-
除黑龙江、吉林、内蒙古和新疆4省(区)外,中国其余省(区、市)都有竹类生长和分布。据第8次(2009−2013年)森林资源清查,中国竹林面积达601 万hm2,占中国森林面积的3%,占世界竹林面积约20%[1]。在廊道旁、公园、古寺庙、风景区等地方种植竹子以增加景观优质性,是园林配置的一部分。竹林分布广,面积大,因此需要考虑竹林保护与防火等问题。有些竹种具有一定的防火能力,被作为防火植物使用,如毛竹Phyllostachys edulis、雷竹Ph. praecox等[2-3]。对于竹子的燃烧性能方面国内外研究较少,但是在森林可燃物的燃烧性和抗火性方面,国内外都进行了大量研究[4-9]。李树华等[10]认为:在火灾危险带种植刚竹Ph. sulphurea等植物可以减缓火势蔓延。钟安建等[11]对南昌城区15种园林树种的抗火性进行研究,认为珊瑚树Viburnum odoratissimum抗火性能最强,桂花Osmanthus fragrans抗火性能最差。金钱荣等[12]将木荷Schima superba选为防火功能较强的行道绿化树种。李世友等[13]对20种园林绿化植物的鲜枝叶进行燃烧试验及燃烧性排序。何忠华等[14]对12种园林树种的抗火性进行了综合评价,认为乐昌含笑Michelia chapensis抗火性最强。森林植物叶燃烧性研究方法可以为竹叶研究提供借鉴。张雨瑶等[15]对11种园林木本植物的新叶片和2种对比植物老活叶片进行了垂直燃烧实验,认为鹅掌楸Liriodendron chinense等燃烧性较强。氧指数试验法主要用于测定聚合材料的阻燃性能,如对于各种纺织品[16]、玻璃纤维增强塑料[17]、聚氯乙烯(PVC)管[18]、橡胶[19]等阻燃性能的测定,在森林可燃物研究方面的应用较少。本研究对17种园林竹鲜叶进行燃烧性比较,旨在分析园林竹鲜叶的易燃性差异,为竹林保护与防火提供依据。
-
以17种园林竹为研究对象(括号中数字为样品代号),车筒竹Bambusa sinospinosa (1)、慈竹Neosinocalamus affinis (2)、灰金竹Phyllostachys nigra var. henonis (3)、灰香竹Chimonocalamus pallens (4)、料慈竹B. distegia (5)、龙竹Dendrocalamus giganteus (6)、绵竹B. intermedia (7)、青皮竹B. textilis (8)、沙罗单竹Schizostachyum funghomii (9)、秀叶箭竹Fargesia yuanjiangensis (10)、小佛肚竹B. ventricosa (11)、孝顺竹B. multiplex (12)、野龙竹D. semiscandens (13)、椅子竹D. bambusoides (14)、油竹B. surrecta (15)、云南甜龙竹D. hamiltonii (16)、紫竹Ph. nigra (17)。以5种常见易燃园林绿化用木本植物的老叶作对比,即阴香Cinnamomum burmanni (18)、桂花Osmanthus fragrans (19)、滇润楠Machilus yunnanensis (20)、蓝桉Eucalyptus globulus (21)、云南樟C. glanduliferum (22)。所有植物均栽植于西南林业大学校园内。由于新叶含水率呈动态变化,而老叶含水率相对稳定且易燃,故选老叶为实验样品。取叶时,选多株、不同枝条上外形和大小相似、质量相近的多片竹叶,于防火期采集健康的完整分枝,立刻带回实验室。
-
采集同枝条上的老叶,分为2组,分别进行燃烧实验和含水率测定。燃烧实验前测定鲜叶质量、叶脉长度并在白纸上勾绘出鲜叶外形,实验在高浓度医用氧条件下进行,点火气体为丙烷气。将竹叶叶尖朝上、叶柄朝下放入试件夹中,点火器火焰长度为10~15 mm,从上朝下点火,用秒表记录竹叶燃烧时间。每种鲜叶重复6次实验。含水率(H)测定采用105 ℃烘干恒量法,取相对含水率。实验采用JF-3型氧指数测定仪进行。
-
叶片单位面积质量(W)、绝对线速率(V1)、绝对面积损失速率(V2)、绝对质量损失速率(V3)、相对线速率(V4)、相对面积损失速率(V5)和相对质量损失速率(V6)参照李世友等[6]、张雨瑶等[15]、郑永波等[20]和苏文静等[21]方法进行。
-
运用SPSS 18.0软件,以平均V1、V2、V3、V4、V5、V6等6个指标进行因子分析,得到22种植物鲜叶的燃烧性能得分并排序。根据燃烧性能得分,应用聚类分析法划分等级。采用因子分析法对数据进行标准化处理,通过KMO值和Bartlett球体检验提取公因子,利用旋转法使因子变量更具有可解释性,计算因子变量得分。
-
由表1可知:22种植物鲜叶的含水率和单位面积质量均差别较大,5种木本植物鲜叶单位面积质量均大于竹叶。单位面积质量最小、含水率较小的秀叶箭竹,燃烧速率最大。单位面积质量最大、含水率较大的云南樟,燃烧速率最小。含水率最大、单位面积质量较小的椅子竹,燃烧速率较小。含水率最小、单位面积质量中等的车筒竹,燃烧速率接近最大值。由此可见:鲜叶燃烧速率与单位面积质量、平均含水率有关。
表 1 22种植物鲜叶的含水率、单位面积质量及燃烧速率
Table 1. Moisture content, mass per unit area and burning rate of fresh leaves of 22 plants speices
代号 H/% W/(g·m−2) 绝对燃烧速率 相对燃烧速率 V1/(cm·s−1) V2/(cm2·s−1) V3/(g·s−1) V4/(%·s−1) V5/(%·s−1) V6/(%·s−1) 1 40.51 146 1.079 0.863 0.012 8.667 8.667 8.667 2 56.99 56 1.349 2.087 0.012 8.566 8.566 8.566 3 51.86 104 0.552 0.541 0.005 6.882 6.882 6.882 4 55.12 104 0.697 0.402 0.004 6.954 6.954 6.954 5 43.84 116 0.642 1.283 0.014 3.140 3.140 3.140 6 58.91 96 0.421 1.320 0.012 2.140 2.140 2.140 7 53.07 92 0.425 0.644 0.006 3.450 3.450 3.450 8 56.73 58 0.981 1.316 0.008 6.820 6.820 6.820 9 42.93 66 1.245 1.486 0.010 7.600 7.600 7.600 10 44.08 53 1.194 1.058 0.006 9.450 9.450 9.450 11 44.27 87 1.171 1.885 0.016 7.583 7.583 7.583 12 46.07 70 0.849 1.040 0.007 7.040 7.040 7.040 13 56.83 70 0.858 2.177 0.016 4.200 4.200 4.200 14 58.97 72 0.520 0.737 0.005 4.700 4.700 4.700 15 55.34 102 0.216 0.345 0.004 1.500 1.500 1.500 16 58.79 84 0.546 1.579 0.013 2.660 2.660 2.660 17 43.15 94 0.521 0.604 0.006 5.140 5.140 5.140 18 52.36 190 0.330 0.977 0.018 2.967 2.967 2.967 19 47.55 322 0.316 0.747 0.037 4.200 3.020 4.400 20 49.12 230 0.173 0.486 0.011 1.767 1.767 1.767 21 46.93 483 0.146 0.228 0.011 0.883 0.883 0.883 22 52.21 185 0.118 0.544 0.010 0.983 1.000 0.983 -
由于所获得数据数值不同,单位不同,无法进行比较和计算,因此需要进行无量纲化处理。使用SPSS软件对数据进行标准化处理,结果如表2所示。
表 2 22种植物鲜叶燃烧性评价指标无量纲化后得分
Table 2. Fresh leaf combustibility of 22 plants species evaluation index dimensionless points
代号 V1 V2 V3 V4 V5 V6 1 1.108 53 −0.270 53 0.134 17 1.396 29 1.403 15 1.393 99 2 1.809 85 1.895 67 0.134 17 1.359 08 1.366 27 1.356 76 3 −0.260 34 −0.840 40 −0.849 73 0.738 69 0.751 40 0.735 89 4 0.116 30 −1.086 40 −0.990 29 0.765 21 0.777 69 0.762 44 5 −0.026 57 0.472 77 0.415 28 −0.639 89 −0.614 88 −0.643 72 6 −0.600 61 0.538 25 0.134 17 −1.008 29 −0.980 00 −1.012 41 7 −0.590 22 −0.658 11 −0.709 17 −0.525 68 −0.501 69 −0.529 43 8 0.853 98 0.531 17 −0.428 06 0.715 85 0.728 77 0.713 03 9 1.539 71 0.832 03 −0.146 95 1.003 20 1.013 56 1.000 61 10 1.407 24 0.074 57 −0.709 17 1.684 76 1.689 04 1.682 67 11 1.347 50 1.538 17 0.696 40 0.996 94 1.007 35 0.994 34 12 0.511 11 0.042 72 −0.568 62 0.796 90 0.809 09 0.794 14 13 0.534 49 2.054 95 0.696 40 −0.249 38 −0.227 85 −0.252 92 14 −0.343 46 −0.493 52 −0.849 73 −0.065 17 −0.045 29 −0.068 58 15 −1.133 09 −1.187 28 −0.990 29 −1.244 07 −1.213 68 −1.248 36 16 −0.275 92 0.996 62 0.274 72 −0.816 72 −0.790 14 −0.820 69 17 −0.340 86 −0.728 90 −0.709 17 0.096 92 0.115 36 0.093 65 18 −0.836 98 −0.068 78 0.977 51 −0.703 62 −0.678 05 −0.707 50 19 −0.873 34 −0.475 83 3.648 09 −0.249 38 −0.658 70 −0.179 18 20 −1.244 78 −0.937 74 −0.006 39 −1.145 71 −1.116 19 −1.149 92 21 −1.314 91 −1.394 34 −0.006 39 −1.471 38 −1.438 96 −1.475 84 22 −1.387 64 −0.835 09 −0.146 95 −1.434 54 −1.396 24 −1.438 97 -
因子分析法并不能适用于任何情况,只有当样品数量大于评价指标数量时,才能得出KMO值和Bartlett球体检验结果,判断原始数据是否能够进行因子分析。对标准化后的数据进行KMO值和Bartlett球体检验,结果KMO值为0.625>0.500,Bartlett检验接近0,说明指标具有相关性,适合做因子分析。
-
由表3可知:特征值大于1的公因子有2个,累积方差贡献率达到了89.623%,因此可用来描述22种园林植物鲜叶的燃烧性。
表 3 解释的总方差表
Table 3. Interpretation of the total variance table
成分 初始特征值 提取载荷平方和 旋转载荷平方和 总计 方差百分比/% 累积/% 总计 方差百分比/% 累积/% 总计 方差百分比/% 累积/% 1 4.114 68.567 68.567 4.114 68.567 68.567 4.084 68.070 68.070 2 1.263 21.056 89.623 1.263 21.056 89.623 1.293 21.553 89.623 3 0.591 9.843 99.466 4 0.031 0.515 99.981 5 0.001 0.019 100.000 6 1.887×10−8 3.145×10−7 100.000 -
采用最大方差法(varimax)进行因子旋转,目的是使公因子的相对负荷的方差之和最大,且保持原公共因子的正交性和公共方差总和不变。使每个因子的最大载荷变量数量最小,以简化对因子的解释。利用SPSS软件进行旋转,得到表4因子载荷矩阵。主成分1在绝对线速率(V1)、相对线速率(V4)、相对面积损失速率(V5)、相对质量损失速率(V6)上的载荷系数较大,体现了燃烧性能(f1)。主成分2在绝对面积损失速率(V2)、绝对质量损失速率(V3)的载荷系数较大,体现了燃烧性能(f2)。
表 4 旋转后因子载荷矩阵
Table 4. Rotated factor load matrix
评价指标 主成分 评价指标 主成分 1 2 1 2 V1 0.949 0.227 V4 0.981 −0.014 V2 0.480 0.718 V5 0.990 −0.600 V3 −0.224 0.850 V6 0.979 −0.007 -
运用SPSS软件得出因子得分系数矩阵(表5),因子得分模型可表示为:
表 5 因子得分系数矩阵
Table 5. Component score coefficient matrix
评价指标 主成分 评价指标 主成分 1 2 1 2 V1 0.224 0.125 V4 0.245 −0.066 V2 0.079 0.538 V5 0.250 −0.102 V3 −0.103 0.680 V6 0.244 −0.060 f1=0.224x1+0.079x2−0.103x3+0.245x4+0.250x5+0.244x6;
f2=0.125x1+0.538x2+0.680x3−0.066x4−0.102x5−0.060x6。
其中:xi为V1~V6的数值标准化后的数据,将表2的相关变量相应的代入上式中即得到22种植物鲜叶燃烧性公因子得分。再以各公因子的方差百分比作为权数计算22种植物鲜叶燃烧性综合评价得分。计算公式为:
F= λ1f1+ λ2f2=0.685 67f1+0.210 56f2。
其中:F为22种植物鲜叶的燃烧性能得分,λi为第i个公因子的方差百分比。得分大于0,说明该植物鲜叶的燃烧性能大于22种植物鲜叶燃烧性能的平均水平,反之则比较差;得分越高代表燃烧性能越好。
各植物鲜叶燃烧性能的最后得分及排名如表6所示。由表6可知:5种木本植物得分均小于0,且有2种燃烧性能得分排名最后,说明5种木本植物鲜叶的燃烧性能均低于平均水平。22种植物鲜叶的燃烧性能从大到小的顺序依次为慈竹、小佛肚竹、秀叶箭竹、沙罗单竹、车筒竹、青皮竹、孝顺竹、野龙竹、灰香竹、灰金竹、桂花、料慈竹、紫竹、椅子竹、云南甜龙竹、阴香、龙竹、绵竹、滇润楠、油竹、云南樟、蓝桉。其中,慈竹得分最高,说明最易燃,油竹得分最低,说明最难燃,但较云南樟、蓝桉易燃。具体来看,油竹的含水率较大、单位面积质量较大,在17种竹类中得分最低。秀叶箭竹含水率较小、单位面积质量最小,得分排在前列。蓝桉含水率较大、单位面积质量最大,得分排在最后。进一步说明了鲜叶的燃烧速率与单位面积质量、平均含水率有关。
表 6 22种植物鲜叶的燃烧性能得分及排序
Table 6. Combustibility property score and rank of fresh leaves of 22 plants species
代号 f1 f2 F 排序 代号 f1 f2 F 排序 1 1.245 11 −0.234 50 0.804 5 12 0.767 30 −0.482 73 0.424 7 2 1.546 36 1.026 31 1.276 1 13 0.031 05 1.700 27 0.379 8 3 0.510 85 −1.232 08 0.091 10 14 −0.072 37 −0.873 29 −0.233 14 4 0.609 57 −1.418 80 0.119 9 15 −1.157 88 −1.172 78 −1.041 20 5 −0.478 60 0.676 99 −0.186 12 16 −0.608 56 0.871 97 −0.234 15 6 −0.844 15 0.532 83 −0.467 17 17 0.014 46 −0.940 74 −0.188 13 7 −0.494 31 −0.792 39 −0.506 18 18 −0.807 66 0.681 30 −0.410 16 8 0.808 52 −0.063 17 0.541 6 19 −0.878 34 2.210 90 −0.137 11 9 1.168 40 0.310 35 0.866 4 20 −1.192 01 −0.405 70 −0.903 19 10 1.638 70 −0.650 80 0.987 3 21 −1.483 82 −0.585 92 −1.141 22 11 1.089 91 1.240 98 1.009 2 22 −1.412 53 −0.399 00 −1.053 21 -
应用SPSS软件对17种竹叶的燃烧性能得分进行聚类分析,由图1所示:17种园林竹鲜叶的燃烧性划为易燃和较易燃2个等级。其中,慈竹、小佛肚竹、秀叶箭竹、沙罗单竹、车筒竹、青皮竹、孝顺竹、野龙竹、灰香竹、灰金竹等易燃;料慈竹、紫竹、椅子竹、云南甜龙竹、龙竹、绵竹、油竹等较易燃。
-
对17种园林竹和5种易燃木本植物鲜叶燃烧性6个指标的因子分析可知:各植物得分差距较大,最高分与最低分之间相差2.417,说明22种植物鲜叶的燃烧性差距较大。与5种园林木本植物相比,竹叶均为易燃叶。料慈竹、椅子竹、云南甜龙竹、龙竹、紫竹、绵竹和油竹的鲜叶燃烧性能相对较低,尤其是油竹,比桂花、阴香和滇润楠还难燃。绝对线速率(V1)、相对线速率(V4)、相对面积损失速率(V5)和相对质量损失速率(V6)对其燃烧性影响较大。基于17种竹的燃烧性能得分,SPSS聚类分析将其划为易燃和较易燃2个等级,其中易燃竹种10种,较易燃竹种7种。
鲜叶的燃烧性受自身理化性质和生态学、生物学特性等多因素的综合影响。昆明地区旱季降雨稀少,园林竹浇水较为频繁,浇水周期、浇水量和浇水次数对竹叶的含水率造成一定影响。施肥也会影响竹子生理性能。研究表明施氮肥会提高大豆Glycine max的脂肪含量[22-23];不同磷含量培养液处理下植株幼苗的株高、茎叶生物量和总生物量差异极其显著[24];不同磷源处理下云南松Pinus yunnanensis幼苗体内磷含量明显不同[25]。施肥对植物化学成份的影响一定程度上也影响其燃烧性。本研究中的竹叶样品采自竹下较低部位;竹子受自身生长因素及光照等外部因素影响,不同空间部位的竹叶生长发育不均衡,也会导致竹叶不同的理化性质和生态学特性。以后的研究中,要尽量减少人工经营措施对实验取样的干扰,并且考虑不同空间部位对竹叶的作用,使样品更具有代表性。本研究根据竹叶的燃烧速率来分析燃烧性,而没有分析理化性质、生态学特性等对燃烧性的影响。因此,以上鲜叶的燃烧性排序及分类是在特定条件下得出的,能否适用于其他条件还需要进一步验证。
Combustibility of fresh leaves of 17 species of garden bamboo in Kunming
-
摘要:
目的 比较17种园林竹鲜叶的燃烧性差异,为竹林防火提供依据。 方法 以5种常见易燃园林绿化木本植物为对照,测定和计算昆明地区17种园林竹鲜叶的含水率、单位面积质量、绝对线速率、绝对面积损失速率、绝对质量损失速率、相对线速率、相对面积损失速率、相对质量损失速率等8个指标。利用因子分析法和系统聚类法,综合评价竹叶燃烧性。 结果 17种竹鲜叶均易燃,燃烧性从大到小的顺序依次为:慈竹Neosinocalamus affinis、小佛肚竹Bambusa ventricosa、秀叶箭竹Fargesia yuanjiangensis、沙罗单竹Schizostachyum funghomii、车筒竹B. sinospinosa、青皮竹B. textilis、孝顺竹B. multiplex、野龙竹Dendrocalamus semiscandens、灰香竹Chimonocalamus pallens、灰金竹Phyllostachys nigra var. henonis、料慈竹B. distegia、紫竹Ph. nigra、椅子竹D. bambusoides、云南甜龙竹D. hamiltonii、龙竹D. giganteus、绵竹B. intermedia、油竹B. surrecta。 结论 17种园林竹中易燃的有10种,较易燃的有7种。图1表6参25 Abstract:Objective Comparing the combustibility of fresh bamboo leaves in gardens, in order to protect bamboo forest. Method Taking 5 common flammable woody plants as control, the moisture content, mass per unit area, absolute line rate, absolute area loss rate, absolute mass loss rate, relative line rate, relative area loss rate and relative mass loss rate of 17 species’ fresh bamboo leaves in Kunming were measured and calculated. The combustibility of bamboo leaves was evaluated by factor analysis and systematic clustering. Result All the fresh bamboo leaves of 17 species were inflammable, and the order of combustibility from large to small was as follows: Neosinocalamus affinis, Bambusa ventricosa, Fargesia yuanjiangensis, Schizostachyum funghomii, B. sinospinosa, B. textilis, B. multiplex, Dendrocalamus semiscandens, Chimonocalamus pallens, Phyllostachys nigra var. henonis, B. distegia, Ph. nigra, D. bambusoides, D. hamiltonii, D. giganteus, B. intermedia, B. surrecta. Conclusion 10 of them were highly flammable and 7 were relatively flammable. [Ch, 1 fig. 6 tab. 25 ref.] -
Key words:
- forest protection /
- bamboo /
- fresh leaves /
- combustibility /
- Kunming area
-
矮化是一种重要的农艺性状, 在改善空间和土地利用率, 调整栽培密度, 提高抗倒伏能力等方面具有明显的形态特征优势[1]。竹类矮化措施在生产实践中主要应用于3个方面:①中国南方及长江流域冰冻雪灾给竹类生产带来严重的经济损失, 破坏了生态环境[2-4]。钩梢矮化是抵御冰雪风折灾害的有效措施。②笋用竹设施栽培受到常规温室高度的限制[5-6], 每年秋冬季降温前盖膜需要钩梢, 矮化植株方便日常经营管理。③园林景观中矮化竹植株构型具有较高观赏价值[7]。目前, 关于竹类矮化方法及矮化后笋产量[8-9]、光合生理[10]以及材性力学性质[11]等方面已有诸多研究。生产中常用的竹类矮化方法有钩梢[3-4]或利用植物生长调节剂[3, 5, 7, 12]抑制竹居间分生组织生长达到矮化目标。但钩梢会直接带走大量秆枝叶, 造成营养生长损耗。同时成竹株高较高、竹秆硬度强增加了钩梢难度。使用植物生长调节剂造成药剂残留且连续多次施药效果受到天气影响, 矮化成本较高。此外, 通过断鞭[13]、剥除笋箨[14]、修剪[15]限制营养供给来控制高度生长的竹类矮化方法也有研究报道, 但在生产实践中并不常见。绿竹Dendrocalamopsis oldhami是中国南方地区优良的笋材两用丛生竹种, 其材性优良、竹笋产量高, 具有较好的经济和生态价值[16]。但绿竹鲜笋不耐储存, 限制了绿竹笋的销售范围。绿竹笋在北方蔬菜市场尚属空白, 发展笋用绿竹具有较好的经济前景。随着"南竹北移"的实施, 受日光温室高度限制, 秋冬季需要钩梢。因此, 探索一种易操作、无药剂残留且不影响竹子正常生长的矮化方法尤为必要。光合作用是植物生长发育物质能源积累的基础[17]。光合能力与植物不同植株构型有着密切关系。习玉森等[18]指出矮化型桃Amygdalus persica在强光、高温胁迫下较正常植株光抑制程度轻, 物质积累能力强。罗静等[19]指出矮化苹果Malus pumila苗叶绿素含量增加具有较高的净光合速率而早产。本研究在借鉴成竹秋冬季钩梢实践基础上, 将矮化时间提前至笋期, 提出竹笋截梢的矮化方法, 比较不同高度竹笋截梢对绿竹生长的影响, 并从叶绿素荧光动力学角度分析矮化后绿竹的光合生理状况, 为绿竹矮化栽培提供参考。
1. 研究地区与研究方法
1.1 研究区概况
研究地位于绿竹原产地福建省三明市尤溪县(25°58′08″N, 118°09′09″E)。该区属中亚热带季风性湿润气候, 1月平均气温为8.0~12.0 ℃, 7月平均气温为26.6~28.9 ℃。无霜期为312.0 d, 降水量为1 600.0~1 800.0 mm, 土壤类型为山地红壤。主要植被有马尾松Pinus massoniana、杉木Cunninghamia lanceolata、青冈Cyclobalanopsis glauca、甜槠Castanopsis eyrei、油茶Camellia oleifera、山杜英Elaeocarpus sylvestris、石楠Photinia serratifolia等。绿竹林地原由水稻Oryza sativa田改造而成, 存在的主要自然灾害为低温冻害。竹林密度为825丛·hm-2, 竹林年龄结构:2年生:1年生为1:2, 每丛竹株数4~6株。当年不挖笋, 全部留养母竹, 按照绿竹丰产栽培经验进行日常经营管理。
1.2 试验设计
在2017年7月下旬至8月上旬绿竹出笋盛期进行试验处理, 共置5个截梢处理(表 1), 分别记作H1、H2、H3、H4、H5, 以不截梢处理为对照(ck), 每个处理选择7丛绿竹, 共计42丛。每丛选择基径为4.0~5.0 cm, 长势良好、无病虫害、生长基本一致的绿竹笋3~4株(竹丛中其他笋不作处理, 自然生长)。测量笋体基径及高度, 按照竹笋高度的20%截除笋梢幼嫩部分并挂标签牌。
表 1 绿竹不同高度竹笋截梢处理概况Table 1. General situation among different height bamboo shoot truncation treatments of D.oldhami处理 截梢前笋高/cm 截梢长度/cm 截梢后笋高/cm H1 60 12 48 H2 90 18 72 H3 120 24 96 H4 150 30 120 H5 180 36 144 1.3 测定指标与方法
2018年1月上旬绿竹高生长结束后, 以挂标签牌的绿竹为测定对象。每个处理随机择20株绿竹测量生长指标, 选择5株绿竹测定叶绿素质量分数及叶绿素荧光参数, 取中部生长基本一致的健康、成熟叶作为测定样本。
1.3.1 生长指标
调查绿竹株高、成竹率、枝下高、节数、分枝率、第一盘主枝长度。枝下高为竹秆最下端第1盘分枝到地面垂直高度; 主枝长度为竹秆最下端第1盘最长枝长度。分枝率=分枝节数/(枝下节数+分枝节数)×100%;成竹率=成竹数/处理笋数×100%。
1.3.2 叶绿素质量分数
采用混合液浸取-分光光度计法测定[20]。将采集的鲜叶洗净、擦干、去除中脉、剪碎混合均匀后, 天平秤取0.100 g叶片放入盛有10 mL提取液(纯丙酮和无水乙醇1:1配成)的具塞试管中, 置于黑暗环境中叶片失绿直至完全变白。分别测定波长为645和663 nm下的光密度(D), 并根据Arnon公式计算叶绿素质量分数。wchla=[12.72D(663)-2.59D(645)]×V/(103×W), wchlb=[22.88D(645)-4.67D(663)]×V/(103×W), wchl=[20.29D(645)+8.05D(663)]×V/(103×W), 其中:wchla、wchlb和wchl分别表示叶绿素a、叶绿素b和总叶绿素质量分数(mg·g-1), D(645)为波长645 nm处的光密度, D(663)为波长663 nm处的光密度, V为提取液总量(mL), W为样品质量(g)。
1.3.3 叶绿素荧光参数
测定方法参考宋莉英等[21]的方法。采用Imaging PAM-2100(德国WALZ公司)便携式脉冲调制式叶绿素荧光仪测定绿竹叶片的叶绿素荧光参数。测定时间为晴天无风的9:00-11:00, 测量前使叶片暗适应30 min, 选定5个圆形测试目标区域, 然后打开测量光(0.5 μmol·m-2·s-1)测定初始荧光(Fo), 饱和光脉冲2 700 μmol·m-2·s-1(脉冲时间0.8 s)诱导最大荧光(Fm)、可变荧光(Fv=Fm-Fo)、PSⅡ最大光化学效率(Fv/Fm)。待荧光曲线基本稳定, 打开单饱和白光脉冲1次, 此后测得PSⅡ实际光量子效率(Yield)、电子传递速率(ETR)、光化学猝灭系数(qP)及非光化学猝灭系数(qNP)。
1.4 数据处理
数据统计和作图由Excel 2013完成。用SPSS 21.0对不同竹笋截梢处理下绿竹生长指标、叶绿素质量分数以及荧光参数进行单因素方差分析(one-way ANOVA)和Pearson相关性分析, Duncan多重比较法进行显著性差异分析。
2. 结果与分析
2.1 竹笋截梢对绿竹株高及成竹率的影响
由图 1可知:竹笋截梢可以有效控制绿竹株高生长, 各竹笋截梢处理之间绿竹株高达极显著差异(P<0.01)。截去笋梢长度越长, 即截去笋梢部位笋节越多, 成竹后株高越矮。其中H1(60 cm)笋截梢后, 株高继续生长431.60 cm, H5(180 cm)笋截梢后, 株高继续生长90.70 cm。对株高y(cm)和竹笋截梢前绿竹笋高度x(cm)建立函数表达式为:y=599.49-1.95x(R2=0.90, P<0.01)。H5处理株高最低, 绿竹株高由对照539.40 cm降至234.70 cm, 较对照降低了56.49%, 达到了矮化栽培高度要求。竹笋不同截梢处理与对照的绿竹成竹率均为82.14%~85.71%, 成竹率差异未达到显著水平(P>0.05), 表明竹笋截梢处理不影响绿竹正常成活。
2.2 竹笋截梢对绿竹其他形态指标的影响
从表 2可见:随着绿竹株高降低, 枝下高、节数、分枝率及主枝长度均达显著差异(P<0.05)。竹笋截梢后枝下高呈不断降低趋势, H5处理枝下高最低, 较对照显著下降36.69%, 与其他组差异均显著; 竹笋截梢后笋梢部分笋节被截去, 因此竹节相应减少, 节数与株高有相同的变化趋势。H5节数较对照降低45.59%, 除与H4处理无显著差异外, 与其他各组均有显著差异; 在分枝率方面, H3、H4和H5竹笋截梢处理较对照分别降低了14.10%、19.02%和12.13%。竹笋截梢后节数降低, 节上的分枝盘数减少, 因此, 分枝率变小; H4和H5主枝长度与对照均达到显著差异, 分别增长了10.00%和8.45%, 竹笋截梢促进了主枝长度生长。竹笋截梢后绿竹形态指标变化系数从大到小为株高(56.49%)、节数(36.69%)、枝下高(36.69%)、分枝率(19.02%)、主枝长度(11.06%)。表明竹笋截梢对绿竹株高影响最大, 其次为节数, 主枝长度影响最小。
表 2 不同竹笋截梢处理绿竹其他形态变化Table 2. Morphological indexes changes of D.oldhami under different bamboo shoot truncation treatments处理 枝下高/cm 节数 分枝率/% 主枝长度/cm ck 123.75±23.34 a 19.85±1.78 a 67.86±4.24 a 216.05±17.60 bc H1 119.05±20.75 ab 16.95±1.82 b 70.09±4.58 a 209.05±30.27 c H2 107.50±14.61 ab 15.95±0.83 b 67.95±4.74 a 219.25±20.82 bc H3 104.25±39.99 b 12.40±1.56 c 58.29±9.17 b 219.15±42.87 bc H4 110.45±18.65 ab 11.60±1.53 cd 54.95±7.50 b 239.95±9.83 a H5 78.35±21.03 c 10.80±3.20 d 59.63±11.71 b 234.30±42.06 ab 说明:同列不同小写字母表示不同竹笋截梢处理间差异显著(P<0.05) 2.3 竹笋截梢对绿竹叶绿素质量分数及组成的影响
由表 3可知:竹笋截梢处理与对照绿竹叶绿素a、叶绿素b、总叶绿素及叶绿素a/b均差异显著(P<0.05)。H4和H5处理的叶绿素a较高, 显著高于H1和对照; 处理H2、H3、H4和H5的叶绿素b较高且处理间差异不显著; 总叶绿素从大到小为H5、H3、H4、H2、H1、ck, 不同竹笋截梢处理的总叶绿素变化有差异, 总体呈上升趋势, 绿竹总叶绿素在H5处理下最大, 较对照显著提高了65.34%, 与H2、H3、H4处理无显著差异; 对照叶绿素a/b最大, 显著高于竹笋截梢处理。H5处理较对照叶绿素a/b显著降低了29.11%。叶绿素a、叶绿素b及总叶绿素随着株高的降低而增加, 叶绿素a/b降低。
表 3 不同竹笋截梢处理绿竹叶绿素质量分数及组成变化Table 3. Changes of chlorophyll content and composition ratio of D. oldhami under different bamboo shoot truncation treatments处理 叶绿素a/(mg·g-1) 叶绿素b/(mg·g-1) 总叶绿素/(mg·g-1) 叶绿素a/b ck 1.95±0.20 c 0.76±0.02 b 2.71±0.21 b 2.56±0.27 a H1 1.92±0.010 c 1.01±0.11 b 2.93±0.19 b 1.91±0.18 b H2 2.15±0.23 bc 1.79±0.24 a 3.94+0.38 a 1.21±0.17 d H3 2.28±0.22 bc 1.82+0.18 a 4.10+0.13 a 1.27±0.23 cd H4 2.45±0.54 ab 1.59±0.42 a 4.04±0.62 a 1.69±0.75 bcd H5 2.81±0.33 a 1.66±0.45 a 4.47±0.63 a 1.81±0.54 bc 说明:同列不同小写字母表示不同竹笋截梢处理间差异显著(P<0.05) 2.4 竹笋截梢对绿竹叶绿素荧光参数的影响
从图 2可知:竹笋截梢处理的初始荧光(Fo)与对照差异不显著(P>0.05);竹笋截梢处理提高了PSⅡ最大光化学效率(Fv/Fm), 其中:H4、H5较对照显著提高了15.86%和16.46%, 而竹笋截梢处理间未发现显著差异; ETR和PSⅡ实际光量子产量(Yield)随着株高降低, 有相同的变化趋势, H1、H2处理均与对照无显著差异, H5处理下最大, 较对照分别提高了48.63%和40.81%。不同竹笋截梢处理光化学猝灭系数(qP)变化有一定差异, 但总体呈不断上升趋势。H4、H5处理下化学猝灭系数较对照组差异均达到了显著水平, 化学猝灭系数最大的为H5处理, 较对照提高了74.35%。各竹笋截梢处理绿竹叶片的非光化学猝灭系数(qNP)均有显著降低, 对照处理的非光化学猝灭系数最大。H5处理的非光化学猝灭系数较对照降低了47.58%。非光化学猝灭系数与化学猝灭系数有着相反的变化趋势。不同竹笋截梢处理后绿竹PSⅡ最大光化学效率、PSⅡ实际光量子产量、电子传递速率及化学猝灭系数均高于对照, 而非光化学猝灭系数降低。叶绿素荧光参数表明竹笋截梢增加绿竹叶片的光能利用效率。
2.5 绿竹株高与叶绿素质量分数及叶绿素荧光参数相关性分析
相关分析(表 4)显示:株高与总叶绿素以及PSⅡ最大光化学效率(Fv/Fm)、PSⅡ实际光量子产量(Yield)、电子传递速率(ETR)、光化学猝灭系数(qP)呈负相关, 与叶绿素a/b及非光化学猝灭系数(qNP)呈显著正相关。总叶绿素与叶绿素a/b呈显著负相关。PSⅡ实际光量子产量与电子传递速率、光化学猝灭系数呈显著正相关, 光化学猝灭系数与非光化学猝灭系数呈显著负相关。Pearson相关性分析表明:绿竹植株构型与叶绿素质量分数及叶绿素荧光特性有紧密关系。
表 4 绿竹株高与叶绿素质量分数及叶绿素荧光参数相关性分析Table 4. Correlation analysis of plant height, chlorophyll content, chlorophyll fluorescence parameters of D. oldhami指标 株高 总叶绿素 叶绿素a/b Fo Fv/Fm Yield ETR qP 总叶绿素 -0.809** 叶绿素a/b 0.368* -0.563** Fo -0.339 0.197 -0.048 FV/Fm -0.536* 0.410* -0.284 0.140 Yield -0.574* 0.372* -0.021 -0.150 0.169 ETR -0.607* 0.398* -0.068 -0.141 0.192 0.990** qP -0.697* 0.435* -0.030 0.044 0.177 0.895** 0.895** qNP 0.704** -0.391* -0.281 -0.206 -0.268 -0.637** -0.640** -0.719** 说明:*表示显著相关(P<0.05), **表示极显著相关(P<0.01).株高、叶绿素质量分数和叶绿素荧光参数样本n=25 3. 讨论
3.1 竹笋截梢对绿竹形态指标及成活率的影响
竹高度生长依靠笋节居间分生组织的分生细胞分裂、伸长生长来增加节间的长度[22]。笋梢部分笋节密集, 笋节发育成为竹节。竹笋截梢按照竹笋高度20%截去梢头部分, 随着竹笋高度增加, 竹笋截梢强度增加, 截去的笋节越多, 竹节相应减少, 因此, 成竹矮化效果越明显。本研究发现:随株高降低, 枝下高、节数及分枝率减少, 主枝长度增长, 地上部分营养生长重新分配, 植株形态相应发生明显变化。其中, 绿竹竹笋高H5(180 cm)截梢处理后, 株高由对照的539.40 cm降低至234.70 cm, 较对照降低了56.49%。官凤英等[5]对绿竹喷施0.8 g·L-1多效唑后发现株高、枝下高分别降低了45.30%和46.70%, 周建革等[3]对毛竹Phyllostachys edulis喷施2.0%矮壮素后株高和枝下高分别降低了28.12%和30.37%。绿竹和毛竹存在共同特点即株高降低后, 枝下高降低。枝下高降低不利于挖笋施肥等经营活动, 需要加强相应剪除靠近地面枝条等竹林抚育措施来克服不利影响。竹笋截梢会使成竹高度降低, 竹材产量相应会降低, 不宜用在材用林上。
竹笋在成竹过程不同高度时期均有可能退笋, 退笋与笋体高度密切相关[23]。一般竹笋高于40 cm, 退笋现象较少。竹笋截梢各处理后绿竹成竹率在82.14%~85.71%, 与对照无显著差异, 表明竹笋截梢不影响绿竹成活。这可能是由于竹笋截梢处理选择高度为60~180 cm竹笋, 生长旺盛, 具有一定的抵抗力, 所以退笋率低, 这与郑郁善等[24]和岳祥华等[25]研究毛竹及紫竹Phyllostachys nigra的退笋规律基本一致。
3.2 竹笋截梢对绿竹叶绿素质量分数及叶绿素荧光参数的影响
植物体构件之间存在协调反馈机制, 即当某一构件部分抑制生长或缺失时, 剩余构件表现一个资源再分配, 某些功能增强的现象。这种补偿机制是植物应对外界扰动的生长策略[26-28]。郑士光等[29]研究发现:柠条Caragana microphylla在平茬后根系提高了对水分和养分的吸收, 促进地下根系生长。尚富华等[30]指出:毛白杨Populus tomentosa修枝后会提高剩余枝叶的光合速率等途径补偿。本研究表明:不同竹笋截梢处理后, 绿竹叶绿素a、叶绿素b及总叶绿素随着株高的降低而增加, 而叶绿素a/b降低。叶绿素a有利于吸收长波光, 叶绿素b促进吸收短波光。当叶绿素a/b减少时, 植物对蓝紫光的利用[31]效率增加。总叶绿素增加, 使得叶片叶肉细胞光合活性增强[32]。叶绿素荧光技术可以间接无损伤地研究光合作用过程中能量吸收传递与转化等特征[33]。当叶片内囊体破坏时, PSⅡ光系统反应中心失活, 初始荧光(Fo)增加[34]。本研究发现:不同竹笋截梢处理间的初始荧光(Fo)差异不显著, 表明竹笋截梢处理未对绿竹叶片内囊体造成不利影响。竹笋截梢处理提高了PSⅡ反应过程潜在活性, 促进了光合电子从PSⅡ反应中心到库源的传递速率, 使得PSⅡ最大光化学效率(Fv/Fm)增加。当光能过剩时, 非光化学猝灭系数(qNP)增加[35]。竹笋截梢处理非光化学猝灭系数较对照显著降低, 降低了叶片热耗散。随着株高降低, PSⅡ实际光量子效率(Yield)、电子传递速率(ETR)增加, 电子传递的量子产额增加, 促进暗反应的光合碳同化和有机物积累[36]。这与陈洪国[37]和魏亚娟等[38]对菊花Chrysanthemum morifolium及榆叶梅Prunus triloba通过使用植物生长调节剂获得矮化植株构型后光合特性变化规律类似, 表明矮化植株一定程度上光合色素含量增加, 光合效率提高。Pearson相关性分析表明:PSⅡ光化学功能、叶绿素质量分数与绿竹株高显著相关。竹笋截梢处理后绿竹叶绿素质量分数提高及叶绿素荧光参数表现更高的光能利用效率。本研究认为可能的原因有:一方面竹笋截梢后顶端优势去除后, 作为株高降低的补偿, 促进了枝叶萌生。枝叶生长有助于空间拓宽能力增加对光能的获取; 另一方面竹笋截梢绿竹株高降低后, 竹林冠层光照条件发生改变。改善光环境, 提高光能利用效率, 以获得更多的光合同化产物积累。
4. 结语
根据栽培目标选择适合的绿竹笋高度截梢可以有效控制株高生长, 而且矮化绿竹可使叶片叶绿素质量分数增加, 光能利用效率提高, 达到矮化栽培要求。竹笋截梢这种物理矮化方法避免直接带走大量秆枝叶, 操作相对简单, 且可以消除植物生长调节剂矮化药剂残留隐患, 在其他竹种矮化上具有借鉴意义。本研究对绿竹高生长结束后成竹形态特征与叶绿素质量分数及叶绿素荧光参数进行初步研究, 其更深层次光合机制还需进一步完善。此外, 竹笋截梢后对绿竹笋产量、出笋时期及竹材力学性质等影响还有待深入研究。
-
表 1 22种植物鲜叶的含水率、单位面积质量及燃烧速率
Table 1. Moisture content, mass per unit area and burning rate of fresh leaves of 22 plants speices
代号 H/% W/(g·m−2) 绝对燃烧速率 相对燃烧速率 V1/(cm·s−1) V2/(cm2·s−1) V3/(g·s−1) V4/(%·s−1) V5/(%·s−1) V6/(%·s−1) 1 40.51 146 1.079 0.863 0.012 8.667 8.667 8.667 2 56.99 56 1.349 2.087 0.012 8.566 8.566 8.566 3 51.86 104 0.552 0.541 0.005 6.882 6.882 6.882 4 55.12 104 0.697 0.402 0.004 6.954 6.954 6.954 5 43.84 116 0.642 1.283 0.014 3.140 3.140 3.140 6 58.91 96 0.421 1.320 0.012 2.140 2.140 2.140 7 53.07 92 0.425 0.644 0.006 3.450 3.450 3.450 8 56.73 58 0.981 1.316 0.008 6.820 6.820 6.820 9 42.93 66 1.245 1.486 0.010 7.600 7.600 7.600 10 44.08 53 1.194 1.058 0.006 9.450 9.450 9.450 11 44.27 87 1.171 1.885 0.016 7.583 7.583 7.583 12 46.07 70 0.849 1.040 0.007 7.040 7.040 7.040 13 56.83 70 0.858 2.177 0.016 4.200 4.200 4.200 14 58.97 72 0.520 0.737 0.005 4.700 4.700 4.700 15 55.34 102 0.216 0.345 0.004 1.500 1.500 1.500 16 58.79 84 0.546 1.579 0.013 2.660 2.660 2.660 17 43.15 94 0.521 0.604 0.006 5.140 5.140 5.140 18 52.36 190 0.330 0.977 0.018 2.967 2.967 2.967 19 47.55 322 0.316 0.747 0.037 4.200 3.020 4.400 20 49.12 230 0.173 0.486 0.011 1.767 1.767 1.767 21 46.93 483 0.146 0.228 0.011 0.883 0.883 0.883 22 52.21 185 0.118 0.544 0.010 0.983 1.000 0.983 表 2 22种植物鲜叶燃烧性评价指标无量纲化后得分
Table 2. Fresh leaf combustibility of 22 plants species evaluation index dimensionless points
代号 V1 V2 V3 V4 V5 V6 1 1.108 53 −0.270 53 0.134 17 1.396 29 1.403 15 1.393 99 2 1.809 85 1.895 67 0.134 17 1.359 08 1.366 27 1.356 76 3 −0.260 34 −0.840 40 −0.849 73 0.738 69 0.751 40 0.735 89 4 0.116 30 −1.086 40 −0.990 29 0.765 21 0.777 69 0.762 44 5 −0.026 57 0.472 77 0.415 28 −0.639 89 −0.614 88 −0.643 72 6 −0.600 61 0.538 25 0.134 17 −1.008 29 −0.980 00 −1.012 41 7 −0.590 22 −0.658 11 −0.709 17 −0.525 68 −0.501 69 −0.529 43 8 0.853 98 0.531 17 −0.428 06 0.715 85 0.728 77 0.713 03 9 1.539 71 0.832 03 −0.146 95 1.003 20 1.013 56 1.000 61 10 1.407 24 0.074 57 −0.709 17 1.684 76 1.689 04 1.682 67 11 1.347 50 1.538 17 0.696 40 0.996 94 1.007 35 0.994 34 12 0.511 11 0.042 72 −0.568 62 0.796 90 0.809 09 0.794 14 13 0.534 49 2.054 95 0.696 40 −0.249 38 −0.227 85 −0.252 92 14 −0.343 46 −0.493 52 −0.849 73 −0.065 17 −0.045 29 −0.068 58 15 −1.133 09 −1.187 28 −0.990 29 −1.244 07 −1.213 68 −1.248 36 16 −0.275 92 0.996 62 0.274 72 −0.816 72 −0.790 14 −0.820 69 17 −0.340 86 −0.728 90 −0.709 17 0.096 92 0.115 36 0.093 65 18 −0.836 98 −0.068 78 0.977 51 −0.703 62 −0.678 05 −0.707 50 19 −0.873 34 −0.475 83 3.648 09 −0.249 38 −0.658 70 −0.179 18 20 −1.244 78 −0.937 74 −0.006 39 −1.145 71 −1.116 19 −1.149 92 21 −1.314 91 −1.394 34 −0.006 39 −1.471 38 −1.438 96 −1.475 84 22 −1.387 64 −0.835 09 −0.146 95 −1.434 54 −1.396 24 −1.438 97 表 3 解释的总方差表
Table 3. Interpretation of the total variance table
成分 初始特征值 提取载荷平方和 旋转载荷平方和 总计 方差百分比/% 累积/% 总计 方差百分比/% 累积/% 总计 方差百分比/% 累积/% 1 4.114 68.567 68.567 4.114 68.567 68.567 4.084 68.070 68.070 2 1.263 21.056 89.623 1.263 21.056 89.623 1.293 21.553 89.623 3 0.591 9.843 99.466 4 0.031 0.515 99.981 5 0.001 0.019 100.000 6 1.887×10−8 3.145×10−7 100.000 表 4 旋转后因子载荷矩阵
Table 4. Rotated factor load matrix
评价指标 主成分 评价指标 主成分 1 2 1 2 V1 0.949 0.227 V4 0.981 −0.014 V2 0.480 0.718 V5 0.990 −0.600 V3 −0.224 0.850 V6 0.979 −0.007 表 5 因子得分系数矩阵
Table 5. Component score coefficient matrix
评价指标 主成分 评价指标 主成分 1 2 1 2 V1 0.224 0.125 V4 0.245 −0.066 V2 0.079 0.538 V5 0.250 −0.102 V3 −0.103 0.680 V6 0.244 −0.060 表 6 22种植物鲜叶的燃烧性能得分及排序
Table 6. Combustibility property score and rank of fresh leaves of 22 plants species
代号 f1 f2 F 排序 代号 f1 f2 F 排序 1 1.245 11 −0.234 50 0.804 5 12 0.767 30 −0.482 73 0.424 7 2 1.546 36 1.026 31 1.276 1 13 0.031 05 1.700 27 0.379 8 3 0.510 85 −1.232 08 0.091 10 14 −0.072 37 −0.873 29 −0.233 14 4 0.609 57 −1.418 80 0.119 9 15 −1.157 88 −1.172 78 −1.041 20 5 −0.478 60 0.676 99 −0.186 12 16 −0.608 56 0.871 97 −0.234 15 6 −0.844 15 0.532 83 −0.467 17 17 0.014 46 −0.940 74 −0.188 13 7 −0.494 31 −0.792 39 −0.506 18 18 −0.807 66 0.681 30 −0.410 16 8 0.808 52 −0.063 17 0.541 6 19 −0.878 34 2.210 90 −0.137 11 9 1.168 40 0.310 35 0.866 4 20 −1.192 01 −0.405 70 −0.903 19 10 1.638 70 −0.650 80 0.987 3 21 −1.483 82 −0.585 92 −1.141 22 11 1.089 91 1.240 98 1.009 2 22 −1.412 53 −0.399 00 −1.053 21 -
[1] 崔璐. 中国竹林遥感信息提取及NPP时空模拟研究[D]. 杭州: 浙江农林大学, 2018. CUI Lu. Extraction of Remote Sensing Information and Spatiotemporal Simulation of NPP of Bamboo Forest in China[D]. Hangzhou: Zhejiang A&F University, 2018. [2] 唐昌贻, 朱文强, 罗炳贵, 等. 人工经营毛竹林防火能力及恢复分析初探[J]. 江苏林业科技, 2013, 40(4): 22 − 25. TANG Changyi, ZHU Wenqiang, LUO Binggui, et al. Fire prevention and recovery capability of artificial management of Phyllostachys pubescens [J]. J Jiangsu For Sci Technol, 2013, 40(4): 22 − 25. [3] 李飞峰. 基于经济学视角的生物防火林带营建技术方案选择研究[D]. 杭州: 浙江农林大学, 2012. LI Feifeng. Study on Optional Solutions for Fuelbreak Construction from Economic Perspectives[D]. Hangzhou: Zhejiang A&F University, 2012. [4] 单延龙, 陶洪伟, 赵丽, 等. 长白山红松阔叶林主要树种树皮抗火性的分析与排序[J]. 东北林业大学学报, 2011, 39(12): 49 − 50, 89. SHAN Yanlong, TAO Hongwei, ZHAO Li, et al. Ordination of fire resistances of bark of main species in Korean pine broad-leaved forests in Changbai Mountains [J]. J Northeast For Univ, 2011, 39(12): 49 − 50, 89. [5] 李世友, 罗文彪, 舒清态, 等. 昆明地区25种木本植物的燃烧性及防火树种筛选[J]. 浙江林学院学报, 2009, 26(3): 351 − 357. LI Shiyou, LUO Wenbiao, SHU Qingtai, et al. Combustibility of 25 woody plants for selection of fire-resistant tree species in Kunming area [J]. J Zhejiang For Coll, 2009, 26(3): 351 − 357. [6] 李世友, 赵家刚, 张雨瑶, 等. 滇中地区11种森林木本植物活叶片抗火性能[J]. 华中农业大学学报, 2015, 34(5): 25 − 30. LI Shiyou, ZHAO Jiagang, ZHANG Yuyao, et al. Fire resistance of live leaves of 11 woody species in Central Yunnan Province [J]. J Huazhong Agric Univ, 2015, 34(5): 25 − 30. [7] DIBBLE A C, WHITE R H, LEBOW P K. Combustion characteristics of north-eastern USA vegetation tested in the cone calorimeter: invasive versus non-invasive plants [J]. Int J Wildland Fire, 2007, 16(4): 426 − 443. [8] ENGSTROM J D, BUTLER J K, SMITH S G, et al. Ignition behavior of live California Chaparral leaves [J]. Combustion Sci Technol, 2004, 176(9): 1577 − 1591. [9] CLARKE P J, PRIOR L D, FRENCH B J, et al. Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection [J]. Oecologia, 2014, 176(4): 1123 − 1133. [10] 李树华, 李延明, 任斌斌, 等. 园林植物的防火功能以及防火型园林绿地的植物配置手法[J]. 风景园林, 2008(6): 92 − 97. LI Shuhua, LI Yanming, REN Binbin, et al. Fire-resistant function of landscape plants and plant arrangement of fireproof green space [J]. Landscape Archit, 2008(6): 92 − 97. [11] 钟安建, 邹璐, 叶清, 等. 南昌城区15种园林树种的抗火性研究[J]. 福建林业科技, 2010, 37(4): 63 − 63, 83. ZHONG Anjian, ZOU Lu, YE Qing, et al. Study on fire resistance of 15 landscape species in the urban area of Nanchang [J]. J Fujian For Sci Technol, 2010, 37(4): 63 − 63, 83. [12] 金钱荣, 吴志晖, 吴兴辉. 云南野生动物园环境绿化设计研究[J]. 林业调查规划, 2004, 29(1): 88 − 90. JIN Qianrong, WU Zhihui, WU Xinghui. A study of greening design of Yunnan Wildlife Garden [J]. For Invent Plann, 2004, 29(1): 88 − 90. [13] 李世友, 李小宁, 罗文彪, 等. 20种园林绿化树种活枝叶的燃烧性研究[J]. 安徽农业大学学报, 2008, 35(4): 490 − 493. LI Shiyou, LI Xiaoning, LUO Wenbiao, et al. Combustility of living branches and leaves for 20 gardens tree species [J]. J Anhui Agric Univ, 2008, 35(4): 490 − 493. [14] 何忠华, 叶清, 钟安建, 等. 南昌郊区园林树种抗火性研究[J]. 安徽农业科学, 2010, 38(33): 18976 − 18978. HE Zhonghua, YE Qing, ZHONG Anjian, et al. Research on the anti-fire of the tree species in the garden of Nanchang suburb [J]. J Anhui Agric Sci, 2010, 38(33): 18976 − 18978. [15] 张雨瑶, 周劲峰, 李路良, 等. 昆明地区11种园林木本植物新叶片燃烧性分析[J]. 林业资源管理, 2013(6): 144 − 147. ZHANG Yuyao, ZHOU Jinfeng, LI Luliang, et al. Initial study on combustibility of new leaves of 11 garden woody species in Kunming [J]. For Resour Manage, 2013(6): 144 − 147. [16] 金美菊, 洪武勇. 纺织品燃烧性能技术法规与标准研究[J]. 上海纺织科技, 2009, 37(9): 42 − 44. JIN Meiju, HONG Wuyong. Study on technical regulations and standards of flammability for textiles [J]. Shanghai Textile Sci Technol, 2009, 37(9): 42 − 44. [17] 崔勇, 常建民, 王文亮. 玻璃纤维增强塑料用热解油-酚醛树脂的合成工艺[J]. 林业工程学报, 2017, 2(6): 67 − 73. CUI Yong, CHANG Jianmin, WANG Wenliang. Synthesis process of bio-oil phenolic resin used for glass-fiber reinforced plastic [J]. J For Eng, 2017, 2(6): 67 − 73. [18] 崔飞, 罗静, 蔡喜来, 等. 阻燃PVC电工套管氧指数测定中的影响因素分析[J]. 中国安全生产科学技术, 2009, 5(2): 56 − 60. CUI Fei, LUO Jing, CAI Xilai, et al. Analysis of influencing factors of determination of oxygen index on fire retardant PVC electrician casing [J]. J Saf Sci Tech, 2009, 5(2): 56 − 60. [19] 赵光贤. 橡胶的阻燃与阻燃剂[J]. 世界橡胶工业, 2005, 32(5): 3 − 8, 11. ZHAO Guangxian. Flame retardant and flame retarder of rubber [J]. World Rubber Ind, 2005, 32(5): 3 − 8, 11. [20] 郑永波, 张雨瑶, 廖周瑜, 等. 紫茎泽兰茎叶的燃烧性[J]. 浙江农林大学学报, 2014, 31(3): 450 − 456. ZHENG Yongbo, ZHANG Yuyao, LIAO Zhouyu, et al. Combustion characteristics of stems and leaves of Eupatorium adenophorum [J]. J Zhejiang A&F Univ, 2014, 31(3): 450 − 456. [21] 苏文静, 张思玉, 何诚, 等. 昆明地区9种藤本植物活叶片的燃烧性[J]. 林业资源管理, 2017(6): 120 − 123. SU Wenjing, ZHANG Siyu, HE Cheng, et al. Combustion characteristics of live leaves of 9 lianas species in Kunming, Yunnan Province [J]. For Resour Manage, 2017(6): 120 − 123. [22] 赵小铭, 宋秀吉, 王雪依, 等. 高油大豆东农46号脂肪含量的氮磷钾肥效应回归模型[J]. 中国农学通报, 2007, 23(7): 332 − 336. ZHAO Xiaoming, SONG Xiuji, WANG Xueyi, et al. Regression model of effects of nitrogen, phosphorus and potassium fertilizer on oil content in soybean variety Dongnong 46 [J]. Chin Agri Sci Bull, 2007, 23(7): 332 − 336. [23] 宁海龙, 宋秀吉, 王雪依, 等. 氮磷钾肥对大豆脂肪含量的效应[J]. 中国油料作物学报, 2007, 29(3): 302 − 307. NING Hailong, SONG Xiuji, WANG Xueyi, et al. Effects of nitrogen, phosphorus and potassium fertilizers on oil content in soybean [J]. Chin J Oil Crop Sci, 2007, 29(3): 302 − 307. [24] 戴开结, 何方, 沈有信, 等. 不同磷源对云南松幼苗生长和磷吸收量的影响[J]. 生态学报, 2009, 29(8): 4078 − 4083. DAI Kaijie, HE Fang, SHEN Youxin, et al. Effects of different phosphorus on growth and P absorption of Pinus yunnanensis Franch. seedlings [J]. Acta Ecol Sin, 2009, 29(8): 4078 − 4083. [25] 戴开结, 何方, 沈有信, 等. 低磷胁迫下云南松幼苗的生物量及其分配[J]. 广西植物, 2006, 26(2): 183 − 186. DAI Kaijie, HE Fang, SHEN Youxin, et al. Biomass and its allocation of Pinus yunnanensis seedlings under phosphorus deficiency [J]. Guihaia, 2006, 26(2): 183 − 186. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190612