-
土壤有机碳对大气温室气体的贡献主要来源于土壤活性有机碳的分解[1-3]。土壤活性碳是土壤碳库中能直接参与土壤生物化学过程、易被土壤微生物分解利用、对植物养分供应有直接作用的有机碳,虽然只占土壤总有机碳的很小比例,但是由于其易分解和周转快,能快速地反映外界干扰和环境因素对土壤有机质造成的微小变化[4-5]。因此,土壤活性有机碳常作为响应土地利用变化、植被演替过程、环境变化和气候变化等的敏感指标[6],对预测未来全球气候变化具有重要作用。微生物生物量碳(microbial biomass carbon,MBC)是活性有机碳库的一个重要组成部分,常用来表征土壤活性有机碳库的变化。土壤MBC的含量受土壤温度、pH、含水量、养分含量的共同影响,而这些因子通常随着季节变化而变化,因此土壤MBC的变化通常呈现一定的季节变化规律[7−9]。目前,关于土壤微生物生物量碳及其影响因素已开展了较多研究,主要集中在农田、森林、草地以及淡水湿地生态系统[10-13],而对于滨海湿地生态系统的相关研究还比较缺乏。在滨海湿地生态系统中,土壤MBC通常会受气候、土壤和植被等因子的影响。植被演替是滨海湿地形成和演变的重要标志,伴随着植被演替进程,物种组成发生变化,有机质来源的地表凋落物和地下根系分泌物类型也发生相应的变化,从而影响土壤中MBC含量[14-15]。江苏滨海湿地位于北亚热带向南暖温带的过渡地带,湿地面积达100 万hm2,其中淤泥质海滩面积约41.56 万hm2,是中国淤泥质滨海湿地的重要组成部分。随着滩涂的逐渐淤积抬升,水分和含盐量则逐渐降低,江苏滨海湿地的环境条件呈现出了有序变化,植被呈明显的条带分布。植被分布由海向陆分布为光滩、大米草Spartina anglica、碱蓬Suaeda glauca、芦苇Phragmites australis和刺槐Robinia pseudoacacia群落。对江苏滨海湿地不同演替阶段土壤MBC的质量分数和季节动态进行研究,对揭示滨海湿地植被演替对土壤碳库动态的影响以及科学预测滨海湿地土壤有机碳在大气碳循环中的作用都具有重要的意义。
-
江苏滨海湿地不同演替阶段土壤MBC在0~40 cm土层的质量分数分别为:刺槐群落116.91~254.61 mg·kg−1,碱蓬群落168.12~276.19 mg·kg−1,芦苇群落219.45~290.76 mg·kg−1,大米草群落211.37~380.14 mg·kg−1,光滩117.00~326.18 mg·kg−1。平均质量分数从大到小依次为大米草、芦苇、光滩、碱蓬、刺槐群落,未表现出沿演替方向的变化趋势,其中碱蓬和刺槐群落显著低于其他3个演替阶段(图1)。0~10 cm土层,各演替阶段土壤MBC质量分数范围为157.66~380.14 mg·kg−1,在夏季、秋季和冬季从大到小均为大米草、芦苇、碱蓬、刺槐群落。其中,夏季大米草群落土壤MBC质量分数显著高于芦苇、碱蓬和刺槐群落;秋季,刺槐和碱蓬群落土壤MBC质量分数显著低于大米草群落和光滩;冬季,大米草和芦苇群落土壤MBC质量分数显著高于刺槐和碱蓬群落。10~25 cm土层,各演替阶段土壤MBC质量分数范围为140.73~357.12 mg·kg−1,土壤MBC质量分数在春季和夏季从大到小依次为芦苇、大米草、光滩、碱蓬、刺槐群落;秋季,刺槐和碱蓬群落土壤MBC质量分数均显著低于其他3个演替阶段。25~40 cm土层,各演替阶段土壤MBC质量分数范围为116.91~350.48 mg·kg−1;春季,刺槐林土壤MBC质量分数显著低于芦苇和大米草群落;秋季,刺槐群落显著低于其他演替阶段;冬季,刺槐和碱蓬群落土壤MBC质量分数显著低于大米草群落和光滩。
-
从图1可以看出:不同演替阶段的土壤MBC质量分数在3个土层的季节变化趋势一致,均随季节先增加再下降,在秋季达到峰值;除芦苇群落外,各演替阶段土壤MBC质量分数均呈现出明显的季节变化规律。在0~10 cm土层,刺槐群落土壤MBC质量分数从大到小依次为秋季、夏季、春季、冬季;碱蓬群落土壤MBC质量分数在冬季显著低于夏季、秋季;大米草群落土壤MBC质量分数的季节变化表现为秋季最高,春季最低;光滩土壤MBC质量分数在春季、冬季显著低于夏季、秋季。10~25 cm土层,各演替阶段土壤MBC质量分数随季节的变化趋势与0~10 cm层一致,但是变化幅度不同;刺槐和碱蓬群落土壤MBC质量分数秋季较高,春季显著较低;大米草群落呈现出了明显的季节差异性,差异性从高到低依次为秋季、冬季、夏季、春季;光滩土壤MBC质量分数差异性表现为秋季和冬季显著高于春季和夏季。25~40 cm,各演替阶段土壤MBC质量分数的季节变化趋势与其他土层一致;刺槐群落土壤MBC质量分数的季节从高到低依次为秋季、冬季、夏季、春季;碱蓬群落土壤MBC质量分数在秋季最高,其他季节变化不明显;大米草群落和光滩土壤MBC质量分数在秋季和冬季显著高于春季和夏季。
-
利用多因素方差分析可得出:本研究中植被演替和季节对土壤MBC质量分数具有极显著影响(P<0.01),而土层深度对土壤MBC质量分数的影响较小且不显著(表1)。从3个影响因素间的交互作用看,季节分别与演替和土层的交互作用对土壤MBC质量分数均具有极显著影响(P<0.01)。表1中分布值可表示不同因素对土壤MBC质量分数的影响效应大小。根据分布值数据可知,季节因素对土壤MBC质量分数的影响最大,影响效应占32.29%;其次是演替因素的影响,效应占26.23%;季节和土层的交互作用对土壤MBC质量分数的影响效应占7.05%;季节与演替的交互作用对土壤MBC的影响效应相对较弱,占5.86%。
表 1 植被演替、土层和季节对土壤MBC质量分数的影响
Table 1. Effects of vegetation succession, soil layer and season on soil MBC contents
影响因素 分布值/% P 植被演替 26.23 0.000 土层 0.91 0.087 季节 32.29 0.000 植被演替×土层 0.96 0.728 植被演替×季节 5.86 0.003 土层×季节 7.05 0.000 植被演替×土层×季节 4.84 0.348 -
滨海湿地土壤理化性质也是影响土壤MBC质量分数的主要因素,本研究中滨海湿地土壤基本理化性质见文献[17]。本研究分析了不同演替阶段土壤MBC质量分数与土壤理化性质间的相关性(表2)。结果显示:土壤MBC质量分数与土壤总有机碳和总氮之间呈显著(P<0.05)的正相关关系;土壤pH与MBC质量分数之间呈负相关,且相关性达极显著水平(P<0.01);土壤MBC质量分数与土壤容重呈显著的负相关关系(P<0.05),而与土壤含水率表现出极显著的正相关关系(P<0.01)。本研究中C/N与土壤MBC质量分数的相关性不显著(P>0.05)。
表 2 土壤微生物生物量碳与土壤理化因子相关性
Table 2. Pearson correlation coefficients (r-value) between MBC and physic-chemical factors of soil
项目 土壤
有机碳总氮 C/N pH 容重 含水率 MBC 0.187* 0.173* 0.062 −0.225** −0.190* 0.461** 说明:*表示显著相关水平(P<0.05);**表示极显著相关水平 (P< 0.01)
Characteristics and influencing factors of soil microbial biomass carbon content at different succession stages of coastal wetlands in Jiangsu Province
-
摘要:
目的 研究江苏滨海湿地土壤微生物生物量碳(MBC)质量分数在不同演替阶段的分布特征和季节动态,揭示其主要影响因素。 方法 选择江苏滨海湿地典型演替序列的不同阶段,光滩、大米草Spartina anglica群落、碱蓬Suaeda glauca群落、芦苇Phragmites australis群落和刺槐Robinia pseucdoacacia群落为研究对象,分析植被演替、土层和季节因素对土壤微生物生物量碳质量分数的影响,以及土壤微生物生物量碳质量分数与土壤理化性质的关系,探讨影响滨海湿地土壤微生物生物量碳质量分数的关键因素。 结果 土壤微生物生物量碳质量分数范围为116.91~326.18 mg·kg−1,不同演替阶段之间差异显著,但分布趋势与演替方向不一致,从高到低依次为大米草群落、芦苇群落、光滩、碱蓬群落、刺槐群落。在0~10 cm土层,大米草群落土壤微生物生物量碳质量分数在4个季节均显著大于其他演替阶段。不同演替阶段的土壤微生物生物量碳质量分数在3个土层均表现出随季节先增加再下降的季节变化趋势,在秋季达到峰值,而在春季或冬季则较低。滨海湿地土壤微生物生物量碳受季节和演替阶段影响较显著,其中季节因素的影响力比例最大,占32.29%。土壤微生物生物量碳质量分数与土壤总有机碳、总氮和土壤含水率之间呈显著正相关关系,而与土壤pH呈极显著的负相关关系。 结论 植被演替和季节是影响江苏滨海湿地土壤微生物生物量碳分布和动态特征的主要因素,其中季节因素的影响力最大,土壤有机质、含水率和pH是直接影响土壤微生物活性的关键性因子。图1表2参35 Abstract:Objective The objective is to explore distribution characteristics and seasonal variations of soil microbial biomass carbon (MBC) content at different succession stages of coastal wetlands in Jiangsu Province, and to reveal its main influencing factors. Method Five typical succession stages of coastal wetlands in Jiangsu were selected as the research objects, including coastal mudflats, Spartina auglica wetland, Suaeda glauca wetland, Phragmites australis wetland, and Robinia pseucdoacacia forest. The distribution characteristics of soil MBC at the different succession stages, the effects of vegetation succession, soil layer and season on MBC, the relationship between soil MBC and soil physical and chemical properties were analyzed. The key factors affecting soil MBC in coastal wetlands were discussed. Result Soil MBC content ranged from 116.91 to 326.18 mg·kg−1, with a significant difference between different succession stages, but the distribution trend was not consistent with the succession direction. The highest was Sp. auglica, followed by P. australis, coastal mudflats, Su. glauca, and R. pseucdoacacia. In 0−10 cm soil depth, soil MBC content in Sp. auglica wetland was significantly higher than that of other succession stages in four seasons. Soil MBC content at different succession stages first increased and then decreased with variation of seasons in the three soil layers, reaching its peak in autumn but lower in spring or winter. Soil MBC in coastal wetlands was significantly affected by seasons and succession stages, among which the seasonal factors had the largest impact, accounting for 32.29%. There existed a significant positive correlation between soil MBC content and total organic carbon, total nitrogen and soil moisture content, but a significant negative correlation with soil pH. Conclusion Vegetation succession and seasons are the main factors affecting the distribution and dynamic characteristics of soil MBC in coastal wetlands, among which seasonal factors have the greatest influence, and soil organic matter, moisture content and pH are the key factors that directly affect soil microbial activity. [Ch, 1 fig. 2 tab. 35 ref.] -
表 1 植被演替、土层和季节对土壤MBC质量分数的影响
Table 1. Effects of vegetation succession, soil layer and season on soil MBC contents
影响因素 分布值/% P 植被演替 26.23 0.000 土层 0.91 0.087 季节 32.29 0.000 植被演替×土层 0.96 0.728 植被演替×季节 5.86 0.003 土层×季节 7.05 0.000 植被演替×土层×季节 4.84 0.348 表 2 土壤微生物生物量碳与土壤理化因子相关性
Table 2. Pearson correlation coefficients (r-value) between MBC and physic-chemical factors of soil
项目 土壤
有机碳总氮 C/N pH 容重 含水率 MBC 0.187* 0.173* 0.062 −0.225** −0.190* 0.461** 说明:*表示显著相关水平(P<0.05);**表示极显著相关水平 (P< 0.01) -
[1] D’ANDRILLI J, COOPER W T, FOREMAN C M, et al. An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability [J]. Mass Spectrom, 2015, 29(24): 2385 − 2400. [2] HU Yufu, JIANG Shuanglong, YUAN Shu, et al. Changes in soil organic carbon and its active fractions in different desertification stages of alpine-cold grassland in the eastern Qinghai-Tibet Plateau [J]. Environ Earth Sci, 2017, 76(1): 348. [3] LU Xin, HU Haiqing, SUN Long. Effect of fire disturbance on active organic carbon of Larix gmelinii forest soil in Northeastern China [J]. J For Res, 2017, 28(4): 1 − 12. [4] ZHANG Shuai, XU Mingxiang, ZHANG Yengya, et al. Effects of land use change on soil active organic carbon in deep soils in Hilly Loess Plateau region of northwest China [J]. Environ Sci, 2015, 36: 661 − 668. [5] KABIRI V, RAIESI F, GHAZAVI M A. Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts [J]. Agric Ecosyst Environ, 2016, 232: 73 − 84. [6] XIAO Ye, HUANG Zhigang, LU Xianguo. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, northeast China [J]. Ecol Eng, 2015, 82: 381 − 389. [7] 李红琴, 徐海燕, 马小亮, 等. 马衔山多年冻土与季节冻土区土壤微生物量及酶活性的季节动态[J]. 冰川冻土, 2017, 39(2): 421 − 428. LI Hongqin, XU Haiyan, MA Xiaoliang, et al. The seasonal dynamics of soil microbial biomass and enzyme activities in permafrost area and seasonally frozen ground area of the Maxian Mountain [J]. J Glaciol Geocryol, 2017, 39(2): 421 − 428. [8] 周世兴, 邹秤, 肖永翔, 等. 模拟氮沉降对华西雨屏区天然常绿阔叶林土壤微生物生物量碳和氮的影响[J]. 应用生态学报, 2017, 28(1): 12 − 18. ZHOU Shixing, ZOU Cheng, XIAO Yongxiang, et al. Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural ever- green broad-leaved forest in the rainy area of west China [J]. Chin J Appl Ecol, 2017, 28(1): 12 − 18. [9] 杨帆, 杨万勤, 吴福忠, 等. 萘对川西亚高山森林土壤呼吸、可溶性有机质和微生物生物量的影响[J]. 应用生态学报, 2018, 29(3): 757 − 764. YANG Fan, YANG Wangqin, WU Fuzhong, et al. Effects of naphthalene on soil respiration, dissolved organic matter and microbial biomass in the subalpine forest of western Sichuan, China [J]. Chin J Appl Ecol, 2018, 29(3): 757 − 764. [10] 蒋永梅, 姚拓, 田永亮, 等. 不同管理措施对高寒草甸土壤微生物量季节性变化的影响[J]. 草原与草坪, 2016, 36(5): 105 − 110. JIANG Yongmei, YAO Tuo, TIAN Yongliang, et al. Effect of different management patterns on seasonal dynamics of soil microbial biomass in the alpine meadow [J]. Grassland Turf, 2016, 36(5): 105 − 110. [11] 杨文英, 邵学新, 梁威, 等. 杭州湾湿地土壤酶活性分布特征及其与活性有机碳组分的关系[J]. 湿地科学与管理, 2011, 7(2): 54 − 58. YANG Wenying, SHAO Xuexin, LIANG Wei, et al. Vertical dynamics of soil enzyme activities and its relationship with active organic carbon fractions in Hangzhou bay wetland [J]. Wetland Sci Manage, 2011, 7(2): 54 − 58. [12] 张静, 马玲, 丁新华, 等. 扎龙湿地不同生境土壤微生物生物量碳氮的季节变化[J]. 生态学报, 2014, 34(13): 3712 − 3719. ZHANG Jing, MA Ling, DING Xinhua, et al. Seasonal dynamics of soil microbial biomass C and N in different habitats in Zhalong Wetland [J]. Acta Ecol Sin, 2014, 34(13): 3712 − 3719. [13] 石思博, 王旭东, 叶正钱, 等. 菌渣化肥配施对稻田土壤微生物量碳氮和可溶性碳氮的影响[J]. 生态学报, 2018, 38(23): 8612 − 8620. SHI Sibo, WANG Xudong, YE Zhengqian, et al. Effects of the combination of fungal residue and chemical fertilizer on soil microbial biomass carbon and nitrogen and dissolved organic carbon and nitrogen in paddy soil [J]. Acta Ecol Sin, 2018, 38(23): 8612 − 8620. [14] XIONG Xiong, GRUNWALD S, MYERS D B, et al. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration [J]. Sci Total Environ, 2014, 493: 974 − 982. [15] HUANG Wei, McDOEELL W H, ZOU Xiaoming, et al. Qualitative differences in headwater stream dissolved organic matter and riparian water-extractable soil organic matter under four different vegetation types along an altitudinal gradient in the Wuyi Mountains of China [J]. Appl Geochem, 2015, 52: 67 − 75. [16] 国家林业局. 森林土壤分析方法: LY/T 1210~1275−1999[S]. 北京: 中国标准出版社, 1999: 1 − 108. [17] 王磊, 何冬梅, 刘华, 等. 江苏滨海湿地不同植被演替阶段土壤有机碳分布特征[J]. 安徽农业大学学报, 2017, 44(6): 1064 − 1069. WANG Lei, HE Dongmei, LIU Hua, et al. Distribution of soil organic carbon under different vegetation successions in the coastal wetland of Jiangsu [J]. J Anhui Agric Univ, 2017, 44(6): 1064 − 1069. [18] 田舒怡, 满秀玲. 大兴安岭北部森林土壤微生物量碳和水溶性有机碳特征研究[J]. 土壤通报, 2016, 47(4): 838 − 845. TIAN Shuyi, MAN Xiuling. Characteristics of soil microbial biomass carbon and dissolved organic carbon in northern forest region of Daxing’an montains [J]. Chin J Soil Sci, 2016, 47(4): 838 − 845. [19] 孙小琳, 孔范龙, 李悦, 等. 胶州湾滨海湿地枯落物分解对土壤活性有机碳含量及其三维荧光特性的影响[J]. 应用生态学报, 2019, 30(2): 563 − 572. KONG Xiaolin, KONG Fanlong, LI Yue, et al. Effects of litter decomposition on contents and three-dimensional fluorescence spectroscopy characteristics of soil labile organic carbon in coastal wetlands of Jiaozhou Bay, China [J]. Chin J Appl Ecol, 2019, 30(2): 563 − 572. [20] 管海英, 王权, 赵鑫, 等. 2种典型荒漠植被区土壤微生物量碳的季节变化及影响因素分析[J]. 干旱区地理, 2015, 38(1): 67 − 75. GUAN Haiying, WANG Quan, ZHAO Xin, et al. Seasonal patterns of soil microbial biomass C and impacting factors in two typical arid desert vegetation regions [J]. Arid Land Geogr, 2015, 38(1): 67 − 75. [21] YANG Wen, ZHAO Hui, CHEN Xinglong, et al. Consequences of short-term C4 plan Spartina alerniflora invasions for soil organic carbon dynamics in a coastal wetland of eastern China [J]. Ecol Eng, 2013, 61(12): 50 − 57. [22] 张祥霖, 石盛莉, 潘根兴, 等. 互花米草入侵下福建漳江口红树林湿地土壤生态化学变化[J]. 地球科学进展, 2008, 23(9): 974 − 981. ZHANG Xianglin, SHI Shengli, PAN Genxing, et al. Changes in ecochemical properties of a mangrove wetland under spartina invasion from Zhangjiangkou, Fujian, China [J]. Adv Earth Sci, 2008, 23(9): 974 − 981. [23] 周义贵, 郝凯婕, 李贤伟, 等. 川西亚高山不同土地利用类型对土壤微生物量碳动态特征的影响[J]. 自然资源学报, 2014, 29(11): 1944 − 1956. ZHOU Yigui, HAO Kaijie, LI Xianwei, et al. Effect of different land use patterns on seasonal dynamic of soil microbial biomass carbon in the subalpine forest of western Sichuan, China [J]. J Nat Resour, 2014, 29(11): 1944 − 1956. [24] 刘明慧, 孙雪, 于文杰, 等. 长白山不同海拔原始红松林土壤活性有机碳含量的生长季动态[J]. 南京林业大学学报(自然科学版), 2018, 42(2): 67 − 74. LIU Minghui, SUN Xue, YU Wenjie, et al. Seasonal dynamics of soil active organic carbon content in the original Pinus koraiensis forest in Changbai Mountains, China [J]. J Nanjing For Univ Nat Sci Ed, 2018, 42(2): 67 − 74. [25] 韩广轩. 潮汐作用和干湿交替对盐沼湿地碳交换的影响机制研究进展[J]. 生态学报, 2017, 37(24): 8170 − 8178. HAN Guangxuan. Effect of tidal action and drying-wetting cycles on carbon exchange in a salt marsh: progress and prospects [J]. Acta Ecol Sin, 2017, 37(24): 8170 − 8178. [26] 刘平, 邱月, 王玉涛, 等. 渤海泥质海岸典型防护林土壤微生物量季节动态变化[J]. 生态学报, 2019, 39(1): 363 − 370. LIU Ping, QIU Yue, WANG Yutao, et al. Seasonal dynamics of soil microbial biomass in typical shelterbelts on the Bohai muddy coast [J]. Acta Ecol Sin, 2019, 39(1): 363 − 370. [27] 涂志华, 尉永键, 范志平, 等. 太子河源流域不同类型水源涵养林土壤微生物生物量碳、氮的季节动态[J]. 生态学杂志, 2018, 37(7): 2139 − 2147. TU Zhihua, WEI Yongjian, FAN Zhiping, et al. Seasonal variations of soil microbial biomass C and N in different types of water conservation forest in the headstream of Taizi River watershed [J]. Chin J Ecol, 2018, 37(7): 2139 − 2147. [28] 刘纯, 刘延坤, 金光泽. 小兴安岭6种森林类型土壤微生物量的季节变化特征[J]. 生态学报, 2014, 34(2): 451 − 459. LIU Chun, LIU Yankun, JIN Guangze. Seasonal dynamics of soil microbial biomass in six forest types in Xiaoxing’an Mountains, China [J]. Acta Ecol Sin, 2014, 34(2): 451 − 459. [29] 杨凯, 朱教君, 张金鑫, 等. 不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J]. 生态学报, 2009, 29(10): 5500 − 5507. YANG Kai, ZHU Jiaojun, ZHANG Jinxin, et al. Seasonal dynamics of soil microbial biomass C and N in two larch plantation forests with different ages in northeastern China [J]. Acta Ecol Sin, 2009, 29(10): 5500 − 5507. [30] 张剑, 汪思龙, 王清奎, 等. 不同森林植被下土壤活性有机碳含量及其季节变化[J]. 中国生态农业学报, 2009, 17(1): 41 − 47. ZHANG Jian, WANG Silong, WANG Qingkui, et al. Content and seasonal change in soil labile organic carbon under different forest covers [J]. Chin J Eco-Agric, 2009, 17(1): 41 − 47. [31] ZHOU Zhenghu WANG C K. Reviews and syntheses: Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China’s forest ecosystems [J]. Biogeosci Discuss, 2015, 12(14): 6751 − 6760. [32] 王薪琪, 韩轶, 王传宽. 帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态[J]. 植物生态学报, 2017, 41(6): 597 − 609. WANG Xinqi, HAN Yi, WANG Chuankuan. Soil microbial biomass and its seasonality in deciduous broadleaved forests with different stand ages in the Mao’ershan region, northeast China [J]. Chin J Plant Ecol, 2017, 41(6): 597 − 609. [33] SONG Piao, REN Haibao, JIA Qi, et al. Effects of historical logging on soil microbial communities in a subtropical forest in southern China [J]. Plant Soil, 2015, 397: 115 − 126. [34] 张雨洁, 王斌, 李正才, 等. 施肥措施对古香榧林地土壤活性有机碳和养分的影响[J]. 林业科学研究, 2019, 32(2): 87 − 93. ZHANG Yujie, WANG Bin, LI Zhengcai, et al. Effects of fertilization measures on soil labile organic carbon and nutrient of old Torreya grandis [J]. For Res, 2019, 32(2): 87 − 93. [35] 范志平, 王琼, 李法云. 辽东山地不同森林类型土壤有机碳季节动态及其驱动因子[J]. 生态学杂志, 2018, 37(11): 3220 − 3230. FAN Zhiping, WANG Qiong, LI Fayun. Seasonal dynamics of soil organic carbon in different forest types and its driving factors in mountainous region of eastern Liaoning [J]. Chin J Ecol, 2018, 37(11): 3220 − 3230. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190565