-
黄薇Heimia myrtifolia为千屈菜科Lythraceae黄薇属Heimia的落叶灌木[1],原产南美洲和非洲的热带、亚热带地区,人类的迁移致使南亚、东亚地区有零星分布[2],为中国引种植物。其花色金黄,夏季开花,花量丰富,花期较长,观赏价值极高。此外,黄薇植株可塑性强,繁殖简便,生长迅速,具有耐高温、耐水湿和耐轻微干旱的特性,抗逆能力强,生态适应性广,是一种待开发的优良观赏植物。迄今为止,关于黄薇生态适应性的研究国内外未见报道。黄薇原生环境夏季高温多雨,冬季少雨。目前,中国引种地区夏季易出现高温天气并伴随干旱发生,在两者的共同作用下,植物的生长和发育会受到较大的影响,甚至无法恢复导致植株死亡[3]。研究表明:植物遭受胁迫后体内的活性氧含量会不断积累,过量的活性氧一方面会导致生物膜脂过氧化,形成有害物质;另一方面会破坏植株叶绿体结构,削弱光合作用能力,对植物造成伤害[4]。植物会依靠植株体内的酶促和非酶促两大类保护系统对过量的活性氧进行清除,以维持正常代谢和减轻受到的损伤[5-6]。酶促清除系统主要包括超氧化物歧化酶(SOD),过氧化氢酶(CAT),抗坏血酸过氧化物酶(APX)及作用范围较广的过氧化物酶(POD),还包括保持抗氧化物质还原性所必须的酶如抗坏血酸—谷胱甘肽循环酶类等;非酶促清除系统主要包括抗坏血酸(AsA),类胡萝卜素及一些含巯基的低分子化合物(如还原型谷胱甘肽GSH)等物质[6]。本研究通过研究高温干旱胁迫对黄薇抗氧化酶活性和抗坏血酸-谷胱甘肽(AsA-GSH)循环的影响,探究高温干旱胁迫下黄薇抗氧化系统的响应机制,以期揭示黄薇在高温干旱胁迫下的耐胁迫能力,进而为黄薇的推广和栽培提供理论依据。
Heat and drought stress with an antioxidant defense system in Heimia myrtifolia
-
摘要: 黄薇Heimia myrtifolia是具有较高价值的引种植物,但对其引种后的适应性研究仍较缺乏。为了探究黄薇对高温干旱及协同胁迫的响应,采用人工模拟自然状态下干旱(对照、轻度干旱、中度干旱和重度干旱),高温(30,36和42℃)及高温干旱协同胁迫对黄薇叶片抗氧化防御系统的影响。结果显示:干旱胁迫下,过氧化物酶(POD)活性和丙二醛(MDA)质量摩尔浓度显著增加(P < 0.05),脂膜过氧化程度加深,抗坏血酸-谷胱甘肽(AsA-GSH)循环相关酶活性和相关还原物质均呈先上升后下降趋势,在中度胁迫下达到顶峰,与对照相比均显著增加(P < 0.05)。高温胁迫下,抗氧化酶效率和AsA-GSH循环效率均有提高。高温干旱协同胁迫下,黄薇受到的伤害明显大于单一胁迫,超氧化物歧化酶(SOD)和POD显著上升(P < 0.05)并于中度胁迫时达到顶峰,MDA质量摩尔浓度显著增加(P < 0.05),AsA-GSH循环效率均有提高但在中度胁迫下开始下降,脂膜过氧化随着胁迫加深显著加剧,重度胁迫下已无法维持正常生长。黄薇在高温干旱胁迫下可以通过调节抗氧化酶系统和AsA-GSH循环共同清除氧化物质,提高抗胁迫能力,维持正常生长发育。Abstract: To determine the effects of drought stress and heat stress both individually and combined on the antioxidant defense system of Heimia myrtifolia, an introduced plant with high value but poor distribution. Soil moisture loss with natural high temperature and drought conditions without replenishment were artificially simulated using drought stress of a control (no stress), light, moderate, and heavy stresses and heat stress of 30℃ (control), 36℃, and 42℃. The upper complete functional leaf was carried out when the moisture gradient reaches the sampling requirement under heat treatment. Experimental results showed that, firstly, with drought treatments, peroxidase (POD) activity and malondialdehyde (MDA) molar concentration increased significantly (P < 0.05), lipid membrane peroxidation deepened, ascorbic Acid-glutathione (AsA-GSH) cyclerelated enzyme activity and related reductants increased first and then decreased, peaking with moderate stress and significantly increased compared with the control (P < 0.05). Secondly, with high temperature stress, the efficiency of antioxidant enzymes and ASA-GSH cycle increased but not dramatic. Finally, with the synergistic stress of heat and drought, the damage of H. myrtifolia was significantly greater than that with single stress. The superoxide dismutase (SOD) and POD activities increased significantly (P < 0.05) and reached the peak with moderate stress. The molar concentration of MDA increased significantly (P < 0.05). The circulation efficiency of AsA-GSH increased, but began to decrease with moderate stress. Lipid membrane peroxidation increased significantly with the deepening of stress and the normal growth could not be maintained with severe stress. Thus, with heat and drought stress, the plant could remove excessive reactive oxygen by regulating the antioxidant enzyme system and AsA-GSH cycle, and improve resistance to stress so as to maintain normal growth and development.
-
Key words:
- botany /
- Heimia myrtifolia /
- heat /
- drought /
- antioxidant enzyme /
- ascorbate glutathione cycle
-
-
[1] 方文培.中国植物志:第52(2)卷[M].北京:科学出版社, 2004. [2] RAWAT G S, CHANDOLA S, NAITHANI H B. A note on the occurrence of Heimia myrtifolia (Lythraceae) in India[J]. Indian For, 2007, 133(5):398-409. [3] 简令成, 王红.逆境植物细胞生物学[M].北京:科学出版社, 2009. [4] LEI Peng, XU Zongqi, DING Yan, et al. Effect of ploy(γ-glutamic acid) on the physiological responses and calcium signaling of rape seeding (Brassica napus L.) under cold stress[J]. J Agric Food Chem, 2015, 63(48):10399-10406. [5] 潘瑞炽.植物生理学[M].北京:高等教育出版社, 2012. [6] 尹永强, 胡建斌, 邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报, 2007, 23(1):105-110. YIN Yongqiang, HU Jianbin, DENG Mingjun. Latest development of antioxidant system and responses to stress in plant leaves[J]. Chin Agri Sci Bull, 2007, 23(1):105-110. [7] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2004. [8] JIANG Mingyi, ZHANG Jianhua. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings[J]. Plant Cell Physiol, 2001, 42(11):1265-1273. [9] NAGALAKSHMI N, PRASAD M N V. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus[J]. Plant Sci, 2001, 160(2):291-299. [10] NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22(5):867-880. [11] KRIVOSHEEVA A, TAO Dali, OTTANDER C, et al. Cold acclimation and photoinhibition of photosynthesis in Scotspine[J]. Planta, 1996, 200(3):296-305. [12] 马旭俊, 朱大海.植物超氧化物歧化酶(SOD)的研究进展[J].遗传, 2003, 25(2):225-231. MA Xujun, ZHU Dahai. Functional roles of the plant superoxide dismutase[J]. Hereditas, 2003, 25(2):225-231. [13] 陈培琴, 郁松林, 詹妍妮, 等.植物在高温胁迫下的生理研究进展[J].中国农学通报, 2006, 22(5):223-227. CHEN Peiqin, YU Songlin, ZHAN Yanni, et al. A review on plant heat stress physiology[J]. Chin Agric Sci Bull, 2006, 22(5):223-227. [14] ROOT T L, PRICE J T, HALL K R, et al. Fingerprints of global warming on wild animals and plants[J]. Nature, 2003, 421:57-60. [15] 裴斌, 张光灿, 张淑勇, 等.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J].生态学报, 2013, 33(5):1386-1396. PEI Bin, ZHANG Guangcan, ZHANG Shuyong, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn. seedings[J]. Acta Ecol Sin, 2013, 33(5):1386-1396. [16] 周广, 孙宝腾, 张乐华, 等.井冈山杜鹃叶片抗氧化系统对高温胁迫的响应[J].西北植物学报, 2010, 30(6):1149-1156. ZHOU Guang, SUN Baoteng, ZHANG Lehua, et al. Responses of antioxidant system in leaves of Rhododendron jinggangshanicum to high temperature stress[J]. Acta Bot Boreal-Occident Sin, 2010, 30(6):1149-1156. [17] 孙军利, 赵宝龙, 郁松林. SA对高温胁迫下葡萄幼苗AsA-GSH循环的影响[J].核农学报, 2015, 29(4):799-804. SUN Junli, ZHAO Baolong, YU Songlin. Effects of exogenous salicylic acid (SA) on ascorbate glutathione cycle(AsA-GSH)circulation metabolism in grape seedlings under high temperature stress[J]. J Nucl Agric Sci, 2015, 29(4):799-804. [18] 韩一林, 王鑫朝, 许馨露, 等.毛竹幼苗抗氧化酶和AsA-GSH循环对高温干旱及协同胁迫的响应[J].浙江农林大学学报, 2018, 35(2):268-276. HAN Yilin, WANG Xinzhao, XU Xinlu, et al. Responses of anti-oxidant enzymes and the ascorbate-glutathione cycle to heat, drought, and synergistic stress in Phyllostachys edulis seedlings[J]. J Zhejiang A&F Univ, 2018, 35(2):268-276. [19] SILVA E N, FERREIRA-SLIVA S L, FONTENELE A, et al. Photosynthetic changesand protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants[J]. J Plant Physiol, 2010, 167:1157-1164. [20] 许馨露, 李丹丹, 马元丹, 等.四季桂抗氧化防御系统对干旱、高温及协同胁迫的响应[J].植物学报, 2018, 53(1):72-81. XU Xinlu, LI Dandan, MA Yuandan, et al. Responses of the antioxidant defense system of Osmanthus fragrans cv. 'Tian Xiang TaiGe' to drought, heat and the synergistic stress[J]. Chin Bull Bot, 2018, 53(1):72-81. [21] 董守坤, 马玉玲, 李爽, 等.干旱胁迫及复水对大豆抗坏血酸-谷胱甘肽循环的影响[J].东北农业大学学报, 2018, 49(1):10-18. DONG Shoukun, MA Yuling, LI Shuang, et al. Effect of drought stress and re-watering on ascorbate-glutathione cycle of soybean[J]. J Northeast Agric Univ, 2018, 49(1):10-18. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.05.007