留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同叶色矢竹叶片反射光谱及光化学特性

王洁 陈柯伊 金海 李朝娜 成敏敏 杨海芸

王洁, 陈柯伊, 金海, 李朝娜, 成敏敏, 杨海芸. 不同叶色矢竹叶片反射光谱及光化学特性[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200360
引用本文: 王洁, 陈柯伊, 金海, 李朝娜, 成敏敏, 杨海芸. 不同叶色矢竹叶片反射光谱及光化学特性[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200360
WANG Jie, CHEN Keyi, JIN Hai, LI Zhaona, CHENG Minmin, YANG Haiyun. Reflection spectrum and photochemical characteristics of different colors’ leaves in Pseudosasa japonica[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200360
Citation: WANG Jie, CHEN Keyi, JIN Hai, LI Zhaona, CHENG Minmin, YANG Haiyun. Reflection spectrum and photochemical characteristics of different colors’ leaves in Pseudosasa japonica[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200360

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

不同叶色矢竹叶片反射光谱及光化学特性

doi: 10.11833/j.issn.2095-0756.20200360
基金项目: 国家自然科学基金资助项目(31901370);宜宾市引进高层次人才项目(2018YG02);浙江农林大学大学生科研训练项目(20161010123)
详细信息
    作者简介: 王洁(ORCID: ),从事植物生物技术研究,E-mail: 1219986501@qq.com
    通信作者: 杨海芸(ORCID: 0000-0001-8446-2007),副教授,博士,从事竹类植物发育特性研究,E-mail: yhy2006@zafu.edu.cn
  • 中图分类号: Q945.1

Reflection spectrum and photochemical characteristics of different colors’ leaves in Pseudosasa japonica

  • 摘要:   目的  通过解析矢竹Pseudosasa japonica不同叶色叶片反射光谱特性、光系统Ⅱ(PSⅡ)和光系统Ⅰ(PSⅠ)特性之间的差异,探索不同叶色竹种光合能力差异,从生理角度分析矢竹叶色变异特性并为进一步探究叶色变异机制奠定基础。  方法  取生长健壮的矢竹叶片(GL)、花叶矢竹P. japonica f. akebonosuji复绿叶片(AL)、花叶矢竹条纹叶片[(SL)包括白色部分(SA)和绿色部分(SG)]、曙筋矢竹P. japonica f. akebono(VL)4种不同叶色叶片为材料,测定其光合色素质量分数、叶绿素归一化指数(ChlNDI)、光化学植被指数(PRI)、快速荧光动力学参数及820 nm相对吸收值。  结果  叶片叶绿素质量分数从大到小依次为GL、SL、VL、AL;不同叶色矢竹叶片的叶绿素归一化指数、光化学植被指数变化趋势一致,从大到小依次均为GL、SG、VL、SA、AL;4个色叶的光系统Ⅰ最大氧化还原能力从大到小依次为GL、VL、SG、AL;花叶矢竹复绿叶、条纹绿叶和曙筋矢竹都具有叶绿素荧光曲线动力学活性,但光系统Ⅱ反应中心开放降低程度与矢竹差异显著(P<0.05),能量用于电子传递份额变小;缺乏叶绿素使得单位反应中心吸收的光能不断增加,可能是因为它需要更多的反应中心来应对其较低的转化效率,但最大光化学效率(Fv/Fm)和叶片性能指数(PIABS)都逐渐降低,可能是光系统Ⅱ反应中心发生可逆失活,能吸收光能但不能推动电子传递。  结论  叶色变异导致矢竹叶片光合色素质量分数存在差异,进而影响叶绿素归一化指数和光化学反射指数特征参数,叶绿素缺乏会影响光系统Ⅱ活性反应中心发生可逆性失活。花叶矢竹条纹叶片反应中心较少,但仍具有较好的光系统Ⅱ活性和叶绿素水平,维持较好的光合能力,这可能与其独特的花叶性状有关。图8表2参31
  • 图  1  不同叶色矢竹叶片照片

    Figure  1  Leaf color observation

    图  2  叶片反射光谱曲线(A)和一阶导数曲线(B)

    Figure  2  Leaf reflectance curve (A) and first derivative curve (B)

    图  3  植被指数

    Figure  3  Spectral reflectance indices

    图  4  Fv/Fm和PIABS的比较

    Figure  4  Concentration on the Fv/Fm and PIABS

    图  5  不同叶色叶片的OJIP荧光曲线(A)与相对可变荧光强度随时间的变化(B)

    Figure  5  Changes of OJIP fluorescence curves (A) and relative variable fluorescence intensity (B) of different colors’ leaves

    图  6  不同叶色叶片820 nm相对吸收值变化

    Figure  6  Changes in relative absorption values of PSI 820 nm of different color leaves

    图  7  不同叶色叶片PSⅠ最大氧化还原能力ΔI/I0的差异

    Figure  7  PSI maximum ability of oxido-reduction △I/I0 of different color leaves

    图  8  快速荧光特征参数

    Figure  8  Characteristics of fluorescence transient

    表  1  不同叶色矢竹类光合色素差异

    Table  1.   Difference of photosynthetic pigment content in different colors’ leaves of P. japonica

    材料 Chla/(mg·g−1) Chlb/(mg·g−1) Car/(mg·g−1) Chl a+b/(mg·g−1) Chl a/b Car/Chl
    AL 0.34±0.015 a 0.26±0.010 a 0.32±0.015 c 0.60±0.035 a 1.3±0.007 a 0.53±0.022 b
    SG 20.39±0.170 b 18.27±0.120 b 5.52±0.020 a 38.66±0.250 c 1.1±0.020 b 0.14±0.010 a
    VL 17.09±0.080 b 15.72±0.070 b 4.07±0.184 b 33.81±0.140 b 1.0±0.013 b 0.12±0.007 a
    GL 22.19±0.120 c 19.66±0.150 b 4.89±0.020 a 41.85±0.220 c 1.14±0.024 b 0.11±0.005 a
      说明:同列内不同小写字母表示材料间差异显著(P<0.05)
    下载: 导出CSV

    表  2  叶片ChlNDI和PRI与色素质量分数、Fv/Fm、PIABSφE0的相关性

    Table  2.   Correlation between reflectance spectrum parameters and pigment contents

    光谱参数ChlaChlbChl a+bCarFv/FmPIABSφEo
    ChlNDI0.966**0.961**0.924**0.898* 0.883*0.802*0.937**
    PRI0.969**0.977**0.931**0.929**0.759*0.648 0.823*
      说明:*表示P<0.05,**表示P<0.01
    下载: 导出CSV
  • [1] 王啸晨. 4种观赏竹花叶色素组成、结构分析及相关调控基因的研究[D]. 北京: 中国林业科学研究院, 2012.

    WANG Xiaochen. Study on Pigment Composition, Structure of Variegated Leaf and Related Genes from Four Ornamental Bamboos[D]. Beijing: Chinese Academy of Forestry, 2012.
    [2] 杨海芸, 王晓芹, 张宁, 等. 日本花叶矢竹组织培养与叶色变异研究[J]. 竹子研究汇刊, 2010, 29(4): 15 − 20.

    YANG Haiyun, WANG Xiaoqin, ZHANG Ning, et al. Tissue culture and leaf color variation of Pseudosasa japonica cv. akebonosuji [J]. J Bamboo Res, 2010, 29(4): 15 − 20.
    [3] 王振兴, 曹建冉, 秦红艳, 等. 狗枣猕猴桃彩叶色素含量和结构共同影响叶色[J]. 植物生理学报, 2016, 52(12): 1921 − 1926.

    WANG Zhenxing, CAO Jianran, QIN Hongyan, et al. Common effect of pigment content and leaf structure on leaf color in Actinidia kolomikta [J]. Plant Physiol Commun, 2016, 52(12): 1921 − 1926.
    [4] 吴雪霞, 龚静, 查丁石. 遮荫对茄子幼苗叶片叶绿素荧光特性的影响[J]. 吉林蔬菜, 2010(4): 35 − 38. doi:  10.3969/j.issn.1672-0180.2010.04.015

    WU Xuexia, GONG Jing, CHA Dingshi. Effects of shading on chlorophyll fluorescence characteristics in leaves of eggplant seedling [J]. Veg Jilin, 2010(4): 35 − 38. doi:  10.3969/j.issn.1672-0180.2010.04.015
    [5] 陈凌艳, 何丽婷, 赖金莉, 等. 银丝竹不同叶色叶绿素合成及叶结构差异[J]. 森林与环境学报, 2017, 37(4): 385 − 391.

    CHEN Lingyan, HE Liting, LAI Jinli, et al. The variation of chlorophyll biosynthesis and the structure in different color leaves of Bambusa multiplex ‘Silverstripe’ [J]. J For Environ, 2017, 37(4): 385 − 391.
    [6] 刘儒, 原勤勤, 袁小平, 等. 不同枫香家系叶片色素含量变化及其与叶色变化的关系[J]. 南方林业科学, 2017, 45(4): 46 − 49.

    LIU Ru, YUAN Qinqin, YUAN Xiaoping, et al. The relationship with change of pigment content in leaves of different Liquidambar formosana families and change of leaf color [J]. Nanfang For Sci, 2017, 45(4): 46 − 49.
    [7] 成敏敏, 陈柯伊, 朱雪玉, 等. 花叶矢竹复绿期光合特性及叶绿体结构[J]. 林业科学, 2018, 54(4): 1 − 10. doi:  10.11707/j.1001-7488.20180401

    CHENG Minmin, CHEN Keyi, ZHU Xueyu, et al. Photosynthetic characteristics and chloroplast ultrastructure of Pseudosasa japonica f.akebonosuji during green-revertible albino stage [J]. Sci Silv Sin, 2018, 54(4): 1 − 10. doi:  10.11707/j.1001-7488.20180401
    [8] 张向娜, 熊立瑰, 温贝贝, 等. 茶树叶色变异研究进展[J]. 植物生理学报, 2020, 56(4): 643 − 653.

    ZHANG Xiangna, XIONG Ligui, WEN Beibei, et al. Advances in leaf color variation of tea plant (Camellia sinensis) [J]. J Plant Physiol, 2020, 56(4): 643 − 653.
    [9] 刘芬, 屈成, 肖楠, 等. 水稻高光谱变化特征与叶绿素含量监测研究[J]. 激光生物学报, 2017, 26(4): 326 − 333. doi:  10.3969/j.issn.1007-7146.2017.04.008

    LIU Fen, QU Cheng, XIAO Nan, et al. A study on spectral characteristics and chlorophyll content in rice [J]. Acta Laser Biol Sin, 2017, 26(4): 326 − 333. doi:  10.3969/j.issn.1007-7146.2017.04.008
    [10] JOLY D, BIGRAS C, HARNOIS J, et al. Kinetic analyses of the OJIP chlorophyll fluorescence rise in thylakoid membranes [J]. Photosynth Res, 2005, 84(1/3): 107 − 112.
    [11] ZHANG Shouren, GAO Rongfu. Effects of light stress on oxygen evolution and photochemical energy storage of hybrid poplar clones determined by photoacoustic technique [J]. Acta Bot Sin, 2000, 42(8): 818 − 823.
    [12] LICHTENTHALER H K. Chlorophylls and carotenoids: pigment photosynthetic biomembranes [J]. Methods Enzymol, 1987, 148C(1): 350 − 382.
    [13] 张宪政. 植物叶绿素含量测定——丙酮乙醇混合液法[J]. 辽宁农业科学, 1986(3): 26 − 28.

    ZHANG Xianzheng. Measurement of chlorophyll content in plants:acetone ethanol mixture [J]. Liaoning Agric Sci, 1986(3): 26 − 28.
    [14] GITELSON A A, MERZLYAK M N. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll [J]. J Plant Physiol, 1996, 148(3/4): 494 − 500.
    [15] GITELSON A A, GRITZ Y, MERZLYAK M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves [J]. J Plant Physiol, 2003, 160(3): 271 − 282. doi:  10.1078/0176-1617-00887
    [16] LIU Caifeng, GUO Jiali, CUI Yanlan, et al. Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings [J]. Plant Soil, 2011, 344(1/2): 131 − 141.
    [17] GAMON, J A, SERRANO L, SURFUS J S. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels [J]. Oecologia, 1997, 112(4): 492 − 501. doi:  10.1007/s004420050337
    [18] STRASSER R J, SRIVASTAVA A, TSIMILLI-MICHAE M. The fluorescence transient as a tool to characterize and screen photosynthetic samples[M]//YUNUS M, PATHRE U, MOHANTY P. Probing Photosynthesis: Mechansim, Regulation and Adaptation, London: Taylor and Francis Press, 2000: 445−483.
    [19] 李鹏民, 高辉远, STRASSER R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005, 31(6): 559 − 566.

    LI Pengmin, GAO Huiyuan, STRASSER R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis [J]. Study J Plant Physiol Mol Biol, 2005, 31(6): 559 − 566.
    [20] RICHARDSON A D, DUIGAN S P, BERLYN G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content [J]. New Phytol, 2010, 153(1): 185 − 194.
    [21] SCHANSKER G, SRIVASTAVA A, STRASSER R J. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves [J]. Funct Plant Biol, 2003, 30(7): 785 − 796. doi:  10.1071/FP03032
    [22] APPENROTH K J, STÖCKEL J, SRIVASTAVA A., et al. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements [J]. Environ Pollut, 2001, 115(1): 49 − 64. doi:  10.1016/S0269-7491(01)00091-4
    [23] 周云龙. 植物生物学[M]. 北京: 高等教育出版社, 1999.
    [24] 季鹏章, 梁名志, 宋维希, 等. 茶树珍稀品种‘紫娟’的叶片色素含量与叶色变化的关系研究[J]. 西南农业学报, 2010, 23(6): 1860 − 1862. doi:  10.3969/j.issn.1001-4829.2010.06.018

    JI Pengzhang, LIANG Minzhi, SONG Weixi, et al. Relationship between changes of pigments content and leaf color changing in ‘Zijuan’ (Camellia sinensis var. assamica) [J]. Southwest China J Agric Sci, 2010, 23(6): 1860 − 1862. doi:  10.3969/j.issn.1001-4829.2010.06.018
    [25] WANG Lu, YUE Chuan, CAO Hongli, et al. Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar [J]. BMC Plant Biol, 2014, 14(1): 352. doi:  10.1186/s12870-014-0352-x
    [26] GITELSON A A, MERZLYAK M N, LICHTENTHALER H K. Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm [J]. J Plant Physiol, 1996, 148(3/4): 501 − 508.
    [27] 李涛, 姜闯道. 密植对薄荷叶片光系统Ⅱ功能的影响[J]. 植物生理学报, 2017, 53(7): 1279 − 1286.

    LI Tao, JIANG Chuangdao. Effects of close planting on photosystem Ⅱ functions in Mentha haplocalyx leaves [J]. Plant Physiol Commun, 2017, 53(7): 1279 − 1286.
    [28] 孙小玲, 许岳飞, 马鲁沂, 等. 植株叶片的光合色素构成对遮阴的响应[J]. 植物生态学报, 2010, 34(8): 989 − 999.

    SUN Xiaoling, XU Yuefei, MA Luyi, et al. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment [J]. Chin J Plant Ecol, 2010, 34(8): 989 − 999.
    [29] 卢玉生, 官凤英, 彭超, 等. 竹笋截梢对绿竹生长及叶绿素荧光特性的影响[J]. 浙江农林大学学报, 2020, 37(1): 51 − 59.

    LU Yusheng, GUAN Fengying, PENG Chao, et al. Effects of bamboo shoot truncation on growth and chlorophyll fluorescence characteristics of Dendrocalamopsis oldhami [J]. J Zhejiang A&F Univ, 2020, 37(1): 51 − 59.
    [30] 韩涛. 叶绿素缺乏对水稻光系统光化学功能的影响[D]. 江苏: 南京农业大学, 2010..

    HAN Tao. Effect of Chlorophyll Deficiency on Photosystem Photochemistry and Photoinhibition in Rice[D]. Nanjing: Nanjing Agricultural University, 2010.
    [31] 徐秀玉, 程来亮, 金立桥, 等. AOX途径在苹果离体叶片失水过程中的光破坏防御作用[J]. 西北植物学报, 2016, 36(5): 964 − 970. doi:  10.7606/j.issn.1000-4025.2016.05.0964

    XU Xiuyu, CHENG Lailiang, JIN Liqiao, et al. Role of mitochondrial alternative oxidase(AOX) in photoprotection in apple detached leaf under water stress [J]. Acta Bot Boreali-Occident Sin, 2016, 36(5): 964 − 970. doi:  10.7606/j.issn.1000-4025.2016.05.0964
  • [1] 王昆伦, 蒋婷, 侯小菲, 马瑞杰, 王秋华, 李世友.  昆明地区17种园林竹鲜叶的燃烧性 . 浙江农林大学学报, 2020, 37(5): 963-970. doi: 10.11833/j.issn.2095-0756.20190612
    [2] 翟瑜, 周帅, 郝向春, 韩丽君.  低温对南极假山毛榉光系统Ⅱ的影响 . 浙江农林大学学报, 2020, 37(3): 506-513. doi: 10.11833/j.issn.2095-0756.20190366
    [3] 傅卢成, 卜柯丽, 王灵杰, 栗青丽, 高培军, 高岩, 张汝民.  毛竹茎秆快速生长期类囊体膜蛋白复合物BN-PAGE分析 . 浙江农林大学学报, 2020, 37(4): 664-672. doi: 10.11833/j.issn.2095-0756.20190398
    [4] 李凤, 齐锦秋, 肖辉, 陈玉竹, 谢九龙, 黄兴彦.  基于硬头黄竹材质变异分析的伐竹年龄判定 . 浙江农林大学学报, 2017, 34(5): 849-855. doi: 10.11833/j.issn.2095-0756.2017.05.011
    [5] 安苗苗, 刘静, 郦元, 周明兵.  花叶矢竹转录组中的转座子表达分析 . 浙江农林大学学报, 2016, 33(6): 935-943. doi: 10.11833/j.issn.2095-0756.2016.06.003
    [6] 张玮, 林振清, 杨前宇, 陈浙勇, 谢锦忠.  椽竹出笋与幼竹生长规律 . 浙江农林大学学报, 2015, 32(3): 478-482. doi: 10.11833/j.issn.2095-0756.2015.03.022
    [7] 郭卫珍, 张亚利, 王荷, 刘燕, 奉树成.  5个山茶品种的叶色变化及相关生理研究 . 浙江农林大学学报, 2015, 32(5): 729-735. doi: 10.11833/j.issn.2095-0756.2015.05.011
    [8] 许冰清, 安苗苗, 姜可以, 徐丽丽, 杨海芸, 周明兵.  花叶矢竹叶绿体psbD基因的克隆与功能分析 . 浙江农林大学学报, 2015, 32(4): 557-565. doi: 10.11833/j.issn.2095-0756.2015.04.010
    [9] 孙苏南, 王小德, 徐腾, 章宬, 王开利, 邓磷曦.  落羽杉秋冬季叶色变化的生理生态研究 . 浙江农林大学学报, 2014, 31(2): 302-307. doi: 10.11833/j.issn.2095-0756.2014.02.021
    [10] 张珊珊, 俞飞, 郭慧媛, 沈卫东, 王俊龙, 高荣孚, 张汝民, 侯平.  酸雨与凋落物复合作用对柳杉叶片色素和反射光谱的影响 . 浙江农林大学学报, 2014, 31(2): 254-263. doi: 10.11833/j.issn.2095-0756.2014.02.014
    [11] 许改平, 刘芳, 吴兴波, 温国胜, 王玉魁, 高岩, 高荣孚, 张汝民.  低温胁迫下毛竹叶片色素质量分数与反射光谱的相关性 . 浙江农林大学学报, 2014, 31(1): 28-36. doi: 10.11833/j.issn.2095-0756.2014.01.005
    [12] 黄可, 王小德, 柳翼飞, 刘猛.  红枫春季叶色变化与色素含量的相关性 . 浙江农林大学学报, 2012, 29(5): 734-738. doi: 10.11833/j.issn.2095-0756.2012.05.016
    [13] 苏文会, 范少辉, 彭颖, 俞友明, 张大鹏.  车筒竹、箣竹和越南巨竹竹材的纤维形态与组织比量 . 浙江农林大学学报, 2011, 28(3): 386-390. doi: 10.11833/j.issn.2095-0756.2011.03.007
    [14] 董大川, 孔振, 杨伟晰, 李爽爽, 高荣孚, 高培军.  基于四阶导数毛竹冠层叶片反射光谱特性分析 . 浙江农林大学学报, 2011, 28(6): 893-899. doi: 10.11833/j.issn.2095-0756.2011.06.009
    [15] 徐金梅, 赵荣军, 吕建雄, 费本华.  实心瓜多竹竹材纤维和导管分子的变异规律 . 浙江农林大学学报, 2010, 27(4): 545-549. doi: 10.11833/j.issn.2095-0756.2010.04.011
    [16] 陈双林, 杨清平, 郭子武.  小佛肚竹竹丛结构对新竹秆形变异的影响 . 浙江农林大学学报, 2008, 25(1): 123-126.
    [17] 张晓宁, 欧晓红, 陈杰, 司徒英贤.  云南不同地点及海拔异色瓢虫鞘翅色斑变异比较 . 浙江农林大学学报, 2008, 25(5): 565-568.
    [18] 郁重彦, 童再康, 黄华宏, 朱玉球.  近红外反射光谱法测定厚朴酚类物质 . 浙江农林大学学报, 2007, 24(5): 544-549.
    [19] 李克恩.  森得保和苏云金杆菌防治竹织叶野螟药效对比试验 . 浙江农林大学学报, 2006, 23(4): 445-448.
    [20] 胡超宗, 金爱武, 郑建新.  雷竹地下鞭的系统结构 . 浙江农林大学学报, 1994, 11(3): 264-268.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200360

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021//1

计量
  • 文章访问数:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-31
  • 修回日期:  2020-12-28

不同叶色矢竹叶片反射光谱及光化学特性

doi: 10.11833/j.issn.2095-0756.20200360
    基金项目:  国家自然科学基金资助项目(31901370);宜宾市引进高层次人才项目(2018YG02);浙江农林大学大学生科研训练项目(20161010123)
    作者简介:

    王洁(ORCID: ),从事植物生物技术研究,E-mail: 1219986501@qq.com

    通信作者: 杨海芸(ORCID: 0000-0001-8446-2007),副教授,博士,从事竹类植物发育特性研究,E-mail: yhy2006@zafu.edu.cn
  • 中图分类号: Q945.1

摘要:   目的  通过解析矢竹Pseudosasa japonica不同叶色叶片反射光谱特性、光系统Ⅱ(PSⅡ)和光系统Ⅰ(PSⅠ)特性之间的差异,探索不同叶色竹种光合能力差异,从生理角度分析矢竹叶色变异特性并为进一步探究叶色变异机制奠定基础。  方法  取生长健壮的矢竹叶片(GL)、花叶矢竹P. japonica f. akebonosuji复绿叶片(AL)、花叶矢竹条纹叶片[(SL)包括白色部分(SA)和绿色部分(SG)]、曙筋矢竹P. japonica f. akebono(VL)4种不同叶色叶片为材料,测定其光合色素质量分数、叶绿素归一化指数(ChlNDI)、光化学植被指数(PRI)、快速荧光动力学参数及820 nm相对吸收值。  结果  叶片叶绿素质量分数从大到小依次为GL、SL、VL、AL;不同叶色矢竹叶片的叶绿素归一化指数、光化学植被指数变化趋势一致,从大到小依次均为GL、SG、VL、SA、AL;4个色叶的光系统Ⅰ最大氧化还原能力从大到小依次为GL、VL、SG、AL;花叶矢竹复绿叶、条纹绿叶和曙筋矢竹都具有叶绿素荧光曲线动力学活性,但光系统Ⅱ反应中心开放降低程度与矢竹差异显著(P<0.05),能量用于电子传递份额变小;缺乏叶绿素使得单位反应中心吸收的光能不断增加,可能是因为它需要更多的反应中心来应对其较低的转化效率,但最大光化学效率(Fv/Fm)和叶片性能指数(PIABS)都逐渐降低,可能是光系统Ⅱ反应中心发生可逆失活,能吸收光能但不能推动电子传递。  结论  叶色变异导致矢竹叶片光合色素质量分数存在差异,进而影响叶绿素归一化指数和光化学反射指数特征参数,叶绿素缺乏会影响光系统Ⅱ活性反应中心发生可逆性失活。花叶矢竹条纹叶片反应中心较少,但仍具有较好的光系统Ⅱ活性和叶绿素水平,维持较好的光合能力,这可能与其独特的花叶性状有关。图8表2参31

English Abstract

王洁, 陈柯伊, 金海, 李朝娜, 成敏敏, 杨海芸. 不同叶色矢竹叶片反射光谱及光化学特性[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200360
引用本文: 王洁, 陈柯伊, 金海, 李朝娜, 成敏敏, 杨海芸. 不同叶色矢竹叶片反射光谱及光化学特性[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200360
WANG Jie, CHEN Keyi, JIN Hai, LI Zhaona, CHENG Minmin, YANG Haiyun. Reflection spectrum and photochemical characteristics of different colors’ leaves in Pseudosasa japonica[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200360
Citation: WANG Jie, CHEN Keyi, JIN Hai, LI Zhaona, CHENG Minmin, YANG Haiyun. Reflection spectrum and photochemical characteristics of different colors’ leaves in Pseudosasa japonica[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200360

返回顶部

目录

    /

    返回文章
    返回