-
氧气约占大气成分的21%,是大多数多细胞生物维持生命的必需元素,包括真菌、动物和植物。生物不仅需要氧气作为末端电子受体,以确保通过氧化磷酸化产生能量,而且在大多数代谢反应中,氧气也充当主要底物[1]。当植物生长对氧气的需求超过环境氧气的供应时,植物细胞中氧气浓度便会降低,造成缺氧。在生产中,缺氧一般是由土壤板结、淹水等因素造成的,表现为植物根系和其他器官中的氧浓度降低[2-3]。缺氧会对植物生长造成胁迫,改变植物的代谢水平,降低作物的产量[4]。缺氧会影响植物的生物量积累、激素含量、各类酶活性、细胞结构及过氧化物的产生。如ANNALISA等[5]研究发现:在缺氧条件下,拟南芥Arabidopsis thaliana细胞中活性氧(ROS)含量急剧增加,其体内过氧化物酶(POD)和过氧化氢酶(CAT)的活性降低。缺氧同时也会造成乙烯在植物根系的积累,如鹰嘴豆Cicer arietinum、蚕豆Vicia faba、水稻Oryza sativa等植物淹水后根系乙烯显著积累[6-7],参与乙烯合成的2个基因ACS1和ACO5相对表达显著增加[8]。在水稻中,脱落酸(ABA)含量会因淹水降低[9],而赤霉素(GA)含量显著升高[10],说明氧气在植物的各个生理过程中都起到重要作用。在长期进化过程中,植物体也有一定的适应手段来应对缺氧的胁迫。植物在缺氧条件下,会降低自身新陈代谢的水平,如淀粉、蛋白质和脂质等代谢[3,11]。水稻[12]、玉米Zea mays [13-14]和小麦Triticum aestivum [15]等能通过在根系形成通气组织从而适应缺氧环境,特别是水稻还可以在茎秆内形成通气组织[16], 从而在淹水条件下正常生长。水稻的通气组织是由乙烯诱导,通过细胞程序性死亡和皮层细胞溶解所形成的[17]。在淹水条件下,大气中的氧气是植物体内氧气的重要来源,如芦苇Phragmites australis [18]和水稻[19],能通过通气组织将氧气输送至地下部分,从而使得它们在长期淹水的土壤中依然能正常生长。雷竹Phyllostachys violascens属禾本科Gramineae中小型散生竹类,是一种重要的笋用竹种,喜湿润,怕积水[20]。自20世纪90年代以来,覆盖增温技术在生产中得到大面积推广应用,使雷竹笋在经济价值较高的时候大量上市,显著提高了农户的经济收入,然而长期林地覆盖经营却会引起雷竹林退化[21-22]。覆盖物的阻断加上土壤中微生物大量消耗有机物质,使得雷竹林地土壤中的氧气含量降低。有学者研究表明:竹鞭上浮可能是对覆盖技术引起的土壤缺氧的适应性反应[23]。那么氧气的缺乏会对雷竹生长造成什么的影响?雷竹为适应缺氧会做出如何的响应?对于其他禾本科植物,如水稻等,其生长与氧气之间的联系研究多且较深入[24-26],但竹子生长与氧气的关系研究鲜有报道。本研究以雷竹水培苗为材料,比较分析叶面积、生物量、光合色素质量分数和抗氧化酶活性等生长及生理指标以及根系结构变化,研究缺氧对雷竹生长的影响,初步探究雷竹对缺氧的适应性机制,为雷竹在生产实践中可能退化的原因提供理论参考。
Effects of different dissolved oxygen concentration on growth, physiology and biochemistry of hydroponic Phyllostachys violascens seedlings
-
摘要:
目的 了解溶解氧质量浓度对雷竹Phyllostachys violascens水培苗生长、生理指标及根系结构的影响,初步探究雷竹水培苗对缺氧的适应性机制。 方法 以雷竹水培苗为材料,设置0、2、4、6、8 mg·L−1不同溶解氧质量浓度进行处理,分析不同溶解氧质量浓度对雷竹水培苗生物量积累、叶面积、根系活力、抗氧化酶活性、光合色素质量分数及根系结构的影响。 结果 雷竹水培苗生物量积累、叶面积、根系活力、叶片抗氧化酶活性和光合色素质量分数均随溶解氧质量浓度的升高而显著升高(P<0.05)。8 mg·L−1处理组中雷竹水培苗叶片超氧化物歧化酶、过氧化氢酶、过氧化物酶和抗坏血酸过氧化物酶活性达到峰值,分别为746.13×16.67 nkat·g−1、63.13×16.67 nkat·g−1·min−1、59 395.45×16.67 nkat·g−1·min−1和407.46 ×16.67 nkat·g−1·min−1。水培条件下,雷竹水培苗根系中形成溶生型通气组织,其面积占根系横截面面积的百分比随溶解氧质量浓度降低而显著升高(最高达到7.1%),通气组织个数变化趋势则相反(P<0.05)。 结论 水培条件下,溶解氧质量浓度越高,雷竹水培苗长势越好,且雷竹水培苗生长对氧气的需求大于8 mg·L−1。水培条件下,缺氧会诱导雷竹根中形成溶生型通气组织,但不足以使其具有高度耐水淹的能力。图5参50 Abstract:Objective This study aims to investigate the effects of dissolved oxygen concentration on growth, physiological indexes and root structure of hydroponic Phyllostachys violascens seedlings, and to explore the adaptive mechanism of hydroponic P. violascens seedlings to hypoxia. Method The hydroponic P. violascens seedlings were used as materials, and the effects of different dissolved oxygen concentrations (0, 2, 4, 6, 8 mg·L−1) on biomass accumulation, leaf area, root activity, antioxidant enzyme activity, photosynthetic pigment content and root structure were analyzed. Result The biomass accumulation, leaf area, root activity, leaf antioxidant enzyme activity and photosynthetic pigment content of hydroponic seedlings significantly increased with the increase of dissolved oxygen concentration(P<0.05). The activities of SOD, CAT, POD and APX of hydroponic seedling leaves treated with 8 mg·L−1 dissolved oxygen reached the peak, which were 746.13×16.67 nkat·g−1, 63.13×16.67 nkat·g−1·min−1, 59 395.45×16.67 nkat·g−1·min−1 and 407.46×16.67 nkat·g−1·min−1 respectively. Under hydroponic conditions, lysigenous aerenchyma was formed in the roots of hydroponic seedlings, and its percentage of root cross-sectional area significantly increased with the decrease of dissolved oxygen concentration (up to 7.1%), while the number of lysigenous aerenchyma changed in the opposite direction (P<0.05). Conclusion Under hydroponic conditions, the higher the dissolved oxygen concentration is, the better the growth of hydroponic seedlings can be. The oxygen requirement for the growth of hydroponic seedlings is greater than 8 mg·L−1 . Hypoxia can induce the formation of lysigenous aerenchyma in the root of hydroponic seedlings, but it is not enough to make it highly resistant to flooding.[Ch, 5 fig. 50 ref.] -
Key words:
- silviculture /
- Phyllostachys violascens /
- hydroponic /
- dissolved oxygen /
- hypoxia /
- growth /
- aerenchyma
-
图 5 不同溶解氧质量浓度对雷竹水培苗根系距根尖10、30、50、70 mm处通气组织面积占比和形成数量的影响
对照雷竹根系及各处理中雷竹水培苗根系距根尖10 mm处无通气组织形成,故图中不显示数据
Figure 5 Effects of different dissolved oxygen concentrations on the percentage and the number of aerenchyma of root cross-sectional area at 10,30,50,70 mm from the tips of roots of hydroponic Ph. violascens seedlings
-
[1] DAIMS H, WAGNER M. Nitrospira [J]. Trends Microbiol, 2018, 26(5): 462 − 463. [2] GEIGENBERGER P. Response of plant metabolism to too little oxygen [J]. Curr Opin Plant Biol, 2003, 6(3): 247 − 256. [3] DREW M C. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia [J]. Ann Rev Plant Physiol Plant Mol Biol, 1997, 48(1): 223 − 250. [4] BAILEY-SERRES J, FUKAO T. Plant responses to hypoxia–is survival a balancing act? [J]. Trends Plant Sci, 2004, 9(9): 449 − 456. [5] ANNALISA P, SOFIA C, ANTONELLA L, et al. ROS production and scavenging under anoxia and re-oxygenation in Aarabidopsis cells: a balance between redox signaling and impairment [J]. Front Plant Sci, 2016, 7: 1803. [6] MUNIR R, KONNERUP D, KHAN H A, et al. Sensitivity of chickpea and faba bean to root-zone hypoxia, elevated ethylene and carbon dioxide: root responses to low O2, ethylene, or high CO2 [J]. Plant Cell Environ, 2019, 42(1): 85 − 97. [7] HATTORI Y, NAGAI K, FURUKAWA S, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water [J]. Nature, 2009, 460(7258): 1026 − 1030. [8] YAMAUCHI T, YOSHIOKA M, FUKAZAWA A, et al. An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions [J]. Plant Cell, 2017, 29(4): 775 − 790. [9] BAILEY-SERRES J, FUKAO T, GIBBS D J, et al. Making sense of low oxygen sensing [J]. Trends Plant Sci, 2012, 17(3): 129 − 138. [10] YAMAUCHI T, SHIONO K, NAGANO M, et al. Ethylene biosynthesis is promoted by very-long-chain fatty acids during lysigenous aerenchyma formation in rice roots [J]. Plant Physiol, 2015, 169(4): 180 − 193. [11] BAILEY-SERRES J, VOESENSK L A C J. Flooding stress: acclimations and genetic diversity [J]. Ann Rev Plant Biol, 2008, 59(1): 313 − 339. [12] SHIONO K, OGAWA S, YAMAZAKI S, et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths [J]. Ann Bot, 2011, 107(1): 89 − 99. [13] HE C, FINLAYSON S A, DREW M C, et al. Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia [J]. Plant Physiol, 1996, 112(4): 1679 − 1685. [14] RAJHI I, YAMAUCHI T, TAKAHASHI H, et al. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses [J]. New Phytol, 2011, 190(2): 351 − 368. [15] THOMSON C J, ARMSTRONG W, WATERS I, et al. Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat [J]. Plant Cell Environ, 2010, 13(4): 395 − 403. [16] STEFFENS B, GESKE T, SAUTER M. Aerenchyma formation in the rice stem and its promotion by H2O2 [J]. New Phytol, 2011, 190(2): 369 − 378. [17] EVANS D E. Aerenchyma formation [J]. New Phytol, 2003, 161(1): 35 − 49. [18] ARMSTRONG J, ARMSTRONG W. Phragmites australis: a preliminary study of soil-oxidizing sites and internal gas transport pathways [J]. New Phytol, 1988, 108(4): 373 − 382. [19] SURALTA R R, YAMAUCHI A. Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging [J]. Environ Exp Bot, 2008, 64(1): 75 − 82. [20] 陈龙飞. 笋用雷竹高产栽培[J]. 安徽林业科技, 2000(5): 15. CHEN Longfei. High-yield cultivation of bamboo shoots [J]. J Anhui For Sci Technol, 2000(5): 15. [21] 周国模, 金爱武, 何钧潮, 等. 覆盖保护地栽培措施对雷竹笋用林丰产性能的影响[J]. 中南林学院学报, 1999, 19(2): 52 − 54. ZHOU Guomo, JIN Aiwu, HE Junchao, et al. The influence of cultivation techniques used in covered protected plots on the high-yield property of Lei bamboo plantation for edible shoots [J]. J Cent South For Univ, 1999, 19(2): 52 − 54. [22] 董林根, 吴伟根, 郑钢, 等. 经营干扰对雷竹叶面积指数的影响[J]. 经济林研究, 1999, 17(2): 14 − 16. DONG Lingeng, WU Weigeng, ZHENG Gang, et al. Decline in bamboo leaf area index as affected by management disturbance [J]. Econ For Res, 1999, 17(2): 14 − 16. [23] XU Mengjie, ZHUANG Shunyao, GUI Renyi. Soil hypoxia induced by an organic-material mulching technique stimulates the bamboo rhizome up-floating of Phyllostachys praecox[J]. Sci Rep, 2017, 7(1): 14353. doi: 10.1038/s41598-017-14798-8. [24] NILSSON R L K, MAGNESCHI L, LORETI E, et al. Transcript profiling of the anoxic rice coleoptile [J]. Plant Physiol, 2007, 144(1): 218 − 231. [25] 张岚清, 沈德魁. 含氧气氛下的稻杆低温烘焙研究[J]. 北京化工大学学报(自然科学版), 2017, 44(5): 27 − 32. ZHANG Lanqing, SHEN Dekui. Oxidative torrefaction of rice straw under different oxygen concentrations [J]. J Beijing Univ Chem Technol Nat Sci, 2017, 44(5): 27 − 32. [26] YOSHINAO M, YUSUKE K, MASAYA K, et al. Diel O2 dynamics in partially and completely submerged deepwater rice: leaf gas films enhance internodal O2 status, influence gene expression and accelerate stem elongation for ‘Snorkelling’ during submergence [J]. Plant Cell Physiol, 2019, 60(5): 973 − 985. [27] JIANG Yiwei, HUANG Bingru. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses [J]. J Exp Bot, 2001, 52(355): 341 − 349. [28] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006. [29] YOSHIYUKI N, KOZI A. Spinach chloroplasts scavenge hydrogen peroxide on illumination [J]. Plant Cell Physiol, 1980, 21(7): 1295 − 1307. [30] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. [31] 袁晓华, 杨中汉. 植物生理生化实验[M]. 北京: 高等教育出版社, 1983. [32] BJÖRKMAN O. The effect of oxygen concentration on photosynthesis in higher plants [J]. Physiol Plant, 2006, 19(3): 618 − 633. [33] CHÉRIF M, TIRILLY Y, BELANGER R R. Effect of oxygen concentration on plant growth, lipidperoxidation, and receptivity of tomato roots to pythium F under hydroponic conditions [J]. Eur J Plant Pathol, 1997, 103(3): 255 − 264. [34] QUEBEDEAUX B, HARDY R W F. Reproductive growth and dry matter production of Glycine max (L.) Merr in response to oxygen concentration [J]. Plant Physiol, 1975, 55(1): 102 − 107. [35] 郑小兰, 侯亚兵, 王瑞娇, 等. 根际氧浓度对番茄幼苗生长发育的影响[J]. 华北农学报, 2017, 32(4): 208 − 214. ZHENG Xiaolan, HOU Yabing, WANG Ruijiao, et al. Effects of oxygen concentration in rhizosphere on the growth of tomato seedlings [J]. Acta Agric Boreal-Sin, 2017, 32(4): 208 − 214. [36] ALMEIDA A M, VRIEZEN W H, van der STRAETEN D. Molecular and physiological mechanisms of flooding avoidance and tolerance in rice [J]. Russ J Plant Physiol, 2003, 50(6): 743 − 751. [37] STOIMENOVA M, IGAMBERDIEV A U, GUPTA K J, et al. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria [J]. Planta, 2007, 226(2): 465 − 474. [38] VISSER E J W, VOESENEK L A C J, VARTAPETIAN B B, et al. Flooding and Plant Growth[M]. New York: Academic Press, 1984. [39] 郭益昌, 庄舜尧, 胡昱彦, 等. 埋管通气对雷竹林土壤氧气体积分数的影响[J]. 浙江农林大学学报, 2020, 37(1): 69 − 75. GUO Yichang, ZHUANG Shunyao, HU Yuyan, et al. Soil oxygen content of Phyllostachys violascens with pipe-buried aeration [J]. J Zhejiang A&F Univ, 2020, 37(1): 69 − 75. [40] ARMSTRONG W D. Aeration in higher plants [J]. Adv Bot Res, 1980, 7: 225 − 332. [41] 焦彦生, 郭世荣, 李娟, 等. 钙对根际低氧胁迫下黄瓜幼苗活性氧代谢的影响[J]. 西北植物学报, 2006, 26(10): 2056 − 2062. JIAO Yansheng, GUO Shirong, LI Juan, et al. Effect of low rhizospere oxygen stress on reactive oxygen species metabolism in cucumber seedlings [J]. Acta Bot Boreal-Occident Sin, 2006, 26(10): 2056 − 2062. [42] LI Pengxia, ZHANG Xuan, HU Huali, et al. High carbon dioxide and low oxygen storage effects on reactive oxygen species metabolism in Pleurotus eryngii [J]. Postharvest Biol Technol, 2013, 85: 141 − 146. [43] de GARA L. Class Ⅲ peroxidases and ascorbate metabolism in plants [J]. Phytochem Rev, 2004, 3(1): 195 − 205. [44] ZHAN Gaomiao, LI Rongjun, HU Zhiyong, et al. Cosuppression of RBCS3B in Arabidopsis leads to severe photoinhibition caused by ROS accumulation [J]. Plant Cell Rep, 2014, 33(7): 1091 − 1108. [45] 吕文静. H2S介导镉调控ROS平衡抑制不结球白菜根生长机理研究[D]. 南京: 南京农业大学, 2016. LÜ Wenjing. Mechanism of H2S Mediated Cadmium Regulation ROS Inhibites Non-heading Chinese Cabbage Root Growth[D]. Nanjing: Nanjing Agricultural University, 2016. [46] GIBBS D J, LEE S C, ISA N M, et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants [J]. Nature, 2011, 479(7373): 415 − 418. [47] YAMAUCHI T, RAJHI I, NAKAZONO M. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species [J]. Plant Signaling Behav, 2011, 6(5): 759 − 761. [48] SOSIŃSKA A, MALESZEWSKI S. Effect of high oxygen concentration on photosynthesis in rape plants pretreated in low temperature [J]. Zeitschriftfür Pflanzenphysiologie, 1982, 108(5): 397 − 399. [49] ZABALZA A, van DONGEN J T, FROEHLICH A, et al. Regulation of respiration and fermentation to control the plant internal oxygen concentration [J]. Plant Physiol, 2009, 149(2): 1087 − 1098. [50] AYI Q, BO Zeng, LIU Jianhui, et al. Oxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plants [J]. Ann Bot, 2016, 118(4): 675 − 683. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200286