留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向边缘计算的轻量级植物病害识别模型

王冠 王建新 孙钰

王冠, 王建新, 孙钰. 面向边缘计算的轻量级植物病害识别模型[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190595
引用本文: 王冠, 王建新, 孙钰. 面向边缘计算的轻量级植物病害识别模型[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190595
WANG Guan, WANG Jianxin, SUN Yu. Lightweight plant disease recognition model for edge computing[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190595
Citation: WANG Guan, WANG Jianxin, SUN Yu. Lightweight plant disease recognition model for edge computing[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190595

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

面向边缘计算的轻量级植物病害识别模型

doi: 10.11833/j.issn.2095-0756.20190595
基金项目: “十三五”国家重点研发计划项目(2018YFD0600200);贵州省科研机构创新能力建设专项 (黔科合服企〔2019〕4007);贵州省科研机构服务企业行动计划项目 (黔科合服企〔2018〕4002)
详细信息
    作者简介: 王冠,博士研究生,从事人工智能技术及其在林业中的应用研究。E-mail: wangguan@bjfu.edu.cn
    通信作者: 王建新,教授,博士,博士生导师,从事计算机应用技术研究。E-mail: wangjx@bjfu.edu.cn
  • 中图分类号: S126

Lightweight plant disease recognition model for edge computing

  • 摘要:   目的  传统深度学习模型因参数和计算量过大不适用于边缘部署,在网络边缘的植物病害自动识别是实现长时间大范围低成本作物监测的迫切需求。  方法  联合使用多种模型压缩方法,得到可部署于算力有限的嵌入式系统的轻量级深度卷积神经网络,在边缘节点实现植物病害智能识别。模型压缩分2个阶段:第1阶段利用基于L1范数的通道剪枝方法,压缩MobileNet模型;第2阶段将模拟学习与量化相结合,在模型量化的同时恢复识别精度,得到高精度轻量级的端模型。  结果  在PlantVillage数据集58类植物病害的实验结果表明:通道剪枝将MobileNet压缩了3.6~14.3倍,量化又将模型的参数精度由32 bit降低至8 bit。整体压缩率达到了14.4~57.2倍,识别准确率仅降低0.24%~1.65%。与通道剪枝后无模拟学习训练、通道剪枝结合量化后无模拟学习训练这2种压缩方法相比,具有更高的模型压缩率和识别准确率。  结论  联合使用多种模型压缩方法可以少量的精度损失深度压缩人工智能模型,可为农林业提供面向边缘计算的植物病害识别模型。图3表2参23
  • 图  1  PlantVillage数据集植物病害示例图

    Figure  1.  Example of plant disease images from the PlantVillage dataset

    图  2  面向边缘计算的植物病害识别模型构建方法:通道剪枝和量化模拟学习

    Figure  2.  Plant disease recognition model for edge computing building pipeline: channel pruning and quantized mimic learning

    图  3  边缘端模型在测试集的混淆矩阵

    Figure  3.  Confusion matrix on the test set of models on the edge

    表  1  边缘端模型植物病害识别结果

    Table  1.   Plant disease recognition results of models on the edge

    剪枝率/%参数量/M剪枝压缩率/倍量化压缩率/倍整体压缩率/倍准确率/%查准率/%查全率/%加权平均分数/%
    700.91 3.6414.495.9996.1894.4194.92
    800.58 5.7422.895.5595.5193.5293.99
    900.2314.3457.294.5894.8792.4193.15
    下载: 导出CSV

    表  2  不同压缩方法边缘端模型植物病害识别结果

    Table  2.   Plant disease recognition results of models on the edge compressed by different methods

    剪枝率/%参数量/M边缘端模型精度/bit压缩率/倍准确率/%
    70 0.91 剪枝+无模拟学习 32 3.6 95.48
    剪枝+量化+无模拟学习 8 14.4 95.45
    本研究模型 8 14.4 95.99
    80 0.58 剪枝+无模拟学习 32 5.7 94.95
    剪枝+量化+无模拟学习 8 22.8 94.92
    本研究模型 8 22.8 95.55
    90 0.23 剪枝+无模拟学习 32 14.3 93.40
    剪枝+量化+无模拟学习 8 57.2 93.53
    本研究模型 8 57.2 94.58
    下载: 导出CSV
  • [1] SHAMSHIRBAND S, ANUAR N B, KIAH M L M, et al. Survey an appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique [J]. Eng Appl Artif Intell, 2013, 26(9): 2105 − 2127. doi:  10.1016/j.engappai.2013.04.010
    [2] HILLNHUTTER C, MAHLEIN A. Early detection and localisation of sugar beet diseases: new approaches [J]. Gesunde Pflanzen, 2008, 60(4): 143 − 149. doi:  10.1007/s10343-008-0196-0
    [3] CAMARGO A, SMITH J S. An image-processing based algorithm to automatically identify plant disease visual symptoms [J]. Biosyst Eng, 2009, 102(1): 9 − 21. doi:  10.1016/j.biosystemseng.2008.09.030
    [4] MUTKA A M, BART R S. Image-based phenotyping of plant disease symptoms [J]. Front Plant Sci, 2015, 5: 1 − 8.
    [5] HIARY H A, AHMAD S B, REYALAT M, et al. Fast and accurate setection and classification of plant diseases [J]. Int J Comput Appl, 2011, 17(1): 31 − 38.
    [6] TIAN Yuan, ZHAO Chunjiang, LU Shenglian, et al. Multiple classifier combination for recognition of wheat leaf diseases [J]. Intell Automation Soft Comput, 2011, 17(5): 519 − 529. doi:  10.1080/10798587.2011.10643166
    [7] 秦丰, 刘东霞, 孙炳达, 等. 基于图像处理技术的4种苜蓿叶部病害的识别[J]. 中国农业大学学报, 2016, 21(10): 65 − 75.

    QIN Feng, LIU Dongxia, SUN Bingda, et al. Recognition of four different alfalfa leaf diseases based on image processing technology [J]. J China Agric Univ, 2016, 21(10): 65 − 75.
    [8] BARBEDO J G A. An automatic method to detect and measure leaf disease symptoms using digital Image processing [J]. Plant Dis, 2014, 98(12): 1709 − 1716. doi:  10.1094/PDIS-03-14-0290-RE
    [9] BARBEDO J G A. A new automatic method for disease symptom segmentation in digital photographs of plant leaves [J]. Eur J Plant Pathol, 2016, 147(2): 349 − 364.
    [10] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition [C]// BAJCSY R, LI Feifei, TUYTELAARS T. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE Press, 2015: 770−778.
    [11] MOHANTY S P, HUGHES D P, SALATHÉ M. Using deep learning for image-based plant disease detection [J]. Front Plant Sci, 2016, 7: 1419. doi:  10.3389/fpls.2016.01419
    [12] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Commun ACM, 2017, 60(6): 84 − 90. doi:  10.1145/3065386
    [13] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions [C]// BISCHOF H, FORSYTH D, SCHMID C, et al. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE Press, 2015: 1−9.
    [14] 孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209 − 215. doi:  10.11975/j.issn.1002-6819.2017.19.027

    SUN Jun, TAN Wenjun, MAO Hanping, et al. Recognition of multiple plant leaf diseases based on improved convolutional neural network [J]. Trans Chin Soc Agric Eng, 2017, 33(19): 209 − 215. doi:  10.11975/j.issn.1002-6819.2017.19.027
    [15] 龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18): 194 − 201. doi:  10.11975/j.issn.1002-6819.2018.18.024

    LONG Mansheng, OUYANG Chunjuan, LIU Huan, et al. Image recognition of Camellia oleifera diseases based on convolutional neural network & transfer learning [J]. Trans Chin Soc Agric Eng, 2018, 34(18): 194 − 201. doi:  10.11975/j.issn.1002-6819.2018.18.024
    [16] 张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161 − 171.

    ZHANG Jianhua, KONG Fantao, WU Jianzhai, et al. Cotton disease identification model based on improved VGG convolution neural network [J]. J China Agric Univ, 2018, 23(11): 161 − 171.
    [17] DECHANT C, WIESNER-HANKS T, CHEN Siyuan, et al. Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning [J]. Phytopathology, 2017, 107(11): 1426 − 1432. doi:  10.1094/PHYTO-11-16-0417-R
    [18] PICON A, ALVAREZ-GILA A, SEITZ M, et al. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild [J]. Comput Electron Agric, 2019, 161: 280 − 290. doi:  10.1016/j.compag.2018.04.002
    [19] WANG Y P E, LIN Xingqin, ADHIKARY A, et al. A primer on 3GPP narrowband internet of things [J]. IEEE Commun Mag, 2017, 55(3): 117 − 123. doi:  10.1109/MCOM.2017.1600510CM
    [20] 陈方. MobileNet压缩模型的研究与优化[D]. 武汉: 华中师范大学, 2018.

    CHEN Fang. Research and Optimization of MobileNet Compression Model [D]. Wuhan: Central China Normal University, 2018.
    [21] HAN S, POOL J, TRAN J, et al. Learning both weights and connections for efficient neural networks [C]// CORTES C, LAWRENCE N D, LEE D D, et al. The 28th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2015: 1135−1143.
    [22] JACOB B, KLIGYS S, CHEN B, et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference [C]// BROWN M, MORSE B, PELEG S, et al. 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE Press, 2018: 2704−2713.
    [23] BA J L, CARUANA R. Do deep nets really need to be deep [C]// GHAHRAMANI Z, WELLING M, CORTES C, et al. The 27th International Conference on Neural Information Processing Systems [C]. Montreal: MIT Press, 2014: 2654−2662.
  • [1] 杜雨菲, 吴保国, 陈玉玲.  基于机器学习算法的广西桉树适宜性研究 . 浙江农林大学学报, 2020, 37(1): 122-128. doi: 10.11833/j.issn.2095-0756.2020.01.016
    [2] 李任, 黄荣凤, 常建民, 高志强, 伍艳梅.  预热温度对层状压缩木材力学性能的影响 . 浙江农林大学学报, 2018, 35(5): 935-941. doi: 10.11833/j.issn.2095-0756.2018.05.019
    [3] 王礼, 洪祖兵, 方陆明, 陈珣, 吴超.  基于iOS系统的观赏植物识别 . 浙江农林大学学报, 2018, 35(5): 900-907. doi: 10.11833/j.issn.2095-0756.2018.05.015
    [4] 段晓凤, 张磊, 马国飞, 卫建国, 曹宁.  宁夏澳洲青苹光温生产潜力的计算与分析 . 浙江农林大学学报, 2017, 34(3): 443-448. doi: 10.11833/j.issn.2095-0756.2017.03.009
    [5] 章卫钢, 鲍滨福, 杜春贵, 张宏.  酚醛树脂浸渍压缩密实化杉木燃烧特性 . 浙江农林大学学报, 2015, 32(3): 399-403. doi: 10.11833/j.issn.2095-0756.2015.03.010
    [6] 陈芳, 张广群, 崔坤鹏, 汪杭军.  嵌入式植物自动识别系统的设计与实现 . 浙江农林大学学报, 2013, 30(3): 379-384. doi: 10.11833/j.issn.2095-0756.2013.03.012
    [7] 褚其英, 肖继波, 王慧明, 褚淑祎.  水力负荷对生态槽深度处理农村生活污水的影响 . 浙江农林大学学报, 2013, 30(6): 914-920. doi: 10.11833/j.issn.2095-0756.2013.06.017
    [8] 陈琛, 邓玉和, 徐了, 周宇, 陈旻, 吴晶, 王向歌, 杨莹.  压缩炭化杨木的微观结构与化学成分 . 浙江农林大学学报, 2012, 29(5): 671-679. doi: 10.11833/j.issn.2095-0756.2012.05.006
    [9] 胡芸, 方陆明.  一种利用拓扑转换消除多边形数据压缩裂缝的方法 . 浙江农林大学学报, 2011, 28(4): 597-600. doi: 10.11833/j.issn.2095-0756.2011.04.012
    [10] 李亚妮, 王文强, 廉振民.  延安北洛河流域蝗虫群落的边缘效应 . 浙江农林大学学报, 2011, 28(2): 275-279. doi: 10.11833/j.issn.2095-0756.2011.02.017
    [11] 陈永刚, 施拥军, 汤孟平, 徐文兵.  Excel内嵌VBA和COM代码在测量计算中的应用 . 浙江农林大学学报, 2008, 25(1): 83-87.
    [12] 李兰英, 高岚, 温亚利, 黄水灵, .  森林病害的环境影响分析 . 浙江农林大学学报, 2006, 23(5): 491-496.
    [13] 文桂峰, 孙芳利, 于红卫.  苦槠木染色深度影响因素初探 . 浙江农林大学学报, 2004, 21(1): 6-9.
    [14] 祁亨年.  植物外观特征自动获取及计算机辅助植物分类与识别 . 浙江农林大学学报, 2004, 21(2): 222-227.
    [15] 蒋剑云, 张建民.  大学生英语学习中的阶段性过渡与衔接 . 浙江农林大学学报, 2003, 20(2): 205-208.
    [16] 祁亨年, 寿韬, 金水虎.  基于叶片特征的计算机辅助植物识别模型 . 浙江农林大学学报, 2003, 20(3): 281-284.
    [17] 卢凤珠, 王文娟.  计算机实验室局域网建设的实用技术 . 浙江农林大学学报, 2001, 18(2): 198-201.
    [18] 李健, 张西林, 方躬勇.  浅析普陀山旅游业的深度开发 . 浙江农林大学学报, 2000, 17(4): 398-403.
    [19] 吕晓平, 金根明, 赵仁友, 章华祥.  鞭节华扁叶蜂生物学习性研究 . 浙江农林大学学报, 1993, 10(1): 16-22.
    [20] 林思祖, 黄青峥, 吴旺民.  杉木马尾松几个模型的预报有效性的计算机模拟试验 . 浙江农林大学学报, 1993, 10(2): 184-188.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190595

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2020/5/1

计量
  • 文章访问数:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-13
  • 修回日期:  2020-04-14

面向边缘计算的轻量级植物病害识别模型

doi: 10.11833/j.issn.2095-0756.20190595
    基金项目:  “十三五”国家重点研发计划项目(2018YFD0600200);贵州省科研机构创新能力建设专项 (黔科合服企〔2019〕4007);贵州省科研机构服务企业行动计划项目 (黔科合服企〔2018〕4002)
    作者简介:

    王冠,博士研究生,从事人工智能技术及其在林业中的应用研究。E-mail: wangguan@bjfu.edu.cn

    通信作者: 王建新,教授,博士,博士生导师,从事计算机应用技术研究。E-mail: wangjx@bjfu.edu.cn
  • 中图分类号: S126

摘要:   目的  传统深度学习模型因参数和计算量过大不适用于边缘部署,在网络边缘的植物病害自动识别是实现长时间大范围低成本作物监测的迫切需求。  方法  联合使用多种模型压缩方法,得到可部署于算力有限的嵌入式系统的轻量级深度卷积神经网络,在边缘节点实现植物病害智能识别。模型压缩分2个阶段:第1阶段利用基于L1范数的通道剪枝方法,压缩MobileNet模型;第2阶段将模拟学习与量化相结合,在模型量化的同时恢复识别精度,得到高精度轻量级的端模型。  结果  在PlantVillage数据集58类植物病害的实验结果表明:通道剪枝将MobileNet压缩了3.6~14.3倍,量化又将模型的参数精度由32 bit降低至8 bit。整体压缩率达到了14.4~57.2倍,识别准确率仅降低0.24%~1.65%。与通道剪枝后无模拟学习训练、通道剪枝结合量化后无模拟学习训练这2种压缩方法相比,具有更高的模型压缩率和识别准确率。  结论  联合使用多种模型压缩方法可以少量的精度损失深度压缩人工智能模型,可为农林业提供面向边缘计算的植物病害识别模型。图3表2参23

English Abstract

王冠, 王建新, 孙钰. 面向边缘计算的轻量级植物病害识别模型[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190595
引用本文: 王冠, 王建新, 孙钰. 面向边缘计算的轻量级植物病害识别模型[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190595
WANG Guan, WANG Jianxin, SUN Yu. Lightweight plant disease recognition model for edge computing[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190595
Citation: WANG Guan, WANG Jianxin, SUN Yu. Lightweight plant disease recognition model for edge computing[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190595

返回顶部

目录

    /

    返回文章
    返回