondly, with high temperature stress, the efficiency of antioxidant enzymes and ASA-GSH cycle increased but not dramatic. Finally, with the synergistic stress of heat and drought, the damage of H. myrtifolia was significantly greater than that with single stress. The superoxide dismutase (SOD) and POD activities increased significantly (P < 0.05) and reached the peak with moderate stress. The molar concentration of MDA increased significantly (P < 0.05). The circulation efficiency of AsA-GSH increased, but began to decrease with moderate stress. Lipid membrane peroxidation increased significantly with the deepening of stress and the normal growth could not be maintained with severe stress. Thus, with heat and drought stress, the plant could remove excessive reactive oxygen by regulating the antioxidant enzyme system and AsA-GSH cycle, and improve resistance to stress so as to maintain normal growth and development.
-
Key words:
- botany /
- Heimia myrtifolia /
- heat /
- drought /
- antioxidant enzyme /
- ascorbate glutathione cycle
-
在自然和人为因素的共同作用下,土地利用结构在不断发生变化[1]。土地利用变化是影响全球气候的重要成因之一,对生态系统的结构、功能和过程产生深远的影响,从而对人类及自然环境的变化产生至关重要的作用[2]。随着人类对生态环境保护的日益重视,土地利用变化与生态系统间的相互关系已成为多学科研究的热点之一[3]。生态系统服务是指人类通过生态系统直接或间接得到的收益,通常分为供给服务、调节服务、支持服务及文化服务[4]。研究表明:土地利用变化对生物[5]、气候[6]、土壤[7]、水文[8]等生态环境产生负面影响,在不同尺度下改变了生态系统结构与功能,导致生态系统发展失衡、功能变弱等问题。生态系统服务价值定量评估有利于实现土地集约化高效配置,提升土地利用效率,实现土地利用与生态环境的协调可持续发展[9−11]。近年来,土地利用变化对生态系统服务价值影响的定量研究已成为国内外研究热点。生态系统服务价值作为最普遍的衡量标准,能够直接反映人类活动对自然环境的影响。为了更好地研究生态资源优化与可持续发展的关系,COSTANZA等[12]首次提出了生态系统服务价值评估原则、功能分类和具体方法,并对全球范围内16个生物群落的17项生态系统服务价值进行了评估,这为相关领域奠定了理论基础。由于生态保护意识的提高和国家政策导向的影响,国内对生态系统服务价值的研究逐渐深入。谢高地等[13−15]依据中国区域生态特点,以专家知识问卷调查形式构建了中国陆地单位面积生态系统服务价值当量因子表,这对国内生态系统服务价值的评估与测算具有一定的借鉴意义。
安徽省太湖县作为国家重点生态功能区,承担着区域生态安全与生态保护的重任。生态系统服务价值评估方法是构建生态补偿机制的重要理论依据,是确立生态补偿标准的价值基础[16]。鉴于此,本研究基于太湖县2000、2010、2020年3期土地利用数据,分析土地利用变化与生态系统服务价值的空间关联性,探讨生态系统服务价值变化量的冷热点分异规律,为国家重点生态功能区生态服务功能的发生机制和评价方法提供科学依据。
1. 研究地区与研究方法
1.1 研究区概况
太湖县(30°09′~30°46′N,115°45′~116°30′E)地处安徽省西南部、安庆市西南部、大别山南麓,县域总面积为2 040 km2。该县地势西北高、东南低,属于丘陵低山地形。气候属典型的北亚热带季风气候,四季分明,降水丰富,平均降水量为1 368 mm,水热资源充足。该区域的土地利用性质以林地居多,农田次之,建筑用地面积相对较小。2020年太湖县户籍人口为577 972人,比2010年户籍人口数量增加了2.03%。从2000—2020年整体人口变化趋势来看,户籍人口总量增加了约13 472人,增长率为2.39%,城市化进程发展迅速,城市化水平提高了18.2%,农村人口不断迁往城市地区。县域国内生产总值(GDP)从2000年的16.87亿元增至2020年的198.12亿元,20 a间增加了10.7倍。太湖县在人口和经济方面呈现增长趋势,为太湖县带来了更多的旅游业发展机会,促进生态产业增长。2018年太湖县已成为安徽省内第1个“全国森林旅游示范县”,属于国家划定的重点生态功能区,具有生态保护、可持续发展方面的生态研究价值。
1.2 数据来源
研究数据包括了安徽省土地利用遥感影像解译数据和中国土地数据等。其中,太湖县2000、2010和2020年3期空间分辨率为30 m的土地利用数据,土地利用遥感监测数据集来自中国科学院资源环境科学与数据中心(http://www.resdc.cn),并参照其土地利用分类体系,将太湖县土地利用划分为耕地、林地、草地、水域、建设用地与未利用地。太湖县未利用地面积极小,未被纳入研究范围。太湖县社会经济数据来自《安庆市统计年鉴》《中国农产品价格调查年鉴》等。
1.3 研究方法
1.3.1 土地利用转移矩阵
土地利用转移矩阵表示某一时期不同土地利用类型的转化趋势和范围[17],其表示如下:
$$ {{\boldsymbol{S}}_{ij}} = \left[ {\begin{array}{*{20}{c}} {{S_{11}}}&{{S_{12}}}& \cdots &{{S_{1n}}} \\ {{S_{21}}}&{{S_{22}}}& \cdots &{{S_{2n}}} \\ \vdots & \vdots & \vdots & \vdots \\ {{S_{n1}}}&{{S_{n2}}}& \cdots &{{S_{nn}}} \end{array}} \right] 。 $$ (1) 式(1)中:Sij表示转移前$i$地类转换成转移后的$j$地类的面积(hm2);$n$为土地利用的类型总数;$i$,$j$分别对应研究开始与结束的土地利用类型。
1.3.2 单一土地利用动态度
土地利用动态变化可用来表示土地流转的速度[18],单一土地利用动态度反映某个地区或某个时期区域的某种土地利用总量变化的快慢与程度[19−20]。公式如下:
$$ K = \frac{{{U_b} - {U_a}}}{{{U_a}}} \times \frac{1}{T} \times 100\% 。 $$ (2) 式(2)中:$ K $为土地利用的单一动态度;$ {U}_{a} $、$ {U}_{b} $分别表示研究初期a和末期b的生态系统面积;$ T $则为研究期时长(a)。
1.3.3 生态系统服务价值系数
通过计算太湖县1个标准单位生态系统服务价值当量因子的价值量,结合太湖县实际情况修正了生态系统服务价值系数,最终得到太湖县各土地利用类型单项生态系统服务与总价值量(表1)。
表 1 太湖县单位面积生态系统服务价值当量及生态系统服务价值Table 1 Ecosystem service value equivalent per unit area and ecosystem service value coefficient of Taihu County一级分类 二级分类 太湖县单位面积生态系统服务价值当量 太湖县单位面积生态系统服务价值/(元·hm−2) 耕地 林地 草地 水域 耕地 林地 草地 水域 供给服务 食物生产 1.00 0.33 0.43 0.45 2 158.41 712.28 928.12 960.49 原材料生产 0.39 2.98 0.36 0.30 841.78 6 432.06 777.03 636.73 调节服务 气体调节 0.72 4.32 1.50 1.46 1 554.06 9 324.33 3 237.62 3 151.28 气候调节 0.97 4.07 1.56 14.58 2 093.66 8 784.73 3 367.12 31 469.62 水文调节 0.77 4.09 1.52 16.09 1 661.98 8 827.90 3 280.78 34 728.82 废物处理 1.39 1.72 1.32 14.63 3 000.19 3 712.47 2 849.10 31 566.75 支持服务 保持土壤 1.47 4.02 2.24 1.20 3 172.86 8 676.81 4 834.84 2 590.09 维持生物多样性 1.02 4.51 1.87 3.56 2 201.58 9 734.43 4 036.23 7 683.94 文化服务 提供美学景观 0.17 2.08 0.87 4.57 366.93 4 489.49 1 877.82 9 853.14 总计 7.90 28.12 11.67 56.82 17 051.45 60 694.50 25 188.66 122 640.86 说明:由于建设用地当量因子系数为0,因此在计算生态系统服务价值过程中未纳入考虑。 1个标准单位生态系统服务价值当量(简称标准当量)是指农田每年单位面积土地内所产出的经济价值,可衡量各项生态系统产生的社会贡献水平[21]。根据已有研究[22],确定1个标准粮食当量的实际经济价值量,等于当年全国平均粮食单产市场价值的1/7。计算公式如下:
$$ {E_{\rm{a}}} = \frac{1}{7}\sum\limits_{i = 1}^n {\frac{{{m_i}{q_i}{p_i}}}{M}} 。 $$ (3) 式(3)中:$E_{\rm{a}}$为单位农业生态系统生产经营过程中的经济效益(元·hm−2);$i$为作物种类;${p_i}$为$i$种作物的全国平均价格(元·hm−2);${q_i}$为$i$种作物总产量(t·hm−2);${m_i}$为$i$种作物种植面积(hm2);$M$为$n$种作物总种植面积(hm2)。参考《安徽统计年鉴》和《全国农产品成本收益资料汇编》,确定太湖县年标准粮食当量的经济效益与借鉴价值为2 158.41元·hm−2。
根据谢高地等[15]制定的单位面积生态系统服务价值当量因子表,划分出了供给服务、调节服务、支持服务、文化服务4个一级类型和11个二级类型的分类体系,并根据太湖县实际情况,对各项生态系统服务价值类型进行了调整。表1为经过修正,更符合研究区实际情况的太湖县生态系统服务价值系数。
GIS格网尺度法以格网点状单元作为数据载体,以指标因子为基础评价分析单元[23]。基于格网尺度下的生态系统服务价值研究,尺度的缩小和精度的提升为土地利用空间特征提供了新思路[24]。根据太湖县的地形、面积与海拔等情况,利用ArcGIS采用Greate Fishnet工具构建600 m×600 m格网。通过对各格网土地利用类型生态系统服务价值进行加权,从而获得整个研究区生态系统服务价值总值。公式如下:
$$ {E_{{\rm{SV}}}} = \sum\limits_{m = 1}^{{x}} {\sum\limits_{n = 1}^y {{A_m}} } {E_{mn}}(m = 1,2, \cdots ,x;\;n = 1,2, \cdots ,y) 。 $$ (4) 式(4)中:${E_{{\rm{SV}}}}$为生态系统服务价值;$ {A_m} $为格网内第$m$类生态系统的面积;${E_{mn}}$为格网内第$m$类生态系统的第$n$类生态系统功能单位面积的价值当量。$x$和$y$分别表示生态系统及服务功能的总类别数。
1.3.4 空间统计分析
空间自相关(Moran’s I)一般用来表示某地理事物或现象在某区域不同位置的空间相关程度[25],可以评估土地利用与生态系统服务价值空间分布的集聚性,局部自相关可描述生态系统服务价值可能存在的空间关联模式[26],其中LISA聚类图能清晰反映各区域的关联属性[27]。冷热点分析用以衡量生态系统服务价值空间变化的聚集与分异特征,探究生态系统服务价值的空间变化是否具有高值集聚(热点)和低值集聚(冷点)的现象。通过热点分析,可以确定生态系统服务价值高值区或低值区在空间上发生聚类的位置[28],空间自相关分析采用Geoda 1.18软件,冷热点分析采用ArcGIS热点分析空间统计工具完成。计算公式[29]为:
$$ {I_i} = \frac{{\left( {{x_i} - \bar x} \right)\displaystyle \sum\limits_{j = 1}^n {{w_{ij}}} \left( {{x_i} - \bar x} \right)}}{{{S^2}}} \text{;} $$ (5) $$ {S^2} = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \bar x} \right)}^2}} 。 $$ (6) 式(5)~(6)中:$ {I}_{i} $表示局部空间自相关指数;$ n $为格网单元数量;$ {x}_{i} $和$ {x}_{j} $分别表示格网单元$ i $和格网单元$ j $的测度值;$ \left({x}_{i}-\bar{x}\right) $是第$ i $个格网单元上测度值与平均值的偏差;$ {w}_{ij} $表示空间权重的矩阵;${S^2}$表示方差。
2. 结果与分析
2.1 太湖县土地利用变化分析
如图1和表2所示:2000—2020年,太湖县林地占县域总面积的59.57%,是太湖县最重要的土地利用形式;耕地是太湖县第二大土地利用形式,占比达26.58%;其次是水域和草地,占总面积的比例分别为6.18%和4.92%,县域的水资源和湿地草地等自然资源得到了一定程度的保护。规模最小的则为城市建设用地,仅为总面积比例的2.75%。
表 2 2000—2020年太湖县土地利用变化Table 2 Land use change in Taihu County from 2000 to 2020土地利用
类型2000年
面积/hm22010年
面积/hm22020年
面积/hm22000—2010年 2010—2020年 2000—2020年 面积变化/hm2 动态度/% 面积变化/hm2 动态度/% 面积变化/hm2 动态度/% 耕地 55 380.78 53 811.27 53 340.39 −1 569.51 −0.28 −470.88 −0.09 −2 040.39 −0.18 林地 121 758.90 121 458.20 121 040.10 −300.70 −0.02 −418.10 −0.03 −718.80 −0.03 草地 10 136.61 10 006.83 9 966.42 −129.78 −0.13 −40.41 −0.04 −170.19 −0.08 水域 12 608.64 12 543.03 12 616.02 −65.61 −0.05 72.99 0.06 7.38 0.00 建设用地 3 930.21 5 997.51 6 857.01 2 067.30 5.26 859.50 1.43 2 926.80 3.72 建设用地和耕地分别是增长最多和减少最多的土地利用类型。2000—2020年,建设用地增长了2 926.80 hm2,动态度为3.72%,占比增加了1.43%,耕地共减少了2 040.39 hm2,动态度为−0.18%,占比减少了1.00%。研究期间建设用地面积在逐年上升,耕地、林地和草地面积逐年下降,而水域面积总体呈上升态势,面积共计增长了7.38 hm2。
如表3~5所示:2000—2010年,太湖县耕地主要转为了建设用地及林地,占转移总面积的97%以上,这主要受退耕还林政策的影响。林地面积在逐渐减少,主要转为了耕地与建设用地。这与后10 a的变化趋势基本一致;水域减少的面积不大,仅部分转为了林地和建设用地,占转移总面积的68%以上。2010—2020年,草地和耕地主要转为了林地和建设用地,分别占转出总面积的95%和98%;而水域和林地面积均出现了一定程度的减少,这与此期间太湖县城市化加快,城区面积扩张,建设用地面积增加有一定的关联。2000—2020年,转入草地和水域的面积很小,大部分土地向城乡建设用地转化,且耕地、建设用地与林地转移面积占比在90%以上,耕地与林地面积在减少,建设用地面积在增加,表明太湖县建设用地增长以耕地与林地转换为主。林地的主要转出地类是耕地与建设用地,占总转出土地的80%以上,其中多数区域成为耕地和林地。
表 3 2000—2010年太湖县土地利用变化转移矩阵Table 3 Land use change transition matrix in Taihu County from 2000 to 20102000年土地利用类型 2010年各土地利用类型转移面积/hm2 总计/hm2 草地 耕地 建设用地 林地 水域 草地 9 845.41 11.63 130.25 131.58 3.38 10 122.25 耕地 15.64 52 969.10 1 670.66 658.73 42.28 55 356.41 建设用地 0.95 101.28 3 798.04 28.13 1.09 3 930.50 林地 125.20 647.96 338.60 120 500.69 81.69 121 694.14 水域 4.76 56.63 59.29 73.31 12 404.98 12 598.97 总计 9 991.96 53 786.61 5 996.83 121 392.45 12 533.41 203 701.27 表 4 2010—2020年太湖县土地利用变化转移矩阵Table 4 Land use change transition matrix in Taihu County from 2010 to 20202010年土地利用类型 2020年各土地利用类型转移面积/hm2 总计/hm2 草地 耕地 建设用地 林地 水域 草地 9 552.98 36.01 62.11 319.51 11.51 9 982.12 耕地 30.79 51 150.11 744.13 1 643.18 204.04 53 772.24 建设用地 8.83 301.16 5 581.00 98.87 6.73 5 996.60 林地 337.48 1 689.69 463.08 118 664.63 202.57 121 356.45 水域 9.92 124.09 5.37 212.90 12 171.88 12 524.15 总计 9 940.00 53 300.05 6 856.69 120 939.09 12 596.74 203 631.56 表 5 2000—2020年太湖县土地利用变化转移矩阵Table 5 Land use change transition matrix in Taihu County from 2000 to 20202000年土地利用类型 2020年各土地利用类型转移面积/hm2 总计/hm2 草地 耕地 建设用地 林地 水域 草地 9 563.09 34.04 185.47 317.64 10.44 10 110.69 耕地 33.68 51 221.11 2 250.08 1 640.01 194.96 55 339.84 建设用地 2.05 249.33 3617.36 57.29 3.25 3 929.28 林地 329.52 1 663.42 743.11 118 714.39 200.40 121 650.85 水域 10.21 129.64 56.65 202.55 12 187.31 12 589.36 总计 9 938.55 53 297.54 6 855.68 120 931.88 12 596.36 203 620.01 2.2 生态系统服务价值的时空变化特征
2.2.1 太湖县生态系统服务价值变化总量
如表6所示:2000—2020年太湖县生态系统服务价值总量呈递减趋势,从2000年的1 013 607.8万元,到2020年的1 005 427.8万元,20 a间共减少了8 180.1万元,变化率为−0.81%。其中:2000—2010年,各土地利用类型生态系统服务价值均呈下降趋势,耕地的生态系统服务价值下降幅度最大,共减少了2 676.2元;2010—2020年,除了水域外,其他土地利用类型生态系统服务价值均呈下降趋势,林地的下降幅度最大,降低率为0.59%,下降了4 362.7万元,其次是耕地,降低率为3.68%,减少总量为3 479.2万元,再次是草地,降低率为1.68%,减少了428.7万元,水域则增加了90.5万元,变化率为0.06%。2000—2020年太湖县土地利用类型的生态系统服务价值总量呈减少态势,但占比结构相对稳定,从大到小依次为林地、水域、耕地和草地,其中,耕地、林地和水域之和占比均超95%以上。
表 6 2000—2020年太湖县不同土地利用类型生态系统服务价值(ESV)Table 6 Ecosystem service value (ESV) of different land use types in Taihu County from 2000 to 2020土地利用类型 2000年 2010年 2020年 ESV变化量/万元 ESV/万元 占比/% ESV/万元 占比/% ESV/万元 占比/% 2000—2010年 2010—2020年 2000—2020年 耕地 94 432.2 9.3 91 756.0 9.1 90 953.0 9.0 −2 676.2 −802.9 −3 479.2 林地 739 009.4 72.9 737 184.3 73.1 734 646.7 73.1 −1 825.1 −2 537.6 −4 362.7 草地 25 532.7 2.5 25 205.8 2.5 25 104.1 2.5 −326.9 −101.8 −428.7 水域 154 633.4 15.3 153 828.8 15.3 154 723.9 15.4 −804.6 895.2 90.5 总计 1 013 607.8 100.0 1 007 974.9 100.0 1 005 427.8 100.0 −5 632.9 −2 547.2 −8 180.1 2.2.2 太湖县生态系统服务价值单项变化
2000—2020年对太湖县各单项生态系统的综合评价中,食物生产、原材料生产等所有二级分类指标的生态系统服务价值,都呈波动递减态势;通过表2和表6可以看出,各土地利用类型面积的下降会引起生态服务价值总量的变化。由于耕地与林地面积下降,建设用地面积扩大,保持土壤、维持生物多样性的功能价值量减少最多,共减少了2 563.3万元。2000—2020年在太湖县的各项生态系统服务价值中,以水文调节、气候调节以及维持生物多样性等的生态系统服务价值较高,其中水文调节的服务价值量最大,占总功能价值的16.19% (表7)。综上可知,太湖县生态系统服务以气体、气候、水文调节服务为主,因此保持湿地与水体面积不被转换,同时守住林地生态红线对县域生态水循环与森林自然生态功能的增强具有关键作用。
表 7 2000—2020年太湖县单项生态系统服务价值(ESV)变化Table 7 Change of individual ecosystem services value(ESV) in Taihu County from 2000 to 2020生态系统服务功能 ESV/万元 比例/% ESV变化量/万元 二级分类 2000年 2010年 2020年 2000年 2010年 2020年 2000—2010年 2010—2020年 2000—2020年 食物生产 22 777.9 22 399.3 22 271.2 2.25 2.22 2.22 −378.5 −128.2 −506.7 原材料生产 84 568.4 84 228.6 83 921.5 8.34 8.36 8.35 −339.8 −307.1 −646.8 气体调节 129 393.7 128 806.7 128 353.6 12.77 12.78 12.77 −587.0 −453.1 −1 040.1 气候调节 161 648.8 160 805.8 160 556.0 15.95 15.95 15.97 −842.9 −249.8 −1 092.7 水文调节 163 805.6 163 008.8 162 801.7 16.16 16.17 16.19 −796.7 −207.1 −1 003.9 废物处理 104 507.3 103 680.6 103 603.0 10.31 10.29 10.30 −826.6 −77.6 −904.2 保持土壤 131 386.1 130 547.4 130 034.6 12.96 12.95 12.93 −838.6 −512.8 −1 351.4 维持生物多样性 144 497.6 143 756.6 143 285.7 14.26 14.26 14.25 −741.1 −470.9 −1211.9 提供美学景观 71 022.6 70 741.0 70 600.3 7.01 7.02 7.02 −281.6 −140.7 −422.3 总计 1 013 607.8 1 007 974.9 1 005 427.8 100.00 100.00 100.00 −5 632.9 −2 547.2 −8 180.1 2.2.3 太湖县生态系统服务价值空间分异
为了更好量化表达空间信息的精准性与差异化,使用ArcGIS 10.2软件选择适合研究区范围尺度大小为600 m×600 m的单元格网,对耕地、草地、林地、水体和建设用地的生态体系服务资源加以汇总,分别将2000、2010与2020年的生态系统服务价值从低到高分为5个等级。
由图2可知:太湖县生态系统服务价值的空间分布呈现“南部与中部水体区域高—中北部林地区域较高—东南部耕地和草地区域为低值”的分异特征;从生态系统服务价值空间格局分布看,高值区主要分布于中部花凉亭水库和南部泊湖区域,水域是该区域主要的土地利用类型,生态系统服务价值系数较高。较高值区集中在中北部林地区域,生态环境优良,具体分布在李杜乡、寺前镇、天华镇、汤泉乡、大山乡、刘畈乡、塔镇的林地区域,低值区分布于城镇化水平高、地形较为平坦的耕地与建设用地集中区域,人类活动作用较为明显。城镇郊区林地外围分布的耕地与草地,自然生态环境良好,为中值与较低值分布区域。2000—2020年生态系统服务价值变动集中在中高值区与低值区,且生态系统服务价值总量逐年略有下降,这是由于城镇化进程的加快使得生态系统受到一定破坏,后续应以林地和水域生态系统保护为重点,严守生态底线,在未来土地利用上进一步改善用地结构。
2.3 土地利用变化对生态系统服务价值空间分布的相关性分析
从图3可知:太湖县生态系统服务价值在研究土地利用变化的区间内,局部的聚集特征主要以高-高区域和低-低区域居多,而低-高和高-低区域为零星的分布特征。低-低区域地势相对平缓,是新型城市化较集中的地方,土地变化类型不明显,人类活动对生态系统干扰强度较高,因而生态系统服务价值也相应较低,而北部和中部水体流经的区域大多为高-高聚集区域。从现实情况分析,上游多是林地、草地分布区,生态优势明显且脆弱性较高,因而水体面积的适当增加也会带动生态系统服务价值总量的上升,而低-高聚集区域大多集中于水域、湿地以及水陆缓冲带附近。受地形、交通的限制,这类区域较少受到人类干扰,用地类型基本保持不变,水域的高生态系统价值系数很大程度促进该区域形成了低土地利用-高生态系统服务价值的聚集格局。
图4所示:2000—2020年冷、热点集聚效应明显,太湖县生态系统服务价值在总体上呈现“中热东冷,南部冷热分异明显”的分布特征,生态系统服务价值变化热点主要分布在中部的百里镇、牛镇镇、弥陀镇、天华镇、寺前镇的交界带与大石乡南部,也是水域集中片区;生态系统服务价值变化冷点主要分布在北石镇东北部,小池镇与晋熙镇中部,江塘乡西部,徐桥镇大部分区域与大石乡的北部。2000—2020年太湖县生态系统服务价值变化热点分布格局基本保持稳定,热点数量从2000年的18.29%上升到2010年的18.65%, 2020年减至18.23%,整体变化数量不大。冷点在晋熙镇、徐桥镇和大石乡有所增加,主要是受林地转为耕地、建设用地的影响。且冷点比例从2000年的8.81%下降到2010年的8.69%,至2020年又增加到了8.84%,冷点数量总体呈现波动上升的态势。2000—2020年冷热点空间分布的区域及数量密度表明,生态系统服务价值变化幅度和区域分布呈现明显的集聚现象,这也进一步预测了已经发生变化的区域在今后更容易产生变化。
3. 讨论
随着社会发展及人类需求的不断提升,在人地关系作用下,人们更倾向于通过技术进步和效率提升优化生产活动空间,并不断改善生态空间的规模、结构和功能。合理的城市空间发展布局和生态环境保护政策对生态系统服务价值具有提升作用[30]。因此,在土地利用规划管理方面,通过分析生态系统服务价值对土地利用的响应,可以更加全面了解不同土地利用方式对生态系统功能的影响,有助于优化土地利用结构。根据生态系统服务价值的变化情况,合理划分各类土地用途。针对国家重点生态功能区,应充分考虑生态系统服务功能,合理划定生态保护区、发展协调区、水源涵养区等重要区域,确保生态系统服务的持续供给和生态环境的可持续利用。
生态补偿为失去自我恢复能力的生态系统提供物质、经济和法律等一系列的补偿措施,也是确保和完善国家重点生态服务功能的根本保障和有效手段[31]。准确评估不同土地利用类型对生态系统服务价值的影响,可确定合理的生态补偿标准,确保补偿金额与生态系统服务价值的损失相匹配,有助于为国家重点生态功能区生态补偿政策的制定提供科学依据,也有助于及时发现太湖县生态系统受损严重的地区,从而有针对性地实施生态补偿措施,促进生态环境的修复,保障生态系统功能的完整性和稳定性。在未来的研究中,可以基于生态系统稳定性评估、自然和人为活动的影响,建立相应的风险指标体系,采用数学模型和遥感工具分析生态风险的空间分布、趋势和程度,并根据县域范围进行不同生态风险指标的分区,以便进一步评估和管控生态风险,降低风险数值与生态系统遭受破坏的可能性,保障生态系统服务的稳定供给,从而推动国家重点生态功能区的建设实现平稳、可持续发展。
4. 结论
2000—2020年,太湖县的土地利用类型以林地和耕地为主,耕地、草地和林地面积均有所减少,而建设用地和水域面积则有所增加。耕地减少最多,大部分转化为建设用地,其次为草地,转变为林地和建设用地。太湖县的新型城镇化进程导致城区土地利用面积快速增加,水体的增长主要来自农田。生态系统服务价值在总体平稳的趋势下略有减少,其中气体调节和水文调节的功能对生态系统服务价值影响最大。太湖县的生态系统服务价值空间分布呈现中部和南部水体较高、东部和东南部较低、北部相对较高的特点。中部低的建设用地和南部耕地平原区的生态系统服务价值总量较低并逐年下降,表明太湖县用地规模在扩大,处于城镇化进程不断推进的阶段。生态系统服务价值冷热点分布在空间格局上主要表现为高-高聚集和低-低聚集,表明生态系统服务价值变化高值区由北部向中部和东部偏移,冷点主要位于县城南部。
-
-
[1] 方文培.中国植物志:第52(2)卷[M].北京:科学出版社, 2004. [2] RAWAT G S, CHANDOLA S, NAITHANI H B. A note on the occurrence of Heimia myrtifolia (Lythraceae) in India[J]. Indian For, 2007, 133(5):398-409. [3] 简令成, 王红.逆境植物细胞生物学[M].北京:科学出版社, 2009. [4] LEI Peng, XU Zongqi, DING Yan, et al. Effect of ploy(γ-glutamic acid) on the physiological responses and calcium signaling of rape seeding (Brassica napus L.) under cold stress[J]. J Agric Food Chem, 2015, 63(48):10399-10406. [5] 潘瑞炽.植物生理学[M].北京:高等教育出版社, 2012. [6] 尹永强, 胡建斌, 邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报, 2007, 23(1):105-110. YIN Yongqiang, HU Jianbin, DENG Mingjun. Latest development of antioxidant system and responses to stress in plant leaves[J]. Chin Agri Sci Bull, 2007, 23(1):105-110. [7] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2004. [8] JIANG Mingyi, ZHANG Jianhua. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings[J]. Plant Cell Physiol, 2001, 42(11):1265-1273. [9] NAGALAKSHMI N, PRASAD M N V. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus[J]. Plant Sci, 2001, 160(2):291-299. [10] NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22(5):867-880. [11] KRIVOSHEEVA A, TAO Dali, OTTANDER C, et al. Cold acclimation and photoinhibition of photosynthesis in Scotspine[J]. Planta, 1996, 200(3):296-305. [12] 马旭俊, 朱大海.植物超氧化物歧化酶(SOD)的研究进展[J].遗传, 2003, 25(2):225-231. MA Xujun, ZHU Dahai. Functional roles of the plant superoxide dismutase[J]. Hereditas, 2003, 25(2):225-231. [13] 陈培琴, 郁松林, 詹妍妮, 等.植物在高温胁迫下的生理研究进展[J].中国农学通报, 2006, 22(5):223-227. CHEN Peiqin, YU Songlin, ZHAN Yanni, et al. A review on plant heat stress physiology[J]. Chin Agric Sci Bull, 2006, 22(5):223-227. [14] ROOT T L, PRICE J T, HALL K R, et al. Fingerprints of global warming on wild animals and plants[J]. Nature, 2003, 421:57-60. [15] 裴斌, 张光灿, 张淑勇, 等.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J].生态学报, 2013, 33(5):1386-1396. PEI Bin, ZHANG Guangcan, ZHANG Shuyong, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn. seedings[J]. Acta Ecol Sin, 2013, 33(5):1386-1396. [16] 周广, 孙宝腾, 张乐华, 等.井冈山杜鹃叶片抗氧化系统对高温胁迫的响应[J].西北植物学报, 2010, 30(6):1149-1156. ZHOU Guang, SUN Baoteng, ZHANG Lehua, et al. Responses of antioxidant system in leaves of Rhododendron jinggangshanicum to high temperature stress[J]. Acta Bot Boreal-Occident Sin, 2010, 30(6):1149-1156. [17] 孙军利, 赵宝龙, 郁松林. SA对高温胁迫下葡萄幼苗AsA-GSH循环的影响[J].核农学报, 2015, 29(4):799-804. SUN Junli, ZHAO Baolong, YU Songlin. Effects of exogenous salicylic acid (SA) on ascorbate glutathione cycle(AsA-GSH)circulation metabolism in grape seedlings under high temperature stress[J]. J Nucl Agric Sci, 2015, 29(4):799-804. [18] 韩一林, 王鑫朝, 许馨露, 等.毛竹幼苗抗氧化酶和AsA-GSH循环对高温干旱及协同胁迫的响应[J].浙江农林大学学报, 2018, 35(2):268-276. HAN Yilin, WANG Xinzhao, XU Xinlu, et al. Responses of anti-oxidant enzymes and the ascorbate-glutathione cycle to heat, drought, and synergistic stress in Phyllostachys edulis seedlings[J]. J Zhejiang A&F Univ, 2018, 35(2):268-276. [19] SILVA E N, FERREIRA-SLIVA S L, FONTENELE A, et al. Photosynthetic changesand protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants[J]. J Plant Physiol, 2010, 167:1157-1164. [20] 许馨露, 李丹丹, 马元丹, 等.四季桂抗氧化防御系统对干旱、高温及协同胁迫的响应[J].植物学报, 2018, 53(1):72-81. XU Xinlu, LI Dandan, MA Yuandan, et al. Responses of the antioxidant defense system of Osmanthus fragrans cv. 'Tian Xiang TaiGe' to drought, heat and the synergistic stress[J]. Chin Bull Bot, 2018, 53(1):72-81. [21] 董守坤, 马玉玲, 李爽, 等.干旱胁迫及复水对大豆抗坏血酸-谷胱甘肽循环的影响[J].东北农业大学学报, 2018, 49(1):10-18. DONG Shoukun, MA Yuling, LI Shuang, et al. Effect of drought stress and re-watering on ascorbate-glutathione cycle of soybean[J]. J Northeast Agric Univ, 2018, 49(1):10-18. 期刊类型引用(2)
1. 黄永鑫. 基于LUCC视角山水林田湖草沙一体化保护和修复工程对生态系统服务价值的影响. 中国资源综合利用. 2024(10): 219-225 . 百度学术
2. 冯霞,刘皓宇. 共同富裕视阈下国家重点生态功能区绿色发展路径优化探析——以中部省份Z县为例. 江西师范大学学报(哲学社会科学版). 2024(06): 87-94 . 百度学术
其他类型引用(1)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.05.007