留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

美国山核桃叶的抗菌作用

叶申怡 阮夏云 樊莹 张欢帅 井长怡 毛胜凤 张爱莲

农正国, 熊忠平, 徐正会, 等. 新疆天山中-西段不同垂直带蚂蚁物种多样性[J]. 浙江农林大学学报, 2025, 42(1): 143−152 doi:  10.11833/j.issn.2095-0756.20240244
引用本文: 叶申怡, 阮夏云, 樊莹, 等. 美国山核桃叶的抗菌作用[J]. 浙江农林大学学报, 2014, 31(4): 658-662. DOI: 10.11833/j.issn.2095-0756.2014.04.025
NONG Zhengguo, XIONG Zhongping, XU Zhenghui, et al. Ant diversity along gradient in the middle-western section of Tianshan Mountains in Xinjiang[J]. Journal of Zhejiang A&F University, 2025, 42(1): 143−152 doi:  10.11833/j.issn.2095-0756.20240244
Citation: YE Shenyi, RUAN Xiayun, FAN Ying, et al. Antimicrobial activity of Carya illinoensis leaves[J]. Journal of Zhejiang A&F University, 2014, 31(4): 658-662. DOI: 10.11833/j.issn.2095-0756.2014.04.025

美国山核桃叶的抗菌作用

DOI: 10.11833/j.issn.2095-0756.2014.04.025
基金项目: 

浙江农林大学大学生科技创新项目 201202011

详细信息
    作者简介: 叶申怡, 从事微生物农药研究。E-mail:844190417@qq.com
    通信作者: 张爱莲, 讲师, 从事生物农药研究。E-mail:zhangailian@126.com
  • 中图分类号: S789.4

Antimicrobial activity of Carya illinoensis leaves

  • 摘要: 对美国山核桃Carya illinoensis叶进行体外抗菌作用研究, 以期开发出一种新型的天然杀菌剂。美国山核桃叶经体积分数为75%乙醇提取后, 采用系统溶剂法将抽提物分为石油醚、氯仿、乙酸乙酯、正丁醇和水等5个不同极性的提取物。采用滤纸片法, 检测以上提取物对黄曲霉菌Aspergillus flavus, 根霉菌Rhzopus oryzae, 青霉菌Penicillium sp., 酵母菌Saccharomyces cerevisiae, 大肠埃希菌Escherichia coli和枯草杆菌Bacillus subtilis等的抑菌效果, 并计算各提取物对真菌的半数抑菌质量浓度(CE50)。结果表明:乙酸乙酯提取物对青霉菌、根霉菌、黄曲霉菌和枯草杆菌均表现出明显的抑菌效果且差异显著(P < 0.05, P < 0.01), 抑菌圈直径均值分别为9.18, 10.86, 8.26, 10.18 mm, 但对于黄曲霉菌石油醚提取物(CE50 0.91 g·L-1)的抑菌效果优于乙酸乙酯提取物(CE50>200 g·L-1); 而正丁醇提取物对酵母菌和大肠埃希菌表现出明显的抑菌效果且差异显著(P < 0.05, P < 0.01), 其抑菌圈直径均值分别为11.13, 8.83 mm, 但对于大肠埃希菌水提物的抑菌效果优于正丁醇提取物, 其抑菌圈直径均值为9.13 mm。综上, 美国山核桃叶的正丁醇提取物和乙酸乙酯提取物抑菌效果最佳。针对这一实验结果, 可以根据防治对象不同, 采用不同的提取方法和工艺, 研发专菌专治的天然杀菌剂, 以提升杀菌剂的作用效果。
  • 蚂蚁作为膜翅目Hymenoptera蚁科Formicidae昆虫,在自然界中具有不可忽视的作用,具备改良土壤、分解有机质、促进土壤碳氮循环、维持微生态平衡等重要作用[12],常被用作各类环境生物多样性的指示物种[34]。全世界已记载的蚂蚁共有16亚科342属14 187种[5],蚂蚁是地球上分布最广、种类及数量最多的社会性昆虫[6]

    当前,中国的蚂蚁群落研究集中在西南地区[79],而对西北地区蚂蚁群落研究报道较少。在新疆地区蚂蚁研究方面,吴坚等[10]记录了新疆地区2亚科、5属、14种;夏永娟等[1112]记录了新疆地区3亚科、16属、43种,其中1新种;COLLINGWOOD等[13]报道准葛尔盆地及其邻近山区的蚂蚁46种,其中27种为中国新纪录种;黄人鑫等[14]报道了新疆蚂蚁42种新记录种。通过上述研究共记载了新疆蚂蚁3亚科20属118种,其中分布于天山的种类仅46种。可见,对新疆蚂蚁的研究,尤其是天山地区的研究还十分有限,且仅限于区系和分类,缺乏蚂蚁物种多样性的研究。近期,翟奖等[15]研究了新疆天山东部与邻近地区蚂蚁分布规律,共报道2亚科、14属、29种,发现蚂蚁物种主要集中在土壤温润、树木高大的人工林内;杨林等[16]对新疆天山中部的蚂蚁物种多样性进行了分析,共报道蚂蚁2亚科27种,北坡的蚂蚁物种多样性显著高于南坡,且中海拔区域的物种多样性最高。这些研究丰富了天山地区蚂蚁分布和物种多样性的研究,也使分布于天山的物种增加至50种。

    天山中-西段主要位于克拉玛依的奎屯至阿克苏地区的库车一线区域,由北坡、山间谷地和南坡组成,于2022年7—8月对新疆天山中-西段的蚂蚁多样性进行调查,探讨蚂蚁群落结构、物种多样性与海拔和植被的关系等问题,并与天山中部的蚂蚁多样性进行比较,以全面揭示干旱区蚂蚁物种多样性随着海拔和植被的变化如何变化,以期为该地区的生物多样性保护提供基础资料。

    新疆天山中-西段海拔为781~3 235 m,依地形划分为北坡独山子垂直带、山间起伏盆地的乌拉斯台和那拉提2个垂直带及南坡的库车垂直带,共4个垂直带。海拔每上升250 m,选取植被典型的1块50 m×50 m样地进行调查,共设置33块样地,其中垂直带中海拔最低的1块样地位于奎屯市独山子区天景颐园,海拔为781 m。各垂直带调查样地的位置及自然概况见表1。受野外自然条件限制,选定样地的海拔会有一定误差,控制在±50 m内。

    表 1  新疆天山中-西段蚂蚁群落调查样地概况
    Table 1  Survey sites of ant communities in the middle-western section of Tianshan Mountains in Xinjiang
    垂直带 样地
    编号
    海拔/m 纬度(N) 经度(E) 土壤类型 土壤湿度 植被类型 乔木郁闭度 盖度/% 地被物厚度/cm
    灌木 草本 地被物
    独山子 1 781 44°19′01.12″ 84°52′42.12″ 黄壤 潮湿 落叶阔叶林 0.5 0 70 70 1.0~2.0
    2 1 050 44°12′39.95″ 84°50′46.69″ 黄壤 干燥 落叶阔叶林 0.3 5 75 75 0.5~1.0
    3 1 278 44°09′56.52″ 84°49′39.46″ 黄沙土 干燥 灌丛 0 30 80 80 0.5~1.0
    4 1 540 44°07′11.10″ 84°49′31.52″ 黄沙土 干燥 灌丛 0 30 70 70 0.5~1.0
    5 1 726 44°06′08.44″ 84°48′15.93″ 黄沙土 潮湿 灌丛 0 40 60 60 1.0~2.0
    6 2 029 43°53′15.47″ 84°29′59.35″ 黄壤 湿润 草丛 0 0 95 95 0.5~1.0
    7 2 285 43°50′12.22″ 84°28′14.13″ 棕黄壤 湿润 灌丛 0 30 80 80 2.0~3.0
    8 2 549 43°47′27.07″ 84°27′51.96″ 棕壤 湿润 草丛 0 0 95 95 1.0~2.0
    9 2 773 43°46′43.76″ 84°27′21.36″ 灰黄壤 湿润 锦鸡儿灌丛 0 30 95 95 1.0~2.0
    10 3 023 43°45′14.16″ 84°26′13.54″ 黄沙土 湿 草甸 0 0 95 95 1.0~2.0
    11 3 235 43°44′21.20″ 84°24′57.72″ 灰棕壤 湿 草甸 0 0 85 85 1.0~2.0
    乌拉斯台 11 3 235 43°44′21.20″ 84°24′57.72″ 灰棕壤 湿 草甸 0 0 85 85 1.0~2.0
    12 3 024 43°42′27.20″ 84°26′51.60″ 棕壤 湿 草丛 0 0 80 80 1.0~2.0
    13 2 760 43°41′15.80″ 84°23′57.55″ 棕壤 湿 柏木灌丛 0 50 90 90 1.0~2.0
    14 2 533 43°40′02.69″ 84°24′24.03″ 棕壤 湿润 灌丛 0 30 90 95 0.5~1.0
    15 2 295 43°37′57.52″ 84°18′48.52″ 棕壤 湿润 云杉林 0.6 20 70 100 2.0~3.0
    16 2 000 43°21′36.52″ 84°22′00.32″ 棕壤 湿润 草丛 0 0 100 100 0.5~1.0
    17 1 798 43°20′12.98″ 84°21′30.23″ 棕壤 湿润 针阔混交林 0.4 0 95 95 1.0~2.0
    那拉提 18 1 802 43°13′43.85″ 84°19′15.64″ 棕壤 湿润 针阔混交林 0.5 30 95 95 2.0~3.0
    19 2 020 43°13′31.38″ 84°19′24.66″ 棕壤 湿润 针阔混交林 0.5 70 50 100 1.0~2.0
    20 2 288 43°11′26.28″ 84°19′42.82″ 棕壤 湿润 草丛 0 0 100 100 1.0~2.0
    21 2 548 43°10′06.98″ 84°21′04.21″ 棕壤 湿润 高山柳灌丛 0 90 100 100 2.0~3.0
    22 2 547 42°41′24.77″ 83°41′18.64″ 棕壤 湿润 草丛 0 0 100 100 0.5~1.0
    23 2 785 42°34′51.52″ 83°36′53.84″ 棕壤 湿润 草丛 0 10 95 95 1.0~2.0
    24 3 055 42°30′50.27″ 83°28′54.46″ 棕壤 湿 草丛 0 0 70 70 1.0~2.0
    库车 25 3 058 42°28′36.91″ 83°26′04.32″ 棕壤 湿 草丛 0 0 95 95 1.0~2.0
    26 2 759 42°27′50.54″ 83°24′29.82″ 黄壤 湿润 灌丛 0 50 95 95 1.0~2.0
    27 2 508 42°27′38.24″ 83°23′21.49″ 暗棕壤 湿润 云杉林 0.5 20 95 100 2.0~3.0
    28 2 233 42°26′31.70″ 83°15′21.55″ 黄壤 湿润 草丛 0 0 90 90 1.0~2.0
    29 2 052 42°25′05.20″ 83°16′01.70″ 黄壤 湿润 草丛 0 10 98 98 1.0~2.0
    30 1 773 42°13′34.37″ 83°13′57.53″ 黄沙土 湿润 灌丛 0 40 50 50 0.5~1.0
    31 1 539 42°07′16.52″ 83°09′02.09″ 红壤 干燥 灌丛 0 30 10 30 0.5
    32 1 269 41°51′24.16″ 82°49′08.19″ 黄沙土 干燥 疏灌丛 0 10 10 10 0.5
    33 1 009 41°44′01.62″ 82°55′43.37″ 黄沙土 干燥 落叶阔叶林 0.2 30 30 30 0.5
      说明:乌拉斯台垂直带在该海拔梯度内可选择的典型植被类型样地较少,为更直观地揭示蚂蚁物种数量变化,选择独山子垂直带海拔为3 235 m的样地(编号11)为乌拉斯台垂直带起始点。灌丛指多种灌木组成的灌丛,高于1.0 m,区别于单树种灌丛;疏灌丛指盖度小于10%的灌丛。锦鸡儿Caragana sinica;柏木Cupressus funebris;云杉Picea asperata;高山柳Salix cupularis。土壤湿度以含水量<12%为干燥,12%~15%为湿润,15%~20%为潮湿,>20%为湿。
    下载: 导出CSV 
    | 显示表格

    参考文献[1],在新疆天山中-西段不同海拔采用样地调查法和搜索法进行蚂蚁群落调查,在选定样地内沿对角线选取5个1 m×1 m的样方,每个样方间隔10 m,在采集地表蚂蚁前,先测量每个样方内地被物的厚度。分别采集样地地表样、土壤样和树冠样的蚂蚁,并将蚂蚁保存至装有无水乙醇的离心管,贴上标签。样方调查结束后,5人同时对样地内样方外周围地表、石下、树冠和朽木等微生境进行搜索调查,时间为1 h。将采集到的蚂蚁装入离心管并作标签和记录。依据同种同巢、同种形态相同原则对采集的标本进行归类、编号、登记,将每号标本制作成不超过9头的三角纸干制标本,多余的个体用无水乙醇浸渍保存,依据相关分类学文献[1, 10]鉴定蚂蚁标本,尽可能鉴定到种。

    按照黄钊等[8]的方法,以各类蚂蚁物种个体数占群落物种总数的比例(β)来揭示群落结构特征,采用常规划分标准分为5个类型,即类型 A 为 β≥10.0% ,优势种;类型B为 5.0%≤β<10.0% ,常见种;类型C为 1.0%≤β<5.0% ,较常见种;类型D为 0.1%≤β<1.0% ,较稀有种;类型E为 β<0.1%,稀有种。

    利用Estimate S 9.1.0 对数据进行处理[1718],采用5项主要指标测定物种多样性:物种数目、Shannon-Wiener 多样性指数、Pielou 均匀度指数、Simpson 优势度指数、Jaccard 相似性系数[1, 19],利用SPSS软件中的one-way ANOVA对各垂直带蚂蚁多样性的各个指数进行方差分析并进行多重比较;采用Pearson相关分析方法[20]分析蚂蚁群落多样性各个指数与海拔的相关性,若存在显著相关性,则使用线性和二项式模型进行拟合,基于拟合系数(R2)评价拟合度,并进行显著性t检验,同时分析蚂蚁群落多样性指标与植被特征的相关性。

    在新疆天山中-西段4个垂直带共采集蚂蚁136 247头,经鉴定共29种,隶属于2亚科12属。其中优势种3种,分别为草地铺道蚁Tetramorium caespitum、黑毛蚁Lasius niger和丝光蚁Formica fusca;常见种3种,分别是黄毛蚁L. flavus、光亮黑蚁F. candida和工匠收获蚁 Messor structor;角结红蚁 Myrmica angulinodis、红林蚁F. sinae等10种为较常见种;凹唇蚁F. sanguinea、喜马毛蚁L. himalayanus 和纹头原蚁Proformica striaticeps 3种为较稀有种;诺斯铺道蚁T. nursei、堆土细胸蚁Leptothorax acervorum等10种为稀有种(表2),较常见种和稀有种种类较多。

    表 2  新疆天山中-西段蚂蚁群落结构
    Table 2  Ant community structure of the middle-western section of Tianshan Mountains in Xinjiang
    编号 物种名称 N/头 β/% 物种类型 编号 物种名称 N/头 β/% 物种类型
    1 草地铺道蚁Tetramorium caespitum 31 856 23.38 优势种 16 弯角红蚁Myrmica lobicornis 1 411 1.04 较常见种
    2 黑毛蚁Lasius niger 22 629 16.61 优势种 17 凹唇蚁Formica sanguinea 1 002 0.74 较稀有种
    3 丝光蚁Formica fusca 17 991 13.20 优势种 18 喜马毛蚁Lasius himalayanus 736 0.54 较稀有种
    4 黄毛蚁Lasius flavus 12 247 8.99 常见种 19 纹头原蚁Proformica striaticeps 139 0.10 较稀有种
    5 光亮黑蚁Formica candida 10 500 7.71 常见种 20 诺斯铺道蚁Tetramorium nursei 129 0.09 稀有种
    6 工匠收获蚁Messor structor 9 688 7.11 常见种 21 堆土细胸蚁Leptothorax acervorum 128 0.09 稀有种
    7 角结红蚁Myrmica angulinodis 4 406 3.23 较常见种 22 蒙古原蚁Proformica mongolica 116 0.08 稀有种
    8 红林蚁Formica sinae 4 023 2.95 较常见种 23 长柄心结蚁Cardiocondyla elegans 12 0.01 稀有种
    9 阿富汗红蚁Myrmica afghanica 3 903 2.86 较常见种 24 广布弓背蚁Camponotus herculeanus 5 0 稀有种
    10 艾箭蚁Cataglyphis aenescens 3 695 2.71 较常见种 25 吉市红蚁Myrmica jessensis 4 0 稀有种
    11 满斜结蚁Plagiolepis manczshurica 3 030 2.22 较常见种 26 婀娜收获蚁Messor aralocaspius 3 0 稀有种
    12 草地蚁Formica pratensis 3 009 2.21 较常见种 27 蒙古切胸蚁Temnothorax mongolicus 3 0 稀有种
    13 类干蚁Formica approximans 2 043 1.50 较常见种 28 针毛收获蚁Messor aciculatus 1 0 稀有种
    14 掘穴蚁Formica cunicularia 1 933 1.42 较常见种 29 条纹切胸蚁Temnothorax striatus 1 0 稀有种
    15 中亚凹头蚁Formica mesasiatica 1 604 1.18 较常见种 合计 136 247 100
      说明:N为个体数,β为各类蚂蚁物种个体数占群落物种总数的比例。
    下载: 导出CSV 
    | 显示表格
    2.2.1   物种累积曲线分析

    随着调查样地的增加,实际观察物种数(S)、基于多度(个体数量)的预测值(ACE)、Chao 1和Chao 2值均先急剧上升,后缓慢上升,最后趋于稳定(图1)。蚂蚁物种S为29,与丰富度估计值(ACE值为30.03,Chao1值为30,Chao 2值为29.97)相接近,实际采集到的物种数约为预测值的96.57%~96.76%,可见抽样充分。

    图 1  新疆天山中-西段蚂蚁物种实测值和预测值累积曲线
    Figure 1  Cumulative curve of measured and predicted ant species in the middle-western section of Tianshan Mountains in Xinjiang
    2.2.2   物种数

    从物种的实测值来看,新疆天山中-西段4个垂直带的蚂蚁物种数都接近或等于ACE估计值(表3),其中独山子垂直带海拔2 773 m锦鸡儿灌丛、3 023 m草甸、3 235 m草甸,乌拉斯台垂直带海拔3 024 m草丛,那拉提垂直带海拔2 548 m高山柳灌丛、3055 m草丛及库车垂直带3 058 m草丛样地均未发现蚂蚁。4个垂直带蚂蚁物种数顺序为:独山子垂直带(18种)>那拉提垂直带(14种)>库车垂直带(13种)>乌拉斯台垂直带(10种)。如图2所示:各垂直带的蚂蚁物种数与海拔存在显著(P<0.05)相关性。总体来看,各垂直带的蚂蚁物种数随海拔升高基本呈下降趋势。独山子、乌拉斯台和那拉提垂直带蚂蚁物种数与海拔的二项式变化趋势与线性变化趋势基本一致,线性模型显示乌拉斯台和那拉提垂直带的蚂蚁物种数与海拔分别呈显著(R2=0.770,P=0.022)和极显著(R2=0.739,P=0.013)负相关关系,二项式变化同线性分析趋势一致,但无显著相关性(P>0.05);而库车垂直带物种数与海拔的二项式模型呈现随海拔升高先升高后下降的单峰曲线。

    表 3  各垂直带蚂蚁群落多样性指标
    Table 3  Diversity indexes of ant communities in different vertical zones
    垂直带 物种数/种 ACE估计值 Shannon-Wiener多样性指数 Pielou均匀度指数 Simpson优势度指数
    独山子 18 20.10±0.00 0.515 2±0.153 9 a 0.313 8±0.095 8 a 0.446 3±0.107 8 a
    乌拉斯台 10 10.00±0.00 0.539 9±0.221 6 a 0.348 9±0.121 5 a 0.403 7±0.135 8 a
    那拉提 14 16.54±1.49 0.596 7±0.265 9 a 0.329 9±0.139 0 a 0.316 8±0.132 5 a
    库车 13 13.60±0.00 0.505 8±0.119 1 a 0.408 6±0.103 2 a 0.611 0±0.096 0 a
      说明:同列相同字母表示差异不显著(P>0.05)。数值为平均值±标准误。
    下载: 导出CSV 
    | 显示表格
    图 2  物种数目与海拔的关系
    Figure 2  Relationship between species number and altitude
    2.2.3   多样性指数

    新疆天山中-西段4个垂直带蚂蚁群落多样性指数变化顺序为:那拉提垂直带(0.596 7)>乌拉斯台垂直带(0.539 9)>独山子垂直带(0.515 2)>库车垂直带(0.505 8),但4个垂直带的蚂蚁多样性指数差异不显著(表3)。如图3所示:在4个垂直带上,独山子和乌拉斯台垂直带的蚂蚁多样性指数与海拔存在显著(P<0.05)或极显著(P<0.01)相关性,而那拉提和库车垂直带的蚂蚁多样性指数与海拔的相关性不显著(P>0.05)。总体来看,各垂直带的蚂蚁多样性指数随海拔升高而呈现降低的趋势,二项式变化趋势与线性变化趋势基本一致。其中线性模型显示乌拉斯台垂直带蚂蚁多样性指数与海拔呈显著负相关(P<0.05),二项式变化趋势与线性分析一致,但无相关性。

    图 3  多样性指数与海拔的关系
    Figure 3  Relationship between diversity index and altitude
    2.2.4   均匀度指数

    新疆天山中-西段4个垂直带蚂蚁群落均匀度指数变化顺序为:库车垂直带(0.408 6)>乌拉斯台垂直带(0.348 9)>那拉提垂直带(0.329 9)>独山子垂直带(0.313 8),但4个垂直带的蚂蚁均匀度指数差异不显著(表3)。如图4所示:在4个垂直带上,独山子和乌拉斯台垂直带的蚂蚁均匀度指数与海拔存在显著相关性(P<0.05),而那拉提和库车垂直带的蚂蚁均匀度指数与海拔关系不显著(P>0.05)。其中在独山子垂直带,均匀度指数与海拔的线性模型显著负相关(P<0.05),二项式模型呈现极显著负相关(P<0.01),二项式和线性模型变化趋势不一致;线性模型显示乌拉斯台垂直带蚂蚁群落均匀度指数与海拔化显著负相关(R2=0.697,P<0.05),二项式和线性模型变化趋势不一致,且相关性不显著(P>0.05);线性和二项式模型显示,那拉提和库车垂直带的蚂蚁群落均匀度指数与海拔变化相关性均不显著(P>0.05),但二项式和线性模型变化趋势基本一致。

    图 4  均匀度指数与海拔的关系
    Figure 4  Relationship between Pielou index and altitude
    2.2.5   优势度指数

    新疆天山中-西段4个垂直带蚂蚁群落优势度指数变化顺序为:库车垂直带(0.611 0)>独山子垂直带(0.446 3)>乌拉斯台垂直带(0.403 7)>那拉提垂直带(0.316 8),与多样性指数的变化趋势正相反,但4个垂直带的蚂蚁群落优势度指数差异不显著(表3)。相关分析发现:各垂直带的蚂蚁群落优势度指数与海拔的相关性不显著(P>0.05);4个垂直带的线性模型和二项式模型的变化趋势不一致,二项式模型分析均呈先升高后降低的变化趋势(图5),仅独山子垂直带的二项式模型呈显著性(R2=0.846,P<0.01)。

    图 5  优势度指数与海拔的关系
    Figure 5  Relationship between diversity index and altitude

    新疆天山中-西段各垂直带蚂蚁群落间相似性系数为0.166 7~0.600 0(表4),处于极不相似至中等相似水平;平均值0.289 0,显示中等不相似水平。其中同处于山间盆地的那拉提与乌拉斯台垂直带的蚂蚁群落间相似性最大(0.600 0),乌拉斯台与独山子垂直带的蚂蚁群落间相似性最小(0.166 7),库车与那拉提垂直带之间相似性较低,处于中等不相似水平,其余垂直带间相似性低,处于极不相似水平。总体来说,新疆天山中-西段蚂蚁群落之间相似性较低,群落结构差异较大。

    表 4  新疆天山中-西段各垂直带蚂蚁群落间相似性系数
    Table 4  Similarity coefficients of ant communities in the middle-western section of Tianshan Mountains in Xinjiang
    垂直带 垂直带q
    乌拉斯台 那拉提 库车
    独山子 0.166 7 0.230 8 0.240 0
    乌拉斯台 0.600 0 0.210 5
    那拉提 0.285 7
    平均值 0.289 0
      说明:q为相似性系数, 1≥q≥0.75,极相似;0.75 >q≥0.50,中等相似;0.50 >q≥0.25,中等不相似;0.25>q≥0,极不相似。
    下载: 导出CSV 
    | 显示表格

    表5所示:新疆天山中-西段蚂蚁物种数与乔木郁闭度显著正相关(P<0.05),但与灌木盖度、草木盖度、地被物盖度和地被物厚度相关性不显著;多样性指数、均匀度指数和优势度指数与植被特征的相关性均不显著。

    表 5  蚂蚁多样性与植被特征相关分析
    Table 5  Correlation analysis between ant diversity and vegetation feature      
    植被特征 物种数 多样性
    指数
    均匀度
    指数
    优势度
    指数
    乔木郁闭度 0.424* 0.296 0.285 0.095
    灌木盖度 0.049 0.099 0.114 −0.015
    草本盖度 −0.226 −0.234 −0.234 −0.072
    地被物盖度 −0.161 −0.143 −0.137 −0.075
    地被物厚度 −0.148 −0.240 −0.256 −0.071
      说明:数值为Pearson相关系数,*表示在0.05水平上显著相关。
    下载: 导出CSV 
    | 显示表格

    在新疆天山中-西段4个垂直带共采集蚂蚁136 247头,隶属于2亚科12属29种,物种数略高于新疆天山中段[16](2亚科15属27种),与天山东段[15](2亚科14属29种)相等,但明显高于临近的祁连山国家公园青海片区[21](2亚科6属13种),可能是因为天山中部和祁连山国家公园海拔较高,海拔落差较大,其物种丰富度较低,而新疆天山中-西段和东段由于平均海拔较低,蚂蚁物种丰富度较高,相对海拔高度对蚂蚁物种丰富度也有着重要影响。与同为干旱区的伊朗中部相比,新疆天山中-西段的蚂蚁物种数明显低于伊朗中部[22](8亚科12属34种),可能是伊朗中部纬度和海拔均低于新疆天山,表明耐热性较低的物种更喜欢聚集在中部高海波区域[22],而伊朗中部因适合蚂蚁生存的海拔跨度较大造成物种多样性较高,新疆天山中-西段由于低海拔炎热干燥,高海拔温度过低,适合蚂蚁生存的海拔跨度较小而使多样性较低。

    目前,全球蚂蚁物种多样性沿海拔梯度变化主要呈现5种模式[23]:①随海拔升高蚂蚁多样性呈递减的趋势(物种多样性最高出现在低海拔区域)[24];②低高原模式(300 m以下最低海拔的高多样性);③单峰模式,即在中海拔区域物种多样性最高,可用“中域效应”来解释(海拔高于300 m)[25];④随海拔升高蚂蚁多样性呈现多个峰值,可用“多域效应”来解释[26];⑤无规律模式。研究表明:在沿海拔梯度的5种模式中,最常见的是单峰模式和递减模式[2729]。中海拔地区的物种丰富度较高是由于高海拔或低海拔地区的气候严酷和高海拔地区资源的可利用性有限[3031];物种丰富度随海拔升高而下降,原因是海拔升高,温度和生产力下降[32]。通过对新疆天山中-西段4个垂直带的物种数和多样性指数分析发现:蚂蚁物种多样性沿海拔梯度变化总体呈现随海拔升高而降低的趋势,主要原因是随着海拔的升高气温会逐渐降低而影响蚂蚁的生存;4个垂直带的物种数和多样性指数与海拔变化显著相关,均匀度指数和优势度指数与海拔的相关显著性不尽相同,这与天山中部南北坡的蚂蚁多样性变化规律一致[16]。除了气温以外,还可能受到湿度的制约。与藏东南、四川西部大凉山和云南地区自然保护区不同,新疆天山位居中国内陆,印度洋季风因受到喜马拉雅山脉的阻挡而无法到达,太平洋季风虽可以到达,但距离较远,因此新疆天山常年较干旱,雨水较少,湿度较低,植被类型多以草地及灌木为主,蚂蚁物种丰富度也较低;从4个垂直带来看,蚂蚁物种数独山子垂直带(18种)>那拉提垂直带(14种)>库车垂直带(13种)>乌拉斯台垂直带(10种),独山子垂直带位于天山北坡,库车垂直带位于天山南坡,可见天山的北坡蚂蚁物种数比南坡要多,可能是因为新疆天山位于北半球,南坡为阳坡,北坡为阴坡,南坡日照时间长,水分蒸发量大,土壤湿度低,蚂蚁物种较少,这与天山中部南北坡的蚂蚁物种分布一致[16]。因此湿度也成为制约蚂蚁物种多样性的因素之一。同时温度和湿度也影响着植被类型、土壤结构和微生境等,故蚂蚁物种多样性受到多种因素的影响。

    从群落相似性来看,那拉提与乌拉斯台垂直带的蚂蚁群落间相似性较高,其原因可能是这2个垂直带地理位置相邻,海拔高度和植被类型相似,相同的生境提供了相同的栖息场所和食物资源,从而孕育了较多相同的蚂蚁种类;而其余各垂直带间的群落相似性较低,处于极不相似至中等不相似水平,蚂蚁群落组成差异明显。相关性分析表明:天山中-西段蚂蚁群落的物种数与多样性指数与海拔变化呈显著负相关,海拔梯度显著影响该区域的蚂蚁物种多样性。有研究表明:凋落物覆盖率增高可增加蚂蚁的物种丰富度[33],但蚂蚁物种丰富度与凋落物的数量间无显著相关性,本研究中各垂直带蚂蚁物种数与草本盖度、地被物的盖度和厚度负相关,但相关性不显著,与前人研究结果一致[34];物种数与乔木郁闭度呈显著正相关,在四川王朗自然保护区[ 35]、青藏高原西南坡[36]和西北坡[37]等地区的研究也存在这种相关关系,可能是高大的乔木给蚂蚁提供了较理想的栖息场所、食物来源,蚂蚁群落得以发展。从栖息生境来看,天山中-西段的植被多为草丛和灌丛,仅在海拔相对较低的地方分布有阔叶林、针阔混交林,生态系统脆弱,保护和利用好区域内的昆虫生物多样性,对维持和改善生态系统具有重要意义。

    在新疆天山中-西段4个垂直带共记录到蚂蚁2亚科12属29种,优势种为草地铺道蚁、黑毛蚁和丝光蚁。新疆天山中-西段的蚂蚁物种多样性明显高于祁连山国家公园青海片区,与天山东段和中段接近,低于同为干旱区的伊朗中部。整体而言,天山中-西段4个垂直带蚂蚁群落多样性指数随海拔升高而呈现降低趋势。物种数和多样性指数与海拔显著负相关,且物种数与乔木郁闭度显著正相关,海拔显著影响该地区的蚂蚁物种多样性,同时坡向、湿度、植被等也起到重要作用。各垂直带间的蚂蚁群落相似性总体较低,表明蚂蚁群落分化明显。

    感谢西南林业大学图书馆房华老师和研究生杨蕊、韩秀、杨林、钱怡顺在标本采集和样地调查,本科生杨润娇、何丽华、杨洋和潘宇航在标本整理与制作中的帮助。

  • 表  1  美国山核桃叶各提取物对6株菌种抑菌圈的方差分析

    Table  1.   Variance analysis of inhibition zone of different extracts from Carya illinoensis against 6 species of strains

    酵母菌 青霉菌 黄曲霉菌 根霉囷 枯草杆菌 大肠埃希菌
    提取液 抑菌圈
    直径/mm
    提取液 抑菌圈
    直径/mm
    提取液 抑菌圈
    直径/mm
    提取液 抑菌圈
    直径/mm
    提取液 抑菌圈
    直径/mm
    提取液 抑菌圈
    直径/mm
    正丁醇 11.13 aA 乙酸乙酯 9.18aA 石油醚 8.35 aA 乙酸乙酯 10.86 aA 乙酸乙酯 10.18 aA 9.13 aA
    10.48 aAB 8.71 aAB 乙酸乙酯 8.26 abAB 氯仿 9.36 bAB 氯仿 9.88 aA 正丁醇 8.83 abAB
    氯仿 10.19abAB 氯仿 8.59abAB 总浸膏 8.22 abAB 正丁醇 9.32 bBC 正丁醇 9.30 aA 石油醚 8.65 bcAB
    总浸膏 10.07abAB 石油醚 8.40abAB 正丁醇 7.47 bcBC 石油醚 8.25 cCD 石油醚 8.53 bB 氯仿 8.23 bcB
    石油醚 10.04 bBC 总浸膏 8.26abAB 7.35 bcBC 8.64 cD 8.09 bcB 乙酸乙酯 7.88 bcB
    乙酸乙酯 8.79 cC 正丁醇 7.92 bB 氯仿 7.18 cC 总浸膏 7.44 dD 总浸膏 7.77 cC 总浸膏 7.77 cB
        说明:数据后不同小写字母表示差异达0.05显著水平,不同大写字母表示差异达0.01显著水平。
    下载: 导出CSV

    表  2  美国山核桃叶各提取物对6株菌种的半数抑菌质量浓度

    Table  2.   CE50 of different extracts of Carya illinoensis against 6 species of strains

    菌种 提取物 不同药液质量浓度死亡率/% 回归方程 相关系数 CE50/(g.L1)
    10.00 5.00 2.50 1.25 0.65
    黄曲霉菌 总浸膏 55.00 69.44 64.44 65.37 70.19 y=5.46-0.237 2x -0.682 1 1.94
    64.52 66.81 70.48 68.19 67.07 y=5.46-0.059 7 x -0.463 9 > 200.00
    正丁醇 63.15 68.89 70.19 67.41 68.15 y=5.47-0.077 7x -0.497 5 > 200.00
    石油醚 57.78 66.85 65.19 65.74 62.22 y=5.35+9.000 0x -0.328 1 0.91
    氯仿 68.37 69.48 71.74 69.63 68.85 y=5.50-0.010 6x -0.133 3 > 200.00
    乙酸乙酯 61.30 61.30 68.15 67.04 65.74 y=5.41-0.131 7x -0.712 6 > 200.00
    酵母菌 总浸膏 52.?6 59.26 60.56 57.96 52.59 y=5.14+0.017 6 x 0.088 0 0.00
    55.00 58.15 59.63 52.96 50.74 y=5.06+0.117 1 x 0.591 8 0.30
    正丁醇 35.56 56.30 56.30 63.33 60.19 y=5.28-0.489 9 x -0.816 0 3.68
    石油醚 5?.07 50.74 59.44 58.70 65.19 y=5.27-0.176 8 x -0.624 6 31.79
    氯仿 58.33 54.07 57.04 53.70 59.44 y=5.15-0.016 1 x -0.116 4 > 200.00
    乙酸乙酯 43.70 69.07 69.26 65.93 61.30 y=5.39-0.273 0 x -0.463 3 27.63
    青霉菌 总浸膏 57.41 64.44 61.11 69.63 68.70 y=5.45-0.251 2 x -0.855 9 59.82
    37.78 34.44 34.63 38.52 44.26 y=4.71-0.151 8x -0.672 5 0.01
    正丁醇 42.59 33.52 34.07 32.22 30.56 y=4.47+0.234 3x 0.865 1 188.21
    石油醚 42.04 35.00 35.44 31.04 35.74 y=4.54+0.150 9x 0.658 5 > 200.00
    氯仿 63.15 66.11 67.59 56.48 63.33 y=5.29+0.081 9x 0.341 4 0.00
    乙酸乙酯 57.59 58.52 62.22 62.41 66.48 y=5.35-0.192 2x -0.964 9 62.82
    根霉菌 总浸膏 62.41 62.52 57.96 59.26 59.04 y=5.20+0.087 9x 0.757 7 0.01
    66.37 70.63 66.41 68.70 65.78 y=5.42+0.029 5x 0.241 6 0.00
    正丁醇 56.96 62.48 66.93 65.33 68.30 y=5.43-0.228 5x -0.900 9 75.73
    石油醚 65.19 66.11 64.00 65.56 60.74 y=5.31+0.845 0x 0.695 3 0.00
    氯仿 45.22 59.63 64.07 61.11 65.19 y=5.35-0.358 8x -0.816 5 9.44
    乙酸乙酯 49.44 57.41 52.04 54.63 62.78 y=5.18-0.133 9x -0.746 5 22.21
    下载: 导出CSV
  • [1] 易醒, 谢明勇, 肖小年.胡桃科植物化学及生物活性研究概况[J].中草药, 2001, 32(6):559-561.

    YI Xing, XIE Mingyong, XIAO Xiaonian. Survey of chemical constituents and bioactivity of Juglandaceae plants[J]. Chin Trad Herbal Drug, 2001, 32(6):559-561.
    [2] CHAO S H, GREENLEAF A L, PRICE D H. Juglone, an inhibitor of the peptidyl-prolyl isomerase Pinl, also directly blocks transcription[J]. Nucl Acids Res, 2001, 29(3):767-773.
    [3] 王春玲, 包永明, 段彦龙, 等.胡桃楸树对Hela.PC-3细胞作用的研究[J].肿瘤学杂志, 2003, 9(3):144-146.

    WANG Chunling, BAO Yongming, DUAN Yanlong, et al. A study on effect of Juglans mandshuria on Hela and PC-3 cells[J]. J Oncol, 2003, 9(3):144-146.
    [4] 胡旭姣, 赵肖君, 周奋, 等.山核桃提取物体外抗肿瘤作用研究[J].中华中医药学刊, 2007, 25(2):369-370.

    HE Xujiao, ZHAO Xiaojun, ZHOU Fen, et al. The anti-tumor effects of Carya cathayensis Sarg. extracts in vitro[J]. Chin Arch Trad Chin Med, 2007, 25(2):369-370.
    [5] 殷舒, 毛胜凤, 杨琼霞, 等.山核桃叶片提取物的抑菌作用[J].浙江林学院学报, 2007, 24(5):604-607.

    YIN Shu, MAO Shengfeng, YANG Qiongxia, et al. Bacteriostasis and fungistasis with extracts from Carya cathayensis leaves[J]. J Zhejiang For Coll, 2007, 24(5):604-607.
    [6] 刘建萍, 由宝昌, 于岩, 等.大叶胡颓子叶抗菌活性部位的研究[J].时珍国医国药, 2012, 23(2):293-294.

    LIU Jianping, YOU Baochang, YU Yan, et al. The antibacterial active situs of Elaeagnus macrophylla Thunb. leaves[J]. Lishizhen Med Mater Med Res, 2012, 23(2):293-294.
    [7] 张均田.现代药理实验方法[M].北京:北京医科大学·中国协和医科大学联合出版社, 1998:1409.
    [8] 高苇, 李宝聚, 石延霞, 等.咪鲜胺对糙皮侧耳(平菇)污染菌绿色木霉的抑制作用[J].中国蔬菜, 2012(16):75-79.

    GAO Wei, LI Baoju, SHI Yanxia, et al. Inhibitory effect of prochloraz on Trichoderma viride contaminated Pleurotus ostreatus(Jacq. ex Fr.)Quèl.[J]. China Veg, 2012(16):75-79.
    [9] 张野平, 杨志博.胡桃醌对肿瘤细胞的增殖抑制作用和抗菌作用[J].沈阳药学院学报, 1993, 10(4):271-274.

    ZHANG Yeping, YANG Zhibo. The antiseptic effect of Juglone and its inhibition effect on tumor cells multiplication[J]. J Shenyang Coll Pharm, 1993, 10(4):271-274.
    [10] 潘亚琴, 李全清, 张森尧, 等.山核桃叶与美国山核桃叶中化学成分的初步分析[J].中华中医药学刊, 2008, 26(11):2517-2519.

    PAN Yaqin, LI Quanqing, ZHANG Sengyao, et al. Study on chemical components in the leaves of Carya cathayensis and C. illinoensis[J]. Chin Arch Trad Chin Med, 2008, 26(11):2517-2519.
    [11] 姚振生, 叶荷平, 陈杰, 等.野核桃叶提取物的体外抗菌作用[J].江西中医学院学报, 2001, 13(3):122.

    YAO Zhensheng, YE Heping, CHEN Jie, et al. Comparative study on vitro activity of extract from Juglans cathayensis Dode[J]. J Jiangxi Coll Trad Chin Med, 2001, 3(3):122.
    [12] 蒋剑平, 熊耀康, 姚振生, 等.华东野山核桃叶提取物体外抗菌作用研究[J].浙江中医学院学报, 2005, 29(3):75-76.

    JIANG Jianping, XIONG Yaokang, YAO Zhensheng, et al. Comparative study on vitro activity of extract from Folium Juglis catayensis[J]. J Zhejiang Coll Trad Chin Med, 2005, 29(3):75-76.
  • [1] 章奕, 崔杰, 何若铭, 何志平, 刘兴泉, 时浩杰.  秀珍菇采后病原菌的鉴定及精油防治 . 浙江农林大学学报, 2022, 39(6): 1321-1329. doi: 10.11833/j.issn.2095-0756.20210819
    [2] 钱宇汀, 薛晓峰, 曾燕如, 陈文充, 叶晓明, 喻卫武, 戴文圣.  香榧瘿螨为害对香榧叶片结构及叶绿素质量分数的影响 . 浙江农林大学学报, 2020, 37(2): 296-302. doi: 10.11833/j.issn.2095-0756.2020.02.014
    [3] 张恒, 孙子健, 张运林, 金森, 王玉霞.  不同距离气象数据对细小可燃物含水率预测模型精度的影响 . 浙江农林大学学报, 2018, 35(3): 529-536. doi: 10.11833/j.issn.2095-0756.2018.03.019
    [4] 刘奕来, 王江宏, 张静, 朱丹妮, 毛嘉俊, 周湘.  蚜科专化菌暗孢耳霉对竹蚜种群动态的影响及控蚜作用 . 浙江农林大学学报, 2017, 34(5): 907-914. doi: 10.11833/j.issn.2095-0756.2017.05.018
    [5] 杜和芬, 王佩星, 徐华潮, 张娓娓, 王紫薇.  光肩星天牛对山核桃挥发性组分的触角电位分析 . 浙江农林大学学报, 2016, 33(1): 166-171. doi: 10.11833/j.issn.2095-0756.2016.01.022
    [6] 李洪滨, 朱诚棋, 周湘, 马良进, 苏秀.  红哺鸡竹异香柱菌的形态学和分子鉴定 . 浙江农林大学学报, 2016, 33(6): 1040-1044. doi: 10.11833/j.issn.2095-0756.2016.06.016
    [7] 张爽, 张璞瑜, 蒋达青, 张媚, 张立钦, 林海萍.  棘托竹荪抑菌物质的乙醇提取工艺优化与抑菌作用 . 浙江农林大学学报, 2016, 33(6): 1045-1051. doi: 10.11833/j.issn.2095-0756.2016.06.017
    [8] 王璇, 马良进, 吕全, 孟娴静, 张星耀.  山核桃干腐病病原菌的鉴定 . 浙江农林大学学报, 2014, 31(2): 238-245. doi: 10.11833/j.issn.2095-0756.2014.02.012
    [9] 林富平, 周帅, 马楠, 张汝民, 高岩.  4个桂花品种叶片挥发物成分及其对空气微生物的影响 . 浙江农林大学学报, 2013, 30(1): 15-21. doi: 10.11833/j.issn.2095-0756.2013.01.003
    [10] 田甜, 沈振明, 徐秋芳, 刘卜榕.  土壤中山核桃干腐病抑制菌的筛选和鉴定 . 浙江农林大学学报, 2012, 29(1): 58-64. doi: 10.11833/j.issn.2095-0756.2012.01.011
    [11] 巨云为, 樊培峰, 奚月明, 薛中官.  万寿菊提取物对松材线虫的毒杀作用 . 浙江农林大学学报, 2010, 27(2): 316-319. doi: 10.11833/j.issn.2095-0756.2010.02.026
    [12] 史冬辉, 刘洪波, 杨小丰, 张瑜, 陈安良, 张立钦.  黄山木兰精油对9种植物病原真菌的抑菌活性 . 浙江农林大学学报, 2009, 26(2): 223-227.
    [13] 林君阳, 马良进, 陈安良, 张立钦.  山核桃外果皮化学成分及抑菌活性初步研究 . 浙江农林大学学报, 2009, 26(1): 100-104.
    [14] 马良进, 吴美卿, 苏秀, 陈安良, 张立钦.  山核桃外果皮提取物活体抑菌活性 . 浙江农林大学学报, 2009, 26(5): 620-624.
    [15] 毛胜凤, 张立钦, 张健, 林海萍, 马良进, 徐清信.  马尾松叶提取物的抗菌活性 . 浙江农林大学学报, 2008, 25(3): 359-362.
    [16] 苏秀, 马良进, 陈安良, 张立钦.  山核桃外果皮提取物抑菌活性的初步研究 . 浙江农林大学学报, 2008, 25(3): 355-358.
    [17] 胡国良, 程益鹏, 楼君芳, 王国杜, 夏国华, 陈建刚, 章祖平.  山核桃花蕾蛆生物学特性及防治技术 . 浙江农林大学学报, 2007, 24(4): 463-467.
    [18] 张昕, 张立钦, 马良进, 林海萍, 毛胜凤, 张炳欣.  生防菌ZJY-1抑菌作用的初步研究 . 浙江农林大学学报, 2007, 24(1): 91-95.
    [19] 张俊会, 金则新.  七子花不同时期叶片提取物的体外抑菌活性 . 浙江农林大学学报, 2007, 24(3): 369-371.
    [20] 殷舒, 毛胜凤, 杨琼霞, 黄佩龙, 朱栋奎, 胡军祥.  山核桃叶片提取物的抑菌作用 . 浙江农林大学学报, 2007, 24(5): 604-607.
  • 期刊类型引用(8)

    1. 江峰,谭晓萍,周小青,叶正钱. 衢州市城市绿地土壤特性及改良措施. 林业科技通讯. 2024(08): 80-84 . 百度学术
    2. 霍佳,吕刚,李坤衡. 辽西半干旱区典型城市土壤质量评价. 生态科学. 2023(05): 181-187 . 百度学术
    3. 杨涛,王丽,杜红霞. 绿地类型及植物配置对西安城市绿地土壤理化性质的影响. 现代园艺. 2023(22): 25-30+33+38 . 百度学术
    4. 周文娟. 园林土壤质量管理探讨配置的几点思考. 四川农业科技. 2019(01): 71-72 . 百度学术
    5. 唐赛男,王成,裴男才,张昶,王子研,段文军,孙睿霖. 广州南沙区河涌沿岸植物景观特征及其与人类活动的关系. 浙江农林大学学报. 2019(02): 375-385 . 本站查看
    6. 翁俊. 洪泽湖古堰森林公园的植物种类及应用. 黑龙江农业科学. 2018(01): 96-99 . 百度学术
    7. 秦娟,许克福. 我国城市绿地土壤质量研究综述与展望. 生态科学. 2018(01): 200-210 . 百度学术
    8. 施健健,蔡建国,刘朋朋,魏云龙. 杭州花港观鱼公园森林固碳效益评估. 浙江农林大学学报. 2018(05): 829-835 . 本站查看

    其他类型引用(3)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.04.025

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2014/4/658

计量
  • 文章访问数:  3231
  • HTML全文浏览量:  508
  • PDF下载量:  550
  • 被引次数: 11
出版历程
  • 收稿日期:  2013-07-29
  • 修回日期:  2013-12-02
  • 刊出日期:  2014-08-20

美国山核桃叶的抗菌作用

doi: 10.11833/j.issn.2095-0756.2014.04.025
    基金项目:

    浙江农林大学大学生科技创新项目 201202011

    作者简介:

    叶申怡, 从事微生物农药研究。E-mail:844190417@qq.com

    通信作者: 张爱莲, 讲师, 从事生物农药研究。E-mail:zhangailian@126.com
  • 中图分类号: S789.4

摘要: 对美国山核桃Carya illinoensis叶进行体外抗菌作用研究, 以期开发出一种新型的天然杀菌剂。美国山核桃叶经体积分数为75%乙醇提取后, 采用系统溶剂法将抽提物分为石油醚、氯仿、乙酸乙酯、正丁醇和水等5个不同极性的提取物。采用滤纸片法, 检测以上提取物对黄曲霉菌Aspergillus flavus, 根霉菌Rhzopus oryzae, 青霉菌Penicillium sp., 酵母菌Saccharomyces cerevisiae, 大肠埃希菌Escherichia coli和枯草杆菌Bacillus subtilis等的抑菌效果, 并计算各提取物对真菌的半数抑菌质量浓度(CE50)。结果表明:乙酸乙酯提取物对青霉菌、根霉菌、黄曲霉菌和枯草杆菌均表现出明显的抑菌效果且差异显著(P < 0.05, P < 0.01), 抑菌圈直径均值分别为9.18, 10.86, 8.26, 10.18 mm, 但对于黄曲霉菌石油醚提取物(CE50 0.91 g·L-1)的抑菌效果优于乙酸乙酯提取物(CE50>200 g·L-1); 而正丁醇提取物对酵母菌和大肠埃希菌表现出明显的抑菌效果且差异显著(P < 0.05, P < 0.01), 其抑菌圈直径均值分别为11.13, 8.83 mm, 但对于大肠埃希菌水提物的抑菌效果优于正丁醇提取物, 其抑菌圈直径均值为9.13 mm。综上, 美国山核桃叶的正丁醇提取物和乙酸乙酯提取物抑菌效果最佳。针对这一实验结果, 可以根据防治对象不同, 采用不同的提取方法和工艺, 研发专菌专治的天然杀菌剂, 以提升杀菌剂的作用效果。

English Abstract

农正国, 熊忠平, 徐正会, 等. 新疆天山中-西段不同垂直带蚂蚁物种多样性[J]. 浙江农林大学学报, 2025, 42(1): 143−152 doi:  10.11833/j.issn.2095-0756.20240244
引用本文: 叶申怡, 阮夏云, 樊莹, 等. 美国山核桃叶的抗菌作用[J]. 浙江农林大学学报, 2014, 31(4): 658-662. DOI: 10.11833/j.issn.2095-0756.2014.04.025
NONG Zhengguo, XIONG Zhongping, XU Zhenghui, et al. Ant diversity along gradient in the middle-western section of Tianshan Mountains in Xinjiang[J]. Journal of Zhejiang A&F University, 2025, 42(1): 143−152 doi:  10.11833/j.issn.2095-0756.20240244
Citation: YE Shenyi, RUAN Xiayun, FAN Ying, et al. Antimicrobial activity of Carya illinoensis leaves[J]. Journal of Zhejiang A&F University, 2014, 31(4): 658-662. DOI: 10.11833/j.issn.2095-0756.2014.04.025
  • 美国山核桃Carya illinoensis,又名薄壳山核桃或长山核桃,原产于美国和墨西哥北部,世界多个国家都有引种栽培。中国江苏省于20世纪引入栽培于淮安、南京、泰州、江阴等地。近年来,浙江农林大学开展了薄壳山核桃引种、育种与推广栽培。胡桃科Juglandacecae植物含有黄酮类、萜类、萘醌苷类、多酚类和有机酸类等成分,具有抑制醛糖还原酶,抑制细菌DNA起始复合物的形成,抗肿瘤,镇痛消炎等作用[1-3]。胡旭姣等[5]的研究表明:山核桃叶片提取物具有抑制胃癌SGC-7901细胞增殖和诱导该肿瘤细胞凋亡的作用。美国山核桃与山核桃Carya cathayensis同属,两者亲缘关系相近。一般认为,植物之间亲缘关系相近的个体常具有类似的化学成分和相似临床疗效的规律。殷舒等[5]对山核桃叶片提取物的抑菌作用研究表明:山核桃叶片提取物对金黄色葡萄球菌Staphylococcus aureus, 大肠埃希菌Escherichia coli,酵母菌Saccharomyces cerevisiae,黄曲霉菌Aspergillus flavus,青霉菌Penicillium sp.和黑曲霉菌Aspergillus niger均有抑制作用。本实验采用滤纸片法,首次对美国山核桃叶的总提取物,以及石油醚、氯仿、乙酸乙酯、正丁醇、水5个不同极性的提取物进行抗菌作用研究,以期为今后农业上的新型植物农药开发和医学上的临床应用提供科学依据。

    • 美国山核桃叶,2012年10月采于浙江农林大学东湖校区。菌种根霉菌Rhzopus oryzae,酵母菌Saccharomyces cerevisiae,黄曲霉菌Aspergillus flavus,青霉菌Penicillium sp.,大肠埃希菌Escherichia coli和枯草杆菌Bacillus subtilis均由浙江农林大学森林保护实验室提供。

    • 供试有机溶剂及所用生化试剂均为国产分析纯。使用下列仪器:SHB-III循环水式多用真空泵(河南省予华仪器有限公司);旋转蒸发仪(河南省予华仪器有限公司);AB104-N分析天平;MLS-3750全自动蒸汽灭菌锅(SANYO);PRX-350C智能人工气候箱(宁波海曙赛福实验仪器厂);MCV-B131FCT超净工作台(SANYO)。

    • 新鲜美国山核桃叶(5.00 kg)于50 ℃烘箱中烘48 h至干,粉碎,过40目筛,取粉500 g,用体积分数为75%乙醇回流提取3次,2 h·次-1,滤液合并,减压浓缩至无醇味,烘干,得总浸膏72.6 g。取30.0 g总浸膏用水分散后分别用石油醚、氯仿、乙酸乙酯、正丁醇萃取,各萃取液及水相减压浓缩回收溶剂,烘干,得到不同极性提取物。随后用二甲基亚砜将总浸膏和不同提取物浸膏分别配制成质量浓度为10.000,5.000,2.500,1.250和0.625 g·L-1的药液,备用。

    • 将各供试细菌分别移接入牛肉膏斜面培养基上,真菌接入马铃薯葡萄糖琼脂(PDA)斜面培养基上,细菌置于37 ℃的培养箱中培养48 h,真菌置于25 ℃的培养箱中培养96 h。

    • 将活化好的各菌种制成比例为1.0×108~1.0×109菌落形成单位(CFU)·L-1的菌悬液,备用。

    • 无菌条件下,取菌悬液0.1 mL,用无菌涂布棒均匀涂布在平板培养基上,将灭菌后直径为6 mm的滤纸小圆片在上述各抽提液中浸泡20 min后,取出晾干,等距离贴于平板上,4片·皿-1,3个重复·菌种-1,分别以各自无浸膏的萃取液为空白对照。细菌置于31 ℃培养箱中培养24 h,真菌置于25 ℃培养箱中培养72 h后,用十字交叉法,测定抑菌圈直径,并按以下公式计算抑菌率:抑菌率=(对照菌落数-处理菌落数)/对照菌落数×100%。

    • 抑菌圈直径原始数据用DPS数据处理系统软件进行多因素方差分析,并对平均数用最小显著性差异法(LSD)进行多重比较。

    • 根据提取物质量浓度与抑制率获得回归方程,计算各真菌抑制率在50%时的各提取物质量浓度,即为各提取物对各真菌的半数抑菌质量浓度(CE50)。

    • 美国山核桃叶各极性提取物对6株供试菌均表现出一定的抑菌活性,其中正丁醇提取物与乙酸乙酯提取物对除大肠埃希菌外的5株供试菌均表现出较强的抑菌活性,故可认为美国山核桃叶正丁醇提取物与乙酸乙酯提取物的抑菌效果最佳。而对于黄曲霉菌,石油醚提取物表现出较强的抑菌活性(表 1)。

      表 1  美国山核桃叶各提取物对6株菌种抑菌圈的方差分析

      Table 1.  Variance analysis of inhibition zone of different extracts from Carya illinoensis against 6 species of strains

      酵母菌 青霉菌 黄曲霉菌 根霉囷 枯草杆菌 大肠埃希菌
      提取液 抑菌圈
      直径/mm
      提取液 抑菌圈
      直径/mm
      提取液 抑菌圈
      直径/mm
      提取液 抑菌圈
      直径/mm
      提取液 抑菌圈
      直径/mm
      提取液 抑菌圈
      直径/mm
      正丁醇 11.13 aA 乙酸乙酯 9.18aA 石油醚 8.35 aA 乙酸乙酯 10.86 aA 乙酸乙酯 10.18 aA 9.13 aA
      10.48 aAB 8.71 aAB 乙酸乙酯 8.26 abAB 氯仿 9.36 bAB 氯仿 9.88 aA 正丁醇 8.83 abAB
      氯仿 10.19abAB 氯仿 8.59abAB 总浸膏 8.22 abAB 正丁醇 9.32 bBC 正丁醇 9.30 aA 石油醚 8.65 bcAB
      总浸膏 10.07abAB 石油醚 8.40abAB 正丁醇 7.47 bcBC 石油醚 8.25 cCD 石油醚 8.53 bB 氯仿 8.23 bcB
      石油醚 10.04 bBC 总浸膏 8.26abAB 7.35 bcBC 8.64 cD 8.09 bcB 乙酸乙酯 7.88 bcB
      乙酸乙酯 8.79 cC 正丁醇 7.92 bB 氯仿 7.18 cC 总浸膏 7.44 dD 总浸膏 7.77 cC 总浸膏 7.77 cB
          说明:数据后不同小写字母表示差异达0.05显著水平,不同大写字母表示差异达0.01显著水平。

      表 1可知:美国山核桃叶不同极性提取物及总浸膏对细菌和真菌皆有抑菌作用,但各提取物的抑菌效果存在差异。对真菌的抑菌作用:石油醚提取物对黄曲霉菌的抑菌作用显著大于其他4种提取物及总浸膏,在0.01及0.05水平上均存在显著差异,故对于黄曲霉菌,石油醚提取物的抑菌效果最佳,抑菌圈直径均值为8.35 mm;对于青霉菌,乙酸乙酯提取物的抑菌效果最佳,抑菌圈直径均值为9.19 mm;对于酵母菌,正丁醇提取物的抑菌效果最佳,抑菌圈直径均值为11.13 mm;对于根霉菌,乙酸乙酯提取物的抑菌效果最佳,抑菌圈直径均值为10.86 mm。在对细菌的抑菌试验中:正丁醇提取物对枯草杆菌的抑菌效果最佳,抑菌圈直径均值为10.19 mm;而对于大肠埃希菌,水提取物的抑菌效果最佳,抑菌圈直径均值为9.13 mm。由此可知:美国山核桃叶的乙酸乙酯提取物和正丁醇提取物均表现出较为广谱的抑菌作用,对真菌与细菌都有不同程度的抑菌作用,且差异显著;乙酸乙酯提取物对于根霉菌的抑菌作用显著大于其他供试菌种,正丁醇提取物对于酵母菌和枯草杆菌的抑菌作用显著大于其他供试菌种。故美国山核桃叶的正丁醇提取物和乙酸乙酯提取物的抑菌效果最佳。

    • 表 2可知:美国山核桃叶的正丁醇提取物和乙酸乙酯提取物对各真菌均表现出较强的抑菌作用。对于酵母菌,正丁醇提取物表现出较其他提取物最强的抑菌活性,其半数抑制质量浓度(CE50)值为3.68 g·L-1。对于根霉菌,氯仿提取物表现出较乙酸乙酯提取物更强的抑菌活性,其CE50值为9.44 g·L-1。对于黄曲霉菌,石油醚提取物表现出较正丁醇提取物和乙酸乙酯提取物更强的抑菌作用,CE50值为0.91 g·L-1。对于青霉菌,水提取物表现出较正丁醇提取物和乙酸乙酯提取物更强的抑菌作用,CE50值为0.01 g·L-1

      表 2  美国山核桃叶各提取物对6株菌种的半数抑菌质量浓度

      Table 2.  CE50 of different extracts of Carya illinoensis against 6 species of strains

      菌种 提取物 不同药液质量浓度死亡率/% 回归方程 相关系数 CE50/(g.L1)
      10.00 5.00 2.50 1.25 0.65
      黄曲霉菌 总浸膏 55.00 69.44 64.44 65.37 70.19 y=5.46-0.237 2x -0.682 1 1.94
      64.52 66.81 70.48 68.19 67.07 y=5.46-0.059 7 x -0.463 9 > 200.00
      正丁醇 63.15 68.89 70.19 67.41 68.15 y=5.47-0.077 7x -0.497 5 > 200.00
      石油醚 57.78 66.85 65.19 65.74 62.22 y=5.35+9.000 0x -0.328 1 0.91
      氯仿 68.37 69.48 71.74 69.63 68.85 y=5.50-0.010 6x -0.133 3 > 200.00
      乙酸乙酯 61.30 61.30 68.15 67.04 65.74 y=5.41-0.131 7x -0.712 6 > 200.00
      酵母菌 总浸膏 52.?6 59.26 60.56 57.96 52.59 y=5.14+0.017 6 x 0.088 0 0.00
      55.00 58.15 59.63 52.96 50.74 y=5.06+0.117 1 x 0.591 8 0.30
      正丁醇 35.56 56.30 56.30 63.33 60.19 y=5.28-0.489 9 x -0.816 0 3.68
      石油醚 5?.07 50.74 59.44 58.70 65.19 y=5.27-0.176 8 x -0.624 6 31.79
      氯仿 58.33 54.07 57.04 53.70 59.44 y=5.15-0.016 1 x -0.116 4 > 200.00
      乙酸乙酯 43.70 69.07 69.26 65.93 61.30 y=5.39-0.273 0 x -0.463 3 27.63
      青霉菌 总浸膏 57.41 64.44 61.11 69.63 68.70 y=5.45-0.251 2 x -0.855 9 59.82
      37.78 34.44 34.63 38.52 44.26 y=4.71-0.151 8x -0.672 5 0.01
      正丁醇 42.59 33.52 34.07 32.22 30.56 y=4.47+0.234 3x 0.865 1 188.21
      石油醚 42.04 35.00 35.44 31.04 35.74 y=4.54+0.150 9x 0.658 5 > 200.00
      氯仿 63.15 66.11 67.59 56.48 63.33 y=5.29+0.081 9x 0.341 4 0.00
      乙酸乙酯 57.59 58.52 62.22 62.41 66.48 y=5.35-0.192 2x -0.964 9 62.82
      根霉菌 总浸膏 62.41 62.52 57.96 59.26 59.04 y=5.20+0.087 9x 0.757 7 0.01
      66.37 70.63 66.41 68.70 65.78 y=5.42+0.029 5x 0.241 6 0.00
      正丁醇 56.96 62.48 66.93 65.33 68.30 y=5.43-0.228 5x -0.900 9 75.73
      石油醚 65.19 66.11 64.00 65.56 60.74 y=5.31+0.845 0x 0.695 3 0.00
      氯仿 45.22 59.63 64.07 61.11 65.19 y=5.35-0.358 8x -0.816 5 9.44
      乙酸乙酯 49.44 57.41 52.04 54.63 62.78 y=5.18-0.133 9x -0.746 5 22.21
    • 美国山核桃叶的各提取物中,正丁醇提取物和乙酸乙酯提取物具有最佳抑菌效果。两者均对革兰氏阳性菌(枯草杆菌)具有明显抑制作用,其中正丁醇提取物抑菌效果优于乙酸乙酯提取物;正丁醇提取物对革兰氏阴性菌(大肠埃希菌)抑制作用不明显。各提取物对酵母型真菌和霉菌型真菌也有明显抑菌作用,其中正丁醇提取物对酵母菌型真菌的抑菌作用明显强于乙酸乙酯提取物,而乙酸乙酯提取物对霉菌型真菌的抑菌作用明显强于正丁醇提取物。此外,石油醚提取物对黄曲霉菌具有最佳抑菌作用。由此推断,美国山核桃叶所含抑菌成分复杂,可分布于不同有机相,且对不同的供试微生物有不同的抑菌效力。

      张野平等[9]对胡桃醌对肿瘤细胞的增殖抑制作用和抗菌作用研究表明,胡桃醌对许多革兰氏阳性菌和阴性菌均有抑制作用。潘亚琴等[10]对山核桃叶与美国山核桃叶中化学成分的初步分析研究表明,美国山核桃叶与山核桃叶中所含化学成分类型基本相同。由此可见,美国山核桃叶中也可能含有抑菌的有效成分。本实验结果亦表明美国山核桃叶提取物对革兰氏阳性菌和革兰氏阴性菌具有明显抑制作用。美国山核桃、山核桃和核桃楸(含有胡桃醌药效成分)[11]为同属植物, 而胡桃醌对许多革兰氏阳性菌和阴性菌均有抑制作用[9, 12]。利用植物亲缘关系来寻找新的药效成分的思路来分析,同属的美国山核桃叶极可能含有类似的药效成分。此外,美国山核桃叶还对新型隐球菌(酵母型真菌)和霉菌型真菌具明显抗菌作用,对此种抗菌作用的有效成分有待于进一步研究。

      生物农药是天然存在的或者经过基因修饰的药剂,与常规农药的区别在于其独特的作用方式、低使用剂量和靶标种类的专一性。随着科学技术的迅速发展,生物农药的范畴不断扩大,涉及到动物、植物、微生物中的许多种类及多种与生物有关的具有农药功能的物质。日益成长的有机农业使得生物农药的需求逐渐上扬,而美国山核桃在长江流域以南各省林储丰富,从资源利用的角度可考虑在保护基础上进行合理开发。美国山核桃是落叶乔木,秋末冬初,叶会全部凋落,次年重新长出新叶,叶资源可不断再生,因此,开发利用美国山核桃叶资源切实可行。

参考文献 (12)

目录

/

返回文章
返回