留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稻草在LiCl/DMSO中的溶解及再生性能

吴文娟 刘慧君 李博文 闫雪晴 徐露 谢东甲

卢玉生, 官凤英, 彭超, 等. 竹笋截梢对绿竹生长及叶绿素荧光特性的影响[J]. 浙江农林大学学报, 2020, 37(1): 51-59. DOI: 10.11833/j.issn.2095-0756.2020.01.007
引用本文: 吴文娟, 刘慧君, 李博文, 等. 稻草在LiCl/DMSO中的溶解及再生性能[J]. 浙江农林大学学报, 2021, 38(1): 147-154. DOI: 10.11833/j.issn.2095-0756.20200163
LU Yusheng, GUAN Fengying, PENG Chao, et al. Effects of bamboo shoot truncation on growth and chlorophyll fluorescence characteristics of Dendrocalamopsis oldhami[J]. Journal of Zhejiang A&F University, 2020, 37(1): 51-59. DOI: 10.11833/j.issn.2095-0756.2020.01.007
Citation: WU Wenjuan, LIU Huijun, LI Bowen, et al. Dissolution and regeneration of rice straws with LiCl/DMSO[J]. Journal of Zhejiang A&F University, 2021, 38(1): 147-154. DOI: 10.11833/j.issn.2095-0756.20200163

稻草在LiCl/DMSO中的溶解及再生性能

DOI: 10.11833/j.issn.2095-0756.20200163
基金项目: 国家自然科学基金青年基金资助项目(21704045);江苏省高等学校大学生创新创业训练计划项目(201910298034Y)
详细信息
    作者简介: 吴文娟,副教授,博士,从事生物质资源化学与工程研究。E-mail: wenjuanwu@njfu.edu.cn
  • 中图分类号: S781.4

Dissolution and regeneration of rice straws with LiCl/DMSO

  • 摘要:   目的  以球磨稻草(水稻Oryza sativa秸秆)为原料,通过氯化锂/二甲亚砜(LiCl/DMSO)溶剂体系处理,探讨球磨稻草在LiCl/DMSO溶剂体系中的溶解行为及再生特点。  方法  选取稻草叶、带节的秆、不带节的秆、全秆等4个部位,设置0.5、1.0 h球磨时间,设置LiCl质量分数为2%、4%、6%、8%的LiCl/DMSO溶剂体系进行溶解后再生,按照标准方法测定纤维素、半纤维素、木质素和灰分等化学成分,通过碱性硝基苯氧化来测定木质素结构单元的产率,分析木质素的缩合程度,采用X射线衍射图谱计算纤维素结晶度,比较再生前后的纤维素的结晶区变化。  结果  球磨1.0 h秆和叶均可完全溶解于LiCl/DMSO溶剂体系,质量分数为8%的LiCl/DMSO溶剂体系可溶解的叶和秆的质量分数能达到10%。经水再生后,80%以上的木质素得以保留,秆中木质素保留率可达到87.5%;经X射线衍射分析,叶中纤维素的结晶度从37.8%下降至27.5%,秆从43.1%下降至26.5%;硝基苯氧化结果表明:再生后,各部位中木质素结构未缩合单元含量均有所增加。  结论  球磨时间、LiCl的质量分数均会影响草粉在LiCl/DMSO溶剂体系中的溶解,再生后,球磨草粉中的化学成分再生能力强,经比较叶中纤维素、木质素的再生能力最低;叶、秆中灰分的分布、沉积有所不同,叶中的灰分再生能力高于秆。各组分经球磨后木质素的缩合程度降低,球磨改善了硝基苯氧化环境。再生后各部位中的纤维素结晶度有所下降,结晶区受到一定程度的破坏。图6表4参36
  • 矮化是一种重要的农艺性状, 在改善空间和土地利用率, 调整栽培密度, 提高抗倒伏能力等方面具有明显的形态特征优势[1]。竹类矮化措施在生产实践中主要应用于3个方面:①中国南方及长江流域冰冻雪灾给竹类生产带来严重的经济损失, 破坏了生态环境[2-4]。钩梢矮化是抵御冰雪风折灾害的有效措施。②笋用竹设施栽培受到常规温室高度的限制[5-6], 每年秋冬季降温前盖膜需要钩梢, 矮化植株方便日常经营管理。③园林景观中矮化竹植株构型具有较高观赏价值[7]。目前, 关于竹类矮化方法及矮化后笋产量[8-9]、光合生理[10]以及材性力学性质[11]等方面已有诸多研究。生产中常用的竹类矮化方法有钩梢[3-4]或利用植物生长调节剂[3, 5, 7, 12]抑制竹居间分生组织生长达到矮化目标。但钩梢会直接带走大量秆枝叶, 造成营养生长损耗。同时成竹株高较高、竹秆硬度强增加了钩梢难度。使用植物生长调节剂造成药剂残留且连续多次施药效果受到天气影响, 矮化成本较高。此外, 通过断鞭[13]、剥除笋箨[14]、修剪[15]限制营养供给来控制高度生长的竹类矮化方法也有研究报道, 但在生产实践中并不常见。绿竹Dendrocalamopsis oldhami是中国南方地区优良的笋材两用丛生竹种, 其材性优良、竹笋产量高, 具有较好的经济和生态价值[16]。但绿竹鲜笋不耐储存, 限制了绿竹笋的销售范围。绿竹笋在北方蔬菜市场尚属空白, 发展笋用绿竹具有较好的经济前景。随着"南竹北移"的实施, 受日光温室高度限制, 秋冬季需要钩梢。因此, 探索一种易操作、无药剂残留且不影响竹子正常生长的矮化方法尤为必要。光合作用是植物生长发育物质能源积累的基础[17]。光合能力与植物不同植株构型有着密切关系。习玉森等[18]指出矮化型桃Amygdalus persica在强光、高温胁迫下较正常植株光抑制程度轻, 物质积累能力强。罗静等[19]指出矮化苹果Malus pumila苗叶绿素含量增加具有较高的净光合速率而早产。本研究在借鉴成竹秋冬季钩梢实践基础上, 将矮化时间提前至笋期, 提出竹笋截梢的矮化方法, 比较不同高度竹笋截梢对绿竹生长的影响, 并从叶绿素荧光动力学角度分析矮化后绿竹的光合生理状况, 为绿竹矮化栽培提供参考。

    研究地位于绿竹原产地福建省三明市尤溪县(25°58′08″N, 118°09′09″E)。该区属中亚热带季风性湿润气候, 1月平均气温为8.0~12.0 ℃, 7月平均气温为26.6~28.9 ℃。无霜期为312.0 d, 降水量为1 600.0~1 800.0 mm, 土壤类型为山地红壤。主要植被有马尾松Pinus massoniana、杉木Cunninghamia lanceolata、青冈Cyclobalanopsis glauca、甜槠Castanopsis eyrei、油茶Camellia oleifera、山杜英Elaeocarpus sylvestris、石楠Photinia serratifolia等。绿竹林地原由水稻Oryza sativa田改造而成, 存在的主要自然灾害为低温冻害。竹林密度为825丛·hm-2, 竹林年龄结构:2年生:1年生为1:2, 每丛竹株数4~6株。当年不挖笋, 全部留养母竹, 按照绿竹丰产栽培经验进行日常经营管理。

    在2017年7月下旬至8月上旬绿竹出笋盛期进行试验处理, 共置5个截梢处理(表 1), 分别记作H1、H2、H3、H4、H5, 以不截梢处理为对照(ck), 每个处理选择7丛绿竹, 共计42丛。每丛选择基径为4.0~5.0 cm, 长势良好、无病虫害、生长基本一致的绿竹笋3~4株(竹丛中其他笋不作处理, 自然生长)。测量笋体基径及高度, 按照竹笋高度的20%截除笋梢幼嫩部分并挂标签牌。

    表  1  绿竹不同高度竹笋截梢处理概况
    Table  1.  General situation among different height bamboo shoot truncation treatments of D.oldhami
    处理 截梢前笋高/cm 截梢长度/cm 截梢后笋高/cm
    H1 60 12 48
    H2 90 18 72
    H3 120 24 96
    H4 150 30 120
    H5 180 36 144
    下载: 导出CSV 
    | 显示表格

    2018年1月上旬绿竹高生长结束后, 以挂标签牌的绿竹为测定对象。每个处理随机择20株绿竹测量生长指标, 选择5株绿竹测定叶绿素质量分数及叶绿素荧光参数, 取中部生长基本一致的健康、成熟叶作为测定样本。

    1.3.1   生长指标

    调查绿竹株高、成竹率、枝下高、节数、分枝率、第一盘主枝长度。枝下高为竹秆最下端第1盘分枝到地面垂直高度; 主枝长度为竹秆最下端第1盘最长枝长度。分枝率=分枝节数/(枝下节数+分枝节数)×100%;成竹率=成竹数/处理笋数×100%。

    1.3.2   叶绿素质量分数

    采用混合液浸取-分光光度计法测定[20]。将采集的鲜叶洗净、擦干、去除中脉、剪碎混合均匀后, 天平秤取0.100 g叶片放入盛有10 mL提取液(纯丙酮和无水乙醇1:1配成)的具塞试管中, 置于黑暗环境中叶片失绿直至完全变白。分别测定波长为645和663 nm下的光密度(D), 并根据Arnon公式计算叶绿素质量分数。wchla=[12.72D(663)-2.59D(645)]×V/(103×W), wchlb=[22.88D(645)-4.67D(663)]×V/(103×W), wchl=[20.29D(645)+8.05D(663)]×V/(103×W), 其中:wchlawchlbwchl分别表示叶绿素a、叶绿素b和总叶绿素质量分数(mg·g-1), D(645)为波长645 nm处的光密度, D(663)为波长663 nm处的光密度, V为提取液总量(mL), W为样品质量(g)。

    1.3.3   叶绿素荧光参数

    测定方法参考宋莉英等[21]的方法。采用Imaging PAM-2100(德国WALZ公司)便携式脉冲调制式叶绿素荧光仪测定绿竹叶片的叶绿素荧光参数。测定时间为晴天无风的9:00-11:00, 测量前使叶片暗适应30 min, 选定5个圆形测试目标区域, 然后打开测量光(0.5 μmol·m-2·s-1)测定初始荧光(Fo), 饱和光脉冲2 700 μmol·m-2·s-1(脉冲时间0.8 s)诱导最大荧光(Fm)、可变荧光(Fv=Fm-Fo)、PSⅡ最大光化学效率(Fv/Fm)。待荧光曲线基本稳定, 打开单饱和白光脉冲1次, 此后测得PSⅡ实际光量子效率(Yield)、电子传递速率(ETR)、光化学猝灭系数(qP)及非光化学猝灭系数(qNP)。

    数据统计和作图由Excel 2013完成。用SPSS 21.0对不同竹笋截梢处理下绿竹生长指标、叶绿素质量分数以及荧光参数进行单因素方差分析(one-way ANOVA)和Pearson相关性分析, Duncan多重比较法进行显著性差异分析。

    图 1可知:竹笋截梢可以有效控制绿竹株高生长, 各竹笋截梢处理之间绿竹株高达极显著差异(P<0.01)。截去笋梢长度越长, 即截去笋梢部位笋节越多, 成竹后株高越矮。其中H1(60 cm)笋截梢后, 株高继续生长431.60 cm, H5(180 cm)笋截梢后, 株高继续生长90.70 cm。对株高y(cm)和竹笋截梢前绿竹笋高度x(cm)建立函数表达式为:y=599.49-1.95x(R2=0.90, P<0.01)。H5处理株高最低, 绿竹株高由对照539.40 cm降至234.70 cm, 较对照降低了56.49%, 达到了矮化栽培高度要求。竹笋不同截梢处理与对照的绿竹成竹率均为82.14%~85.71%, 成竹率差异未达到显著水平(P>0.05), 表明竹笋截梢处理不影响绿竹正常成活。

    图  1  不同竹笋截梢处理下绿竹的株高和成竹率
    Figure  1.  Plant height and survival rate of D.oldhami under different bamboo shoot truncation treatments

    表 2可见:随着绿竹株高降低, 枝下高、节数、分枝率及主枝长度均达显著差异(P<0.05)。竹笋截梢后枝下高呈不断降低趋势, H5处理枝下高最低, 较对照显著下降36.69%, 与其他组差异均显著; 竹笋截梢后笋梢部分笋节被截去, 因此竹节相应减少, 节数与株高有相同的变化趋势。H5节数较对照降低45.59%, 除与H4处理无显著差异外, 与其他各组均有显著差异; 在分枝率方面, H3、H4和H5竹笋截梢处理较对照分别降低了14.10%、19.02%和12.13%。竹笋截梢后节数降低, 节上的分枝盘数减少, 因此, 分枝率变小; H4和H5主枝长度与对照均达到显著差异, 分别增长了10.00%和8.45%, 竹笋截梢促进了主枝长度生长。竹笋截梢后绿竹形态指标变化系数从大到小为株高(56.49%)、节数(36.69%)、枝下高(36.69%)、分枝率(19.02%)、主枝长度(11.06%)。表明竹笋截梢对绿竹株高影响最大, 其次为节数, 主枝长度影响最小。

    表  2  不同竹笋截梢处理绿竹其他形态变化
    Table  2.  Morphological indexes changes of D.oldhami under different bamboo shoot truncation treatments
    处理 枝下高/cm 节数 分枝率/% 主枝长度/cm
    ck 123.75±23.34 a 19.85±1.78 a 67.86±4.24 a 216.05±17.60 bc
    H1 119.05±20.75 ab 16.95±1.82 b 70.09±4.58 a 209.05±30.27 c
    H2 107.50±14.61 ab 15.95±0.83 b 67.95±4.74 a 219.25±20.82 bc
    H3 104.25±39.99 b 12.40±1.56 c 58.29±9.17 b 219.15±42.87 bc
    H4 110.45±18.65 ab 11.60±1.53 cd 54.95±7.50 b 239.95±9.83 a
    H5 78.35±21.03 c 10.80±3.20 d 59.63±11.71 b 234.30±42.06 ab
    说明:同列不同小写字母表示不同竹笋截梢处理间差异显著(P<0.05)
    下载: 导出CSV 
    | 显示表格

    表 3可知:竹笋截梢处理与对照绿竹叶绿素a、叶绿素b、总叶绿素及叶绿素a/b均差异显著(P<0.05)。H4和H5处理的叶绿素a较高, 显著高于H1和对照; 处理H2、H3、H4和H5的叶绿素b较高且处理间差异不显著; 总叶绿素从大到小为H5、H3、H4、H2、H1、ck, 不同竹笋截梢处理的总叶绿素变化有差异, 总体呈上升趋势, 绿竹总叶绿素在H5处理下最大, 较对照显著提高了65.34%, 与H2、H3、H4处理无显著差异; 对照叶绿素a/b最大, 显著高于竹笋截梢处理。H5处理较对照叶绿素a/b显著降低了29.11%。叶绿素a、叶绿素b及总叶绿素随着株高的降低而增加, 叶绿素a/b降低。

    表  3  不同竹笋截梢处理绿竹叶绿素质量分数及组成变化
    Table  3.  Changes of chlorophyll content and composition ratio of D. oldhami under different bamboo shoot truncation treatments
    处理 叶绿素a/(mg·g-1) 叶绿素b/(mg·g-1) 总叶绿素/(mg·g-1) 叶绿素a/b
    ck 1.95±0.20 c 0.76±0.02 b 2.71±0.21 b 2.56±0.27 a
    H1 1.92±0.010 c 1.01±0.11 b 2.93±0.19 b 1.91±0.18 b
    H2 2.15±0.23 bc 1.79±0.24 a 3.94+0.38 a 1.21±0.17 d
    H3 2.28±0.22 bc 1.82+0.18 a 4.10+0.13 a 1.27±0.23 cd
    H4 2.45±0.54 ab 1.59±0.42 a 4.04±0.62 a 1.69±0.75 bcd
    H5 2.81±0.33 a 1.66±0.45 a 4.47±0.63 a 1.81±0.54 bc
    说明:同列不同小写字母表示不同竹笋截梢处理间差异显著(P<0.05)
    下载: 导出CSV 
    | 显示表格

    图 2可知:竹笋截梢处理的初始荧光(Fo)与对照差异不显著(P>0.05);竹笋截梢处理提高了PSⅡ最大光化学效率(Fv/Fm), 其中:H4、H5较对照显著提高了15.86%和16.46%, 而竹笋截梢处理间未发现显著差异; ETR和PSⅡ实际光量子产量(Yield)随着株高降低, 有相同的变化趋势, H1、H2处理均与对照无显著差异, H5处理下最大, 较对照分别提高了48.63%和40.81%。不同竹笋截梢处理光化学猝灭系数(qP)变化有一定差异, 但总体呈不断上升趋势。H4、H5处理下化学猝灭系数较对照组差异均达到了显著水平, 化学猝灭系数最大的为H5处理, 较对照提高了74.35%。各竹笋截梢处理绿竹叶片的非光化学猝灭系数(qNP)均有显著降低, 对照处理的非光化学猝灭系数最大。H5处理的非光化学猝灭系数较对照降低了47.58%。非光化学猝灭系数与化学猝灭系数有着相反的变化趋势。不同竹笋截梢处理后绿竹PSⅡ最大光化学效率、PSⅡ实际光量子产量、电子传递速率及化学猝灭系数均高于对照, 而非光化学猝灭系数降低。叶绿素荧光参数表明竹笋截梢增加绿竹叶片的光能利用效率。

    图  2  不同竹笋截梢处理下绿竹叶绿素荧光参数变化
    Figure  2.  Chlorophyll fluorescence parameters changes of D. oldhami under different bamboo shoot truncation treatments

    相关分析(表 4)显示:株高与总叶绿素以及PSⅡ最大光化学效率(Fv/Fm)、PSⅡ实际光量子产量(Yield)、电子传递速率(ETR)、光化学猝灭系数(qP)呈负相关, 与叶绿素a/b及非光化学猝灭系数(qNP)呈显著正相关。总叶绿素与叶绿素a/b呈显著负相关。PSⅡ实际光量子产量与电子传递速率、光化学猝灭系数呈显著正相关, 光化学猝灭系数与非光化学猝灭系数呈显著负相关。Pearson相关性分析表明:绿竹植株构型与叶绿素质量分数及叶绿素荧光特性有紧密关系。

    表  4  绿竹株高与叶绿素质量分数及叶绿素荧光参数相关性分析
    Table  4.  Correlation analysis of plant height, chlorophyll content, chlorophyll fluorescence parameters of D. oldhami
    指标 株高 总叶绿素 叶绿素a/b Fo Fv/Fm Yield ETR qP
    总叶绿素 -0.809**
    叶绿素a/b 0.368* -0.563**
    Fo -0.339 0.197 -0.048
    FV/Fm -0.536* 0.410* -0.284 0.140
    Yield -0.574* 0.372* -0.021 -0.150 0.169
    ETR -0.607* 0.398* -0.068 -0.141 0.192 0.990**
    qP -0.697* 0.435* -0.030 0.044 0.177 0.895** 0.895**
    qNP 0.704** -0.391* -0.281 -0.206 -0.268 -0.637** -0.640** -0.719**
    说明:*表示显著相关(P<0.05), **表示极显著相关(P<0.01).株高、叶绿素质量分数和叶绿素荧光参数样本n=25
    下载: 导出CSV 
    | 显示表格

    竹高度生长依靠笋节居间分生组织的分生细胞分裂、伸长生长来增加节间的长度[22]。笋梢部分笋节密集, 笋节发育成为竹节。竹笋截梢按照竹笋高度20%截去梢头部分, 随着竹笋高度增加, 竹笋截梢强度增加, 截去的笋节越多, 竹节相应减少, 因此, 成竹矮化效果越明显。本研究发现:随株高降低, 枝下高、节数及分枝率减少, 主枝长度增长, 地上部分营养生长重新分配, 植株形态相应发生明显变化。其中, 绿竹竹笋高H5(180 cm)截梢处理后, 株高由对照的539.40 cm降低至234.70 cm, 较对照降低了56.49%。官凤英等[5]对绿竹喷施0.8 g·L-1多效唑后发现株高、枝下高分别降低了45.30%和46.70%, 周建革等[3]对毛竹Phyllostachys edulis喷施2.0%矮壮素后株高和枝下高分别降低了28.12%和30.37%。绿竹和毛竹存在共同特点即株高降低后, 枝下高降低。枝下高降低不利于挖笋施肥等经营活动, 需要加强相应剪除靠近地面枝条等竹林抚育措施来克服不利影响。竹笋截梢会使成竹高度降低, 竹材产量相应会降低, 不宜用在材用林上。

    竹笋在成竹过程不同高度时期均有可能退笋, 退笋与笋体高度密切相关[23]。一般竹笋高于40 cm, 退笋现象较少。竹笋截梢各处理后绿竹成竹率在82.14%~85.71%, 与对照无显著差异, 表明竹笋截梢不影响绿竹成活。这可能是由于竹笋截梢处理选择高度为60~180 cm竹笋, 生长旺盛, 具有一定的抵抗力, 所以退笋率低, 这与郑郁善等[24]和岳祥华等[25]研究毛竹及紫竹Phyllostachys nigra的退笋规律基本一致。

    植物体构件之间存在协调反馈机制, 即当某一构件部分抑制生长或缺失时, 剩余构件表现一个资源再分配, 某些功能增强的现象。这种补偿机制是植物应对外界扰动的生长策略[26-28]。郑士光等[29]研究发现:柠条Caragana microphylla在平茬后根系提高了对水分和养分的吸收, 促进地下根系生长。尚富华等[30]指出:毛白杨Populus tomentosa修枝后会提高剩余枝叶的光合速率等途径补偿。本研究表明:不同竹笋截梢处理后, 绿竹叶绿素a、叶绿素b及总叶绿素随着株高的降低而增加, 而叶绿素a/b降低。叶绿素a有利于吸收长波光, 叶绿素b促进吸收短波光。当叶绿素a/b减少时, 植物对蓝紫光的利用[31]效率增加。总叶绿素增加, 使得叶片叶肉细胞光合活性增强[32]。叶绿素荧光技术可以间接无损伤地研究光合作用过程中能量吸收传递与转化等特征[33]。当叶片内囊体破坏时, PSⅡ光系统反应中心失活, 初始荧光(Fo)增加[34]。本研究发现:不同竹笋截梢处理间的初始荧光(Fo)差异不显著, 表明竹笋截梢处理未对绿竹叶片内囊体造成不利影响。竹笋截梢处理提高了PSⅡ反应过程潜在活性, 促进了光合电子从PSⅡ反应中心到库源的传递速率, 使得PSⅡ最大光化学效率(Fv/Fm)增加。当光能过剩时, 非光化学猝灭系数(qNP)增加[35]。竹笋截梢处理非光化学猝灭系数较对照显著降低, 降低了叶片热耗散。随着株高降低, PSⅡ实际光量子效率(Yield)、电子传递速率(ETR)增加, 电子传递的量子产额增加, 促进暗反应的光合碳同化和有机物积累[36]。这与陈洪国[37]和魏亚娟等[38]对菊花Chrysanthemum morifolium及榆叶梅Prunus triloba通过使用植物生长调节剂获得矮化植株构型后光合特性变化规律类似, 表明矮化植株一定程度上光合色素含量增加, 光合效率提高。Pearson相关性分析表明:PSⅡ光化学功能、叶绿素质量分数与绿竹株高显著相关。竹笋截梢处理后绿竹叶绿素质量分数提高及叶绿素荧光参数表现更高的光能利用效率。本研究认为可能的原因有:一方面竹笋截梢后顶端优势去除后, 作为株高降低的补偿, 促进了枝叶萌生。枝叶生长有助于空间拓宽能力增加对光能的获取; 另一方面竹笋截梢绿竹株高降低后, 竹林冠层光照条件发生改变。改善光环境, 提高光能利用效率, 以获得更多的光合同化产物积累。

    根据栽培目标选择适合的绿竹笋高度截梢可以有效控制株高生长, 而且矮化绿竹可使叶片叶绿素质量分数增加, 光能利用效率提高, 达到矮化栽培要求。竹笋截梢这种物理矮化方法避免直接带走大量秆枝叶, 操作相对简单, 且可以消除植物生长调节剂矮化药剂残留隐患, 在其他竹种矮化上具有借鉴意义。本研究对绿竹高生长结束后成竹形态特征与叶绿素质量分数及叶绿素荧光参数进行初步研究, 其更深层次光合机制还需进一步完善。此外, 竹笋截梢后对绿竹笋产量、出笋时期及竹材力学性质等影响还有待深入研究。

  • 图  1  经LiCl/DMSO溶剂体系处理后的再生流程

    Figure  1  Procedure of regeneration by LiCl/DMSO

    图  2  稻草叶不同球磨时间下的溶解性能(质量分数为6% LiCl/DMSO)

    Figure  2  Effect of ball milling time on dissolution of rice leaf in 6% LiCl/DMSO

    图  3  稻草秆不同球磨时间下的溶解性能(质量分数为6% LiCl/DMSO)

    Figure  3  Effect of ball milling time on dissolution of rice stem in 6% LiCl/DMSO

    图  4  不同LiCl质量分数溶剂体系中稻草叶(球磨1.0 h)的溶解性能

    Figure  4  Effect of LiCl content on LiCl/DMSO solvent system for leaf (balling time 1.0 h)

    图  5  不同LiCl质量分数溶剂体系中稻草秆(球磨1.0 h)的溶解性能

    Figure  5  Effect of LiCl content in LiCl/DMSO solvent system for stem (balling time 1.0 h)

    图  6  稻草原料和再生稻草原料的X射线衍射图谱

    Figure  6  X-ray pattern of original and regenerated rice straw samples with ball milling

    表  1  稻草原来主要化学成分

    Table  1.   Chemical compositions of extractive free straw samples

    稻草原料木质素/(mg·g−1)高聚糖/(mg·g−1)灰分/(mg·g−1)
    酸不溶酸溶总木质素葡聚糖木聚糖其他总糖
    带节的秆 110.136.4146.5428.2153.535.4617.1165.6
    不带节的秆111.135.4146.5408.0168.740.4617.1168.7
    叶    120.248.5168.7348.5149.539.4547.4212.1
    全秆   124.237.4161.6359.6164.647.5570.7190.9
    下载: 导出CSV

    表  2  球磨稻草再生后的主要化学成分

    Table  2.   Chemical compositions of regenerated straw samples with ball milling

    再生原料木质素/(mg·g−1)高聚糖/(mg·g−1)灰分/(mg·g−1)留着率/%
    酸不溶酸溶总木质素留着率a/%葡聚糖木聚糖总糖留着率b/ %
    带节的秆 104.022.2126.386.3395.9124.2552.589.5 53.589.0
    不带节的秆105.022.2128.387.5364.6139.4540.487.7 55.689.9
    叶    109.123.2132.380.5313.1127.3456.583.5101.080.5
    全秆   109.123.2131.381.0332.3135.3486.885.4 92.986.5
      说明:球磨2.0 h的稻草再生原料。a基于原料中木质素;b基于原料中高聚糖
    下载: 导出CSV

    表  3  稻草各部位的硝基苯氧化产物的得率及S/(V+H)

    Table  3.   Nitrobenzene oxidation products yields and S/(V+H) molar ratio of rice straw samples

    样品得率/(mmol·g−1)S/(V+H)
    带节秆不带节秆全秆带节秆不带节秆全秆
    脱脂原料1.301.301.011.220.670.670.430.43
    球磨0.5 h1.601.621.391.510.670.670.430.43
    球磨1.0 h1.601.591.421.430.430.430.430.43
    球磨再生原料1.421.501.031.210.670.670.670.67
      说明:S表示紫丁香醛或酸得率;H表示对羟基苯甲醛或酸得率;V表示香草醛或酸得率
    下载: 导出CSV

    表  4  稻草原料和再生稻草原料的结晶度

    Table  4.   Crystallinity of original and regenerated rice straw samples with ball milling

    样品结晶度/%
    稻草叶原料  37.8
    再生稻草叶原料27.5
    稻草秆原料  43.1
    再生稻草秆原料26.5
    下载: 导出CSV
  • [1] ZHANG Quanguo, HU Jianjun, LEE Duujong. Pretreatment of biomass using ionic liquids: research updates [J]. Renewable Energy, 2017, 111: 77 − 84.
    [2] HU Jianjun, ZHANG Quanguo, JING Yanyan et al. Photosynthetic hydrogen production from enzyme-hydrolyzed micro-grinded maize straws [J]. Int J Hydrogen Energy, 2016, 41(46): 21665 − 21669.
    [3] KAN Xiang, YAO Zhiyi, ZHANG Jingxin, et al. Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment [J]. Bioresour Technol, 2017, 228: 77 − 88.
    [4] KASSAYE S, PANT K K, JALIN S. Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreatment steps [J]. Renewable Energy, 2017, 104: 177 − 184.
    [5] RALPH J, MARITA J, RALPH S, et al. Solution-state NMR of lignins[M]// ARGYROPOULOS D, RIALS T. Advances in Lignocellulosic Characterization, Atlanta: TAPPI Press, 1999: 55 − 108.
    [6] RALPH J, MACKAY J J, HATFIELD R D, et al. Abnormal lignin in a loblolly pine mutant [J]. Science, 1997, 277(5323): 235 − 239.
    [7] YOO C G, PU Y, RAGAUSKAS A J, et al. Ionic liquids: promising green solvents for lignocellulosic biomass utilization [J]. Curr Opin Green Sustainable Chem, 2017, 5: 5 − 11.
    [8] ANDRE M, KAREN G, ANA C, et al. Ionic liquids as a tool for lignocellulosic biomass fractionation [J]. Sustainable Chem Processes, 2013, 1: 3 − 33.
    [9] WANG Hui, GURAU G, ROGERS R D. Dissolution of biomass using ionic liquids[J] Struct Bonding, 2013, 151: 79 − 105.
    [10] CATARINA F, FILIPA L, BERNARDO D R, et al. Deep eutectic solvents: overcoming 21st century challenges [J]. Curr Opin Green Sustainable Chem, 2019, 18: 31 − 36.
    [11] SJÖHOLM E, GUSTAFSSON K, PETTERSSON B, et al. Characterization of the cellulosic residues from lithium chloride/ N, N-dimethylacetamide dissolution of softwood kraft pulp [J]. Carbohydr Polym, 1997, 32(1): 57 − 63.
    [12] YANAGISAWA M, SHIBATA I, ISOGAI A. SEC-MALLS analysis of softwood kraft pulp using LiCl/1, 3-dimethyl-2-imidazolidinone as an eluent [J]. Cellulose, 2005, 12(2): 151 − 158.
    [13] BERTHOLD F, GUSTAFSSON K, BERGGREN R, et al. Dissolution of softwood kraft pulps by direct derivatization in lithium chloride/N, N dimethylacetamide [J]. J Appl Polym Sci, 2004, 94(2): 424 − 431.
    [14] HAN Shaoqin, LI Jialin, ZHU Shengdong, et al. Potential applications of ionic liquids in wood related industries [J]. Bioresources, 2009, 4(2): 825 − 834.
    [15] YAMAMOTO M, KURAMAE R, YANAGISAWA M, et al. Light-scattering analysis of native wood holocelluloses totally dissolved in LiCl-DMI solutions: high probability of branched structures in inherent cellulose [J]. Biomacromolecules, 2011, 12(11): 3982 − 3988.
    [16] TAKARAGI A, MINODA M, MIYAMOTO T, et al. Reaction characteristics of cellulose in the LiCl/1,3-dimethyl-2-imidazolidinone solvent system [J]. Cellulose, 1999, 6: 93 − 102.
    [17] MCCORMICK C L, DAWSEY T R. Preparation of cellulose derivatives via ring-opening reactions with cyclic reagents in lithium chloride/N, N-dimethylacetamide [J]. Macromolecules, 1990, 23(15): 3606 − 3610.
    [18] RAHN K, DIAMANTOGLOU M, BERGHMANS H, et al. Homogeneous synthesis of cellulose p-toluenesulfonates in N, N-dimethylacetamide/LiCl solvent system [J]. Die Angewandte Makromolecules Chemie, 1996, 238(1): 143 − 163.
    [19] YANAGISAWA M, ISOGAI A. Size exclusion chromatographic and UV-VIS absorption analyses of unbleached and bleached softwood kraft pulps using LiCl/1,3-dimethyl-2-imidazolidinone as a solvent [J]. Holzforschung, 2007, 61(3): 236 − 241.
    [20] PETRUŠ L, GRAY D G, BEMILLER J N. Homogeneous alkylation of cellulose in lithium chloride/dimethyl sulfoxide solvent with dimsyl sodium activation, a proposal for the mechanism of cellulose dissolution in LiCl/Me2SO [J]. Carbohydr Res, 1995, 268(2): 319 − 323.
    [21] ZHANG Xueqin, CHEN Mingjie, LIU Chuanfu, et al. Dual-component system dimethyl sulfoxide/LiCl as a solvent and catalyst for homogeneous ring-opening grafted polymerization of epsilon-caprolactone onto xylan [J]. J Agric Food Chem, 2014, 62(3): 682 − 690.
    [22] WANG Zhiguo, YOKOYAMA T, CHANG Houmin, et al. Dissolution of beech and spruce milled woods in LiCl/DMSO [J]. J Agric Food Chem, 2009, 57(14): 6167 − 6170.
    [23] 吴文娟, 闫雪晴, 邹春阳, 等. 基于全溶体系的毛竹竹材木质素分离方法[J]. 浙江农林大学学报, 2020, 37(2): 335 − 342.

    WU Wenjuan, YAN Xueqing, ZOU Chunyang, et al. A isolation method of lignin from bamboo based on complete dissolution [J]. J Zhejiang A&F Univ, 2020, 37(2): 335 − 342.
    [24] GU Feng, WU Wenjuan, WANG Zhiguo, et al. Effect of complete dissolution in LiCl/DMSO on the isolation and characteristics of lignin from wheat straw internode [J]. Ind Crops Prod, 2015, 74: 703 − 711.
    [25] DENCE C W, LIN S Y. Introduction in methods in lignin chemistry[M]//LIN S Y, DENCE C W. Methods in Lignin Chemistry. Berlin: Springer Verlag Press, 1992: 31 − 66.
    [26] BORCHARDT L G, PIPER C V. A gas chromatographic method for carbohydrates as alditol-acetates [J]. TAPPI, 1970, 53: 257 − 260.
    [27] CHEN C L. Nitrobenzene and cupric oxide oxidations in methods in lignin chemistry[M]// LIN S Y, DENCE C W. Methods in Lignin Chemistry. Berlin: Springer-Verlag Press, 1992: 301 − 321.
    [28] SEGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer [J]. Textile Res J, 1959, 29(10): 786 − 794.
    [29] 荆磊, 金永灿, 张厚民, 等. 自水解预处理对稻草化学成分及酶解性能的影响[J]. 纤维素科学与技术, 2010, 18(2): 1 − 10.

    JING Lei, JIN Yongcan, ZHANG Houmin, et al. Effects of auto-hydrolysis of rice straw on its chemical composition and enzymatic hydrolysis [J]. J Cellul Sci Technol, 2010, 18(2): 1 − 10.
    [30] FUJIMOTO A, MATSUMOTO Y, CHANG H M, et al. Quantitative evaluation of milling effects on lignin structure during the isolation process of milled wood lignin [J]. J Wood Sci, 2005, 51(1): 89 − 91.
    [31] HU Zhoujian, YEH Tingfeng, CHANG Houmin, et al. Elucidation of the structure of cellulolytic enzyme lignin [J]. Holzforschung, 2006, 60(4): 389 − 397.
    [32] MIN D Y, JAMEEL H, CHANG H M, et al. The structural changes of lignin and lignin-carbohydrate complexes in corn stover induced by mild sodium hydroxide treatment [J]. RCS Adv, 2014, 4(21): 10845 − 10850.
    [33] IKEDA T, HOLTMAN K, KADLA J F, et al. Studies on the effect of ball milling on lignin structure using a modified DFRC method [J]. J Agric Food Chem, 2002, 50(1): 129 − 135.
    [34] GHAFFAR S H, FAN M Z. Structural analysis for lignin characteristics in biomass straw [J]. Biomass Bioenergy, 2013, 57: 264 − 279.
    [35] TAN Xuesong, ZHANG Quan, WANG Wen, et al. Comparison study of organosolv pretreatment on hybrid pennisetum for enzymatic saccharification and lignin isolation [J]. Fuel, 2019, 249(1): 334 − 340.
    [36] DASH M, MOHANTY K. Effect of different ionic liquids and anti-solvents on dissolution and regeneration of Miscanthus towards bioethanol [J]. Biomass Bioenergy, 2019, 124: 33 − 42.
  • [1] 李钧洋, 霍丽竹, 龚著祥, 许浩, 王宇轩, 郭超飞, 杨雪娟, 罗锡平.  木质素磺酸钠吸附材料的制备及对刚果红的吸附性能 . 浙江农林大学学报, 2024, 41(4): 870-878. doi: 10.11833/j.issn.2095-0756.20230585
    [2] 李雅琳, 李素艳, 孙向阳, 郝丹, 蔡琳琳, 常晓彤.  基于人工神经网络算法的2株木质素降解菌固体菌剂的制备 . 浙江农林大学学报, 2022, 39(2): 364-371. doi: 10.11833/j.issn.2095-0756.20210311
    [3] 杨王庭, 邵香君, 周菊敏, 桂仁意.  不同溶解氧质量浓度对雷竹水培苗生长和生理生化的影响 . 浙江农林大学学报, 2021, 38(2): 280-288. doi: 10.11833/j.issn.2095-0756.20200286
    [4] 李雨桐, 何鑫龙, 彭一帆, 胡勰克, 王昱杭, 赵婷, 吴胜春, 梁鹏.  藻源溶解性有机质对汞甲基化的影响 . 浙江农林大学学报, 2021, 38(2): 362-368. doi: 10.11833/j.issn.2095-0756.20200146
    [5] 李雅琳, 李素艳, 孙向阳, 郝丹, 蔡琳琳, 常晓彤.  1株木质素降解菌的筛选、鉴定及液态发酵条件优化 . 浙江农林大学学报, 2021, 38(6): 1297-1304. doi: 10.11833/j.issn.2095-0756.20200814
    [6] 孟童瑶, 李素艳, 邹荣松, 余克非, 付冰妍, 揭阳.  固定化木质素降解菌对园林废弃物堆肥的影响 . 浙江农林大学学报, 2021, 38(1): 38-46. doi: 10.11833/j.issn.2095-0756.20200219
    [7] 罗熳丽, 段均华, 姚恒, 卢昌泰, 肖玖金, 张健.  稻草不同还田量对土壤动物群落结构的影响 . 浙江农林大学学报, 2020, 37(1): 85-92. doi: 10.11833/j.issn.2095-0756.2020.01.011
    [8] 吴文娟, 闫雪晴, 邹春阳, 王博伟, 何贤.  基于全溶体系的毛竹竹材木质素分离方法 . 浙江农林大学学报, 2020, 37(2): 335-342. doi: 10.11833/j.issn.2095-0756.2020.02.019
    [9] 丁婷婷, 李倩, 金贞福.  木质素及溴化木质素对合成环氧树脂热性能的影响 . 浙江农林大学学报, 2018, 35(3): 562-566. doi: 10.11833/j.issn.2095-0756.2018.03.023
    [10] 安兰芝, 卢祥, 刘祖广.  木质素胺在稀酸水溶液中的聚集行为 . 浙江农林大学学报, 2017, 34(1): 7-13. doi: 10.11833/j.issn.2095-0756.2017.01.002
    [11] 吴宁, 肖瑞, 许艳萍, 杜官本, 李晓平, 孙飞.  生长期和植株性别对工业大麻秆“三大素”的影响 . 浙江农林大学学报, 2015, 32(5): 776-782. doi: 10.11833/j.issn.2095-0756.2015.05.018
    [12] 王玉娟, 陈永忠, 王瑞, 王湘南, 彭邵锋, 杨小胡, 杨杨.  稻草覆盖对油茶幼林土壤理化性质及油茶生长的影响 . 浙江农林大学学报, 2012, 29(6): 811-816. doi: 10.11833/j.issn.2095-0756.2012.06.002
    [13] 尚娜娜, 叶晓, 黄丽霜, 金贞福.  热压过程中毛竹材加工剩余物蒸爆纤维木质素结构变化规律 . 浙江农林大学学报, 2012, 29(3): 420-425. doi: 10.11833/j.issn.2095-0756.2012.03.015
    [14] 何凯, 陈可可, 郭明.  碱木质素-聚氨酯泡沫功能材料的制备、表征及性能 . 浙江农林大学学报, 2012, 29(2): 203-209. doi: 10.11833/j.issn.2095-0756.2012.02.009
    [15] 余学军, 裘贤龙.  不同储藏条件对绿竹笋酶活性与纤维化的影响 . 浙江农林大学学报, 2011, 28(3): 380-385. doi: 10.11833/j.issn.2095-0756.2011.03.006
    [16] 张莹, 王雁, 李振坚.  报春石斛再生体系的建立 . 浙江农林大学学报, 2009, 26(4): 603-606.
    [17] 周国英, 李河.  竹材木质素选择性降解菌株的分子鉴定 . 浙江农林大学学报, 2008, 25(4): 497-501.
    [18] 李晓平, 周定国.  温度对稻草部分理化性能的影响 . 浙江农林大学学报, 2007, 24(5): 528-532.
    [19] 李纪元, 田敏, 李辛雷, 范正琪, 倪穗.  成熟龄杂交鹅掌楸再生体系的建立 . 浙江农林大学学报, 2006, 23(5): 512-515.
    [20] 李淑芬, 俞元春, 何晟.  南方森林土壤溶解有机碳与土壤因子的关系 . 浙江农林大学学报, 2003, 20(2): 119-123.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200163

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/1/147

图(6) / 表(4)
计量
  • 文章访问数:  1916
  • HTML全文浏览量:  429
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-15
  • 修回日期:  2020-10-30
  • 网络出版日期:  2021-01-21
  • 刊出日期:  2021-01-21

稻草在LiCl/DMSO中的溶解及再生性能

doi: 10.11833/j.issn.2095-0756.20200163
    基金项目:  国家自然科学基金青年基金资助项目(21704045);江苏省高等学校大学生创新创业训练计划项目(201910298034Y)
    作者简介:

    吴文娟,副教授,博士,从事生物质资源化学与工程研究。E-mail: wenjuanwu@njfu.edu.cn

  • 中图分类号: S781.4

摘要:   目的  以球磨稻草(水稻Oryza sativa秸秆)为原料,通过氯化锂/二甲亚砜(LiCl/DMSO)溶剂体系处理,探讨球磨稻草在LiCl/DMSO溶剂体系中的溶解行为及再生特点。  方法  选取稻草叶、带节的秆、不带节的秆、全秆等4个部位,设置0.5、1.0 h球磨时间,设置LiCl质量分数为2%、4%、6%、8%的LiCl/DMSO溶剂体系进行溶解后再生,按照标准方法测定纤维素、半纤维素、木质素和灰分等化学成分,通过碱性硝基苯氧化来测定木质素结构单元的产率,分析木质素的缩合程度,采用X射线衍射图谱计算纤维素结晶度,比较再生前后的纤维素的结晶区变化。  结果  球磨1.0 h秆和叶均可完全溶解于LiCl/DMSO溶剂体系,质量分数为8%的LiCl/DMSO溶剂体系可溶解的叶和秆的质量分数能达到10%。经水再生后,80%以上的木质素得以保留,秆中木质素保留率可达到87.5%;经X射线衍射分析,叶中纤维素的结晶度从37.8%下降至27.5%,秆从43.1%下降至26.5%;硝基苯氧化结果表明:再生后,各部位中木质素结构未缩合单元含量均有所增加。  结论  球磨时间、LiCl的质量分数均会影响草粉在LiCl/DMSO溶剂体系中的溶解,再生后,球磨草粉中的化学成分再生能力强,经比较叶中纤维素、木质素的再生能力最低;叶、秆中灰分的分布、沉积有所不同,叶中的灰分再生能力高于秆。各组分经球磨后木质素的缩合程度降低,球磨改善了硝基苯氧化环境。再生后各部位中的纤维素结晶度有所下降,结晶区受到一定程度的破坏。图6表4参36

English Abstract

卢玉生, 官凤英, 彭超, 等. 竹笋截梢对绿竹生长及叶绿素荧光特性的影响[J]. 浙江农林大学学报, 2020, 37(1): 51-59. DOI: 10.11833/j.issn.2095-0756.2020.01.007
引用本文: 吴文娟, 刘慧君, 李博文, 等. 稻草在LiCl/DMSO中的溶解及再生性能[J]. 浙江农林大学学报, 2021, 38(1): 147-154. DOI: 10.11833/j.issn.2095-0756.20200163
LU Yusheng, GUAN Fengying, PENG Chao, et al. Effects of bamboo shoot truncation on growth and chlorophyll fluorescence characteristics of Dendrocalamopsis oldhami[J]. Journal of Zhejiang A&F University, 2020, 37(1): 51-59. DOI: 10.11833/j.issn.2095-0756.2020.01.007
Citation: WU Wenjuan, LIU Huijun, LI Bowen, et al. Dissolution and regeneration of rice straws with LiCl/DMSO[J]. Journal of Zhejiang A&F University, 2021, 38(1): 147-154. DOI: 10.11833/j.issn.2095-0756.20200163
  • 研究木质纤维原料化学成分的含量及在细胞壁中的分布有助于对木质纤维原料进行综合高效的利用,是制订生产工艺的基本依据,也是实现木纤维生物质增值利用和循环经济的关键[1-2]。木质纤维原料由木质素、纤维素和半纤维素组成,纤维素构成纤维细胞壁的主要框架结构,半纤维素和木质素填充在纤维以及微细纤维之间,其中,木质素又以三维网状结构镶嵌在木质纤维原料中。纤维素、半纤维素和木质素彼此通过物理的或化学的链接方式构建成一个立体、致密、复杂的网络结构,该结构具有抵抗外力以及抵抗微生物侵蚀的能力[3-4]。这种多组分的存在以及彼此之间复杂的化学或物理的链接,导致木质纤维中各组分不易被分离出来。尤其对于复杂组分的木质纤维,需要借助木质纤维原料的全溶体系,通过不破坏各组分结构、没有衍生反应,最终将各组分以高得率、高纯度分离出来。木质素是研究比较多的纤维原料的化学成分,对木质素的认知一直基于降解后的结构已破坏的木质素,一般也是用分离后的木质素进行诸如核磁共振(NMR)的波谱分析来获取木质素的结构相关信息,即使固相的木质素NMR也不能给出足够的结构信息[5-6]。有关木质纤维原料的溶剂近年研究较多[7-10],氯化锂/二甲基乙酰胺(LiCl/DMAc)可以溶解纤维素,但不能溶解含有一定木质素的浆料[11-12],木质素经过衍生反应后却可以溶解在LiCl/DMAc体系中[13]。在木质纤维原料的溶解方面,木质素是重要的影响因素[14]。氯化锂/二甲基咪唑(LiCl/DMI)毒性低、热稳定性好,可用于纤维素的均相反应体系的溶解[15-16],纤维素的添加量可以高达10%[17-18],但若换成硫酸盐针叶材浆料,且浆料中木质素添加量低至2.0%,至少需要2周溶液才能完全澄清[19]。氯化锂/二甲亚砜(LiCl/DMSO)溶剂体系为高聚物的反应溶剂介质[20-21],WANG等[22]将LiCl/DMSO用于木质纤维原料的溶解,得到了木质纤维素全溶体系,经水再生后纤维素的结晶度会下降,但木质素的含量及其结构没有受到影响。LiCl/DMSO既可以用于全面分析木质素组分,也为分离细胞壁中纤维素、半纤维素、木质素提供了一个可能的溶剂体系[23-24]。本研究以非木材稻草(水稻Oryza sativa秸秆)为原料探讨稻草在LiCl/DMSO溶剂体系的溶解行为及再生特点,为全面解析稻草原本木质素结构信息提供一个理想可行的全溶溶剂体系,实现对原本木质素的高得率、高纯度的分离。

    • 稻草取自日本某农场,原料风干后,选取不带节的秆、带节的秆、叶及全秆,手工剪成30~50 mm的草片。草片原料再用Wiley微型粉碎机粉碎,收集40~80目组分,用苯-乙醇溶液(体积比为2∶1)进行脱脂抽提8.0 h,真空干燥后,储存于广口瓶中,供分析使用。

    • 采用Pulverisette 7微型行星式高能球磨机(Fritsch)进行球磨。在45 mL氧化锆制的罐子里称取4.0 g干燥后的脱脂草粉,内装18只内径1 cm的氧化锆圆球,在600 r·min−1条件下进行0.5,1.0 h不同时间的球磨,每运行5 min,休停10 min,以避免设备过热。球磨草粉经真空干燥后,装瓶备用。

    • 配制LiCl/DMSO溶剂体系,其中LiCl质量分数分别为2%、4%、6%、8%。称取不同球磨时间获得的草粉,在室温下按照质量分数为8%添加量在LiCl/DMSO溶剂体系中进行磁力搅拌48.0 h。

    • LiCl/DMSO溶剂体系处理脱脂原料的流程如图1所示。球磨稻草粉用质量分数为6% LiCl/DMSO溶剂体系处理,完全溶解后,整个混合体系移入透析袋(孔径50 Å、直径28 mm、透过分子量为14 000),将透析袋浸入去离子水中进行透析,隔4 h换1次水,每次用硝酸银(AgNO3)溶液检测透析液中有无氯离子(Cl¯),直至完全置换出LiCl/DMSO溶剂体系。透析后的物料经冷冻干燥、真空干燥后,得到球磨的再生原料,装瓶备用。

      图  1  经LiCl/DMSO溶剂体系处理后的再生流程

      Figure 1.  Procedure of regeneration by LiCl/DMSO

    • 木质素、灰分按照文献[25]的方法测定。纤维素、半纤维素测定参照文献[26]。

    • 木质素的结构单元通过硝基苯氧化结果来分析[27]

    • 纤维结晶指数分析在日本理学Ultima IV组合型多功能水平X射线衍射仪上进行,采用粉末法。结晶指数计算参考文献[28]。

    • 图2图3所示:随球磨时间的不同,稻草各部位在LiCl/DMSO溶剂体系中呈现不同的溶解性能。球磨0.5 h时,稻草叶和秆在质量分数为6%LiCl/DMSO溶剂体系中有明显的混浊,随着球磨时间的增加,稻草叶、秆在溶剂中溶解得更为透彻,球磨1.0 h时能得到澄清透亮的溶液。木质纤维原料的比表面积大小及化学成分组成对溶解的难易程度影响很大,木质纤维原料的粒径越小其溶解越容易。相较于球磨,未球磨的40~80目的草粉在LiCl/DMSO溶剂体系中呈混浊状,静置片刻会有明显的固液分层。木质材料纤维细胞的细胞壁结构十分复杂,纤维素、半纤维素和木质素都会阻碍有机离子液体向木质纤维素内部扩散。其中纤维素的结晶区、木质素的三维网络结构特点、各组分之间的复杂链接等使得木质纤维原料不能溶于一般的溶剂中。另外,稻草中灰分含量较高。当球磨时间为1.0 h时,稻草的叶、秆组分可完全溶解在质量分数为6% LiCl/DMSO溶剂体系中。而球磨1.0 h的马尾松Pinus massoniana原料在质量分数为6% LiCl/DMSO溶剂体系中并不能完全溶解。即使同样的溶剂体系,山毛榉Fagus crenata、云杉Picea abies脱脂木粉需要经过球磨处理2.0 h后才能全部溶解[22]。稻草和木材化学成分不同,稻草的木质素含量相对较低,灰分含量相对较高,质地结构相对于木材较为疏松[29],因此可以在球磨处理较轻的条件下被溶解。稻草各部位都很容易溶于LiCl/DMSO溶剂体系,化学组成的差异性会影响稻草在LiCl/DMSO溶剂体系中的溶解量,稻草叶、秆在质量分数为6% LiCl/DMSO溶剂体系中可溶解的质量百分数达8%。

      图  2  稻草叶不同球磨时间下的溶解性能(质量分数为6% LiCl/DMSO)

      Figure 2.  Effect of ball milling time on dissolution of rice leaf in 6% LiCl/DMSO

      图  3  稻草秆不同球磨时间下的溶解性能(质量分数为6% LiCl/DMSO)

      Figure 3.  Effect of ball milling time on dissolution of rice stem in 6% LiCl/DMSO

    • 图4图5为球磨1.0 h的稻草叶、秆在不同质量分数LiCl/DMSO中搅拌48.0 h的溶解性能。木质纤维原料的溶解能力可认为是溶剂对碳水化合物和木质素之间形成的这些错综复杂的网络结构的有效突破。LiCl/DMSO作为复合溶剂,每个溶剂成分在溶解过程发挥各自作用,且又通过协同作用最终溶解目标物。随着LiCl质量分数的逐步增加,稻草叶、秆溶于LiCl/DMSO溶剂中的溶液透明度越来越高,说明稻草溶解越充分。当LiCl在DMSO中的质量分数达到6%时,稻草叶、秆的溶液已完全透明。在LiCl/DMSO溶剂体系中,Cl与纤维素分子中羟基上的氢结合,形成氢键并破坏纤维素晶格中原有氢键网络[20],DMSO通过破坏分子间和分子内的氢键使微纤丝发生润胀,随着LiCl质量分数的逐步增加,Cl增多,更多的纤维素原有氢键被打开,并被阻止重建。球磨1.0 h稻草叶和秆都能溶于质量分数6.0%的LiCl/DMSO溶剂中。在更高的LiCl质量分数下,能溶解的物质的量也高,在质量分数8.0%的LiCl/DMSO溶剂体系中球磨1.0 h稻草叶粉和秆粉的溶解量可达到10%。

      图  4  不同LiCl质量分数溶剂体系中稻草叶(球磨1.0 h)的溶解性能

      Figure 4.  Effect of LiCl content on LiCl/DMSO solvent system for leaf (balling time 1.0 h)

      图  5  不同LiCl质量分数溶剂体系中稻草秆(球磨1.0 h)的溶解性能

      Figure 5.  Effect of LiCl content in LiCl/DMSO solvent system for stem (balling time 1.0 h)

    • 表1可知:与木材的化学组成相比,稻草中半纤维素含量较多,灰分含量高,木质素含量少。稻草的不同部位在化学成分上也有很大的差异,稻草叶中灰分高达212.1 mg·g−1,高于稻草秆,而秆中的高聚糖质量分数要高于叶。木质素在稻草中的分布也不均一,在叶中为168.7 mg·g−1,在秆中146.5 mg·g−1。带节的茎秆与不带节茎秆在化学成分上相近;稻草叶在稻草中所占的比例最大,因此,稻草全秆在化学成分上更接近于稻草叶。

      表 1  稻草原来主要化学成分

      Table 1.  Chemical compositions of extractive free straw samples

      稻草原料木质素/(mg·g−1)高聚糖/(mg·g−1)灰分/(mg·g−1)
      酸不溶酸溶总木质素葡聚糖木聚糖其他总糖
      带节的秆 110.136.4146.5428.2153.535.4617.1165.6
      不带节的秆111.135.4146.5408.0168.740.4617.1168.7
      叶    120.248.5168.7348.5149.539.4547.4212.1
      全秆   124.237.4161.6359.6164.647.5570.7190.9
    • 稻草经球磨1.0 h,用质量分数为6%LiCl/DMSO溶剂体系处理,并在水中通过透析再生,得到再生稻草样品。由表2可知:球磨稻草再生原料中的木质素在LiCl/DMSO溶剂体系处理过程中有一定程度的下降,其中,稻草不带节茎秆和带节茎秆的木质素和高聚糖的再生能力强于稻草叶和全秆。稻草不同部位对LiCl/DMSO溶剂体系的再生响应不同,酸溶木质素质量分数在LiCl/DMSO溶剂体系溶解再生过程中几乎没变化。球磨时间和LiCl/DMSO溶剂体系中LiCl的质量分数对再生原料中木质素质量分数有一定影响。

      表 2  球磨稻草再生后的主要化学成分

      Table 2.  Chemical compositions of regenerated straw samples with ball milling

      再生原料木质素/(mg·g−1)高聚糖/(mg·g−1)灰分/(mg·g−1)留着率/%
      酸不溶酸溶总木质素留着率a/%葡聚糖木聚糖总糖留着率b/ %
      带节的秆 104.022.2126.386.3395.9124.2552.589.5 53.589.0
      不带节的秆105.022.2128.387.5364.6139.4540.487.7 55.689.9
      叶    109.123.2132.380.5313.1127.3456.583.5101.080.5
      全秆   109.123.2131.381.0332.3135.3486.885.4 92.986.5
        说明:球磨2.0 h的稻草再生原料。a基于原料中木质素;b基于原料中高聚糖

      表2可以看出:水再生处理后,稻草4个不同部位木质素留着率为81.0%~86.3%,这个结果与经过相同处理的木粉木质素的留着率是一致的[22]。球磨2.0 h的木粉完全溶于质量分数为6%LiCl/DMSO溶剂体系中,经水再生后,木质素的留着率约85.8%。稻草中更多木质素的溶出可能由于LiCl在DMSO中的溶解度偏大(8%)。另外,木材与非木材的化学组成、化学结构、紧致程度也有所不同。球磨样品经LiCl/DMSO溶剂体系处理后,高聚糖质量分数没有明显变化。稻草不同部位对LiCl/DMSO溶剂体系处理的响应不同,稻草叶中的化学成分溶出相对较多,可能由于稻草秆的结构比较紧密,稻草叶质地疏松,因此稻草叶更易溶解在LiCl/DMSO溶剂体系中。秆和叶中的灰分在溶剂体系中的处理效果也有所不同,经溶剂体系处理后,秆中的灰分为55.6 mg·g−1,溶出约70%,而叶中的灰分为101.0 mg·g−1,几乎保留了原料中一半的灰分。可见经过LiCl/DMSO溶剂体系处理后,稻草叶中的灰分更易保留。

    • 球磨时间的长短会影响木质素的结构,一般球磨时间越长,木质素结构被破坏越严重[3031]。木质素是由3种苯丙烷结构的先体通过醚键和碳碳键联接而成的具有三维立体结构的天然高分子聚合物。根据芳香核的不同,3种苯丙烷结构分别为愈创木基丙烷、紫丁香基丙烷、对-羟基苯丙烷。针叶材的木质素主要有愈创木基丙烷单元构成,阔叶材木质素主要由愈创木基丙烷和紫丁香基丙烷的结构单元构成,草本植物木质素的结构则包括愈创木基、对羟基苯基及紫丁香基丙烷单元。碱性硝基苯氧化反应一般用于木质素的结构单元分析,未缩合的对羟基苯基、愈创木基和紫丁香基单元在高温碱性条件下分别氧化为对羟基苯甲醛或酸(H)、香草醛或酸(V)和紫丁香醛或酸(S)。木质素结构中未缩合单元含量越高,意味着木质素的缩合程度就越低。由表3可知:稻草叶中木质素结构未缩合单元的得率为1.0~1.4 mmol·g−1,稻草秆为1.3~1.6 mmol·g−1,稻草秆的未缩合单元得率要高于稻草叶,稻草中不同部位的木质素化学结构上有一定差异,其中叶中的木质素缩合程度最高,这与MIN等[32]对玉米Zea mays秸秆木质素结构的研究结果一致。球磨1.0和0.5 h草粉的未缩合单元的氧化结果差异不大,但球磨1.0 h的稻草各部位未缩合单元产物的得率高于未球磨的脱脂原料,经过溶剂体系再生处理后,得率又有所下降。这种再生特征与木粉不同,球磨1.0 h的稻草,机械作用对木质素的结构有一定的影响,机械处理改善了硝基苯氧化的均相性。随球磨时间的延长,木质素的未缩合单元产物的得率稍有增加,球磨的机械处理会释放出一定量的愈创木基、对羟基苯基及紫丁香基基本结构单元,导致硝基苯氧化产物的得率在稻草叶中提高了32%,稻草秆中提高了19%。另外球磨也会引起一些高聚物解聚反应[33],不同于木材原料,稻草原料的木质素结构中还有对-香豆酸和阿魏酸,并通过—O—键和酯键方式与碳水化合物的结构相链接,这是稻草木质素区别于木材的重要特征[34]。因此,相较于紫丁香基单元,在球磨秆中的对羟基苯基、愈创木基就更易于释放出来,导致球磨原料中S/(V+H)比未球磨脱脂原料要低。球磨1.0 h样品经LiCl/DMSO溶剂体系处理,再生后,木质素未缩合单元的得率下降不到20%,球磨过程中释放出来木质素结构单元,会溶于LiCl/DMSO溶剂体系并在再生过程中流失,导致S/(V+H)增加。相比较于稻草秆,稻草叶中的木质素未缩合结构单元更容易在LiCl/DMSO溶剂体系的再生处理过程中流失。

      表 3  稻草各部位的硝基苯氧化产物的得率及S/(V+H)

      Table 3.  Nitrobenzene oxidation products yields and S/(V+H) molar ratio of rice straw samples

      样品得率/(mmol·g−1)S/(V+H)
      带节秆不带节秆全秆带节秆不带节秆全秆
      脱脂原料1.301.301.011.220.670.670.430.43
      球磨0.5 h1.601.621.391.510.670.670.430.43
      球磨1.0 h1.601.591.421.430.430.430.430.43
      球磨再生原料1.421.501.031.210.670.670.670.67
        说明:S表示紫丁香醛或酸得率;H表示对羟基苯甲醛或酸得率;V表示香草醛或酸得率
    • 图6可知:相较于未经处理的原料稻草,球磨1.0 h、经LiCl/DMSO溶剂体系处理再生后原料的衍射曲线其峰形均趋于平坦。由表4可见:叶中纤维素的结晶度由原来的37.8%,经球磨、再生后降低至27.5%,秆则由43.1%降低至26.5%,说明球磨再生处理破坏了原料中纤维素的结晶区,纤维素的聚集态结构遭受了破坏。研究发现:这样的溶解再生处理可以提高木质纤维原料的酶解效率,与未经处理的原料相比,再生处理使纤维素结晶区遭到破坏,促使酶解过程中有更多的高聚糖降解[35-36]

      表 4  稻草原料和再生稻草原料的结晶度

      Table 4.  Crystallinity of original and regenerated rice straw samples with ball milling

      样品结晶度/%
      稻草叶原料  37.8
      再生稻草叶原料27.5
      稻草秆原料  43.1
      再生稻草秆原料26.5

      图  6  稻草原料和再生稻草原料的X射线衍射图谱

      Figure 6.  X-ray pattern of original and regenerated rice straw samples with ball milling

    • 稻草中秆和叶经球磨1.0 h后均可完全溶解在质量分数为6%的LiCl/DMSO溶剂体系中,溶解的质量分数均达到8%;随着LiCl质量分数的提高,稻草球磨粉在溶剂体系中的溶解度也随之提高,球磨的叶和秆在8%LiCl/DMSO溶剂体系中溶解的质量分数都能达到10%。经水再生后,原料中超过80%的木质素得以保留,秆中木质素保留率可达到87.5%;高聚糖的再生能力要稍高于木质素。在所有化学成分中,叶中纤维素、木质素的再生能力最低;叶、秆中灰分的分布、沉积不同,叶中的灰分再生后约50%保留,且再生能力高于稻草秆。

      稻草叶中木质素的缩合程度最高,秆中木质素缩合程度最低;叶和秆经球磨后,木质素的缩合程度均降低,机械处理导致更多的对羟基苯基、愈创木基和紫丁香基单元的木质素结构单元被释放,且秆中以愈创木基和对羟基苯基增加为主。球磨改进了硝基苯氧化环境,反应均相性得到了提高。再生后,各组分缩合程度降低。球磨再生后纤维素结晶区受到一定程度的破坏,结晶度下降。

参考文献 (36)

目录

/

返回文章
返回