-
彩叶植物是指在整个生长季节或生长季节的某一阶段全部或部分叶片较稳定地呈现非绿色的植物[1],在园林中应用非常广泛。叶色作为观赏植物的重要性状之一,其主要的呈色物质是叶绿素、类胡萝卜素和花青素[2],它们的类型、比例和分布是叶片颜色发生变化的基础[3]。花青素是一类重要的类黄酮色素,通常积聚在叶片的表皮或表皮细胞、栅栏组织和海绵组织中[4],彩叶植物叶片颜色的呈现在很大程度上受花青素含量的影响。花青素的合成、降解以及稳定性均会影响叶片和花瓣等组织的色泽变化[5]。此外,可溶性蛋白是植物体内重要渗透调节物质,糖类是花青素合成的前体和信号物质,它们也间接影响花青素的形成[6];过氧化物酶(POD)是一种可能与花青素降解有关的酶,能够促进花青素的降解[7];液泡内pH值的变化可以影响液泡中花青素的稳定性进而改变植物颜色[8]。因此,植物的叶色变化涉及多种因素,阐明植物叶色形成及变化机制有助于人们更好地选择和培育具有理想叶色的植物,为园林绿化和观赏植物的应用提供更多可能性。
彩叶桂Osmanthus fragrans Colour Group主要特点在于枝条或叶片呈现鲜明的色彩变异,具有较高的观赏价值[9]。目前对于彩叶桂品种的分类主要是根据成型叶片的颜色[10],然而这种分类方式相对宽泛,对色系划分并不精确。对于彩叶桂叶片变色机制的研究集中在单个品种上[11],还未对不同品种之间的差异进行分析和比较。因此,本研究选取29份彩叶桂种质材料,运用量化标准并结合聚类分析方法对其进行分类[12]。同时,从中选择2个代表性品系(‘罗彩3号’‘Luocai 3’和‘罗彩28号’‘Luocai 28’)进行色素分布观察、组分定性、含量测定以及生理指标的测定,明确彩叶桂色素积累特征及变化规律,以期为彩叶桂的品种分类、筛选和改良提供理论依据。
-
于2023年3—6月随机选择29个生长健壮、长势一致的彩叶桂品系进行调查。根据叶片的生长状态和变色情况,划分为S1 (0%变色)、S2 (30%变色)、S3 (50%变色)、S4 (80%变色)和S5 (100%变色) 5个时期。从中选取2个代表性品系(‘罗彩3号’和‘罗彩28号’)进行色素分布观察、组分定性、含量测定以及生理指标的测定。取样时每个品系选取10株以上,每株植株取当年生枝条的第2至3轮叶片。
-
用便携式全自动色差仪(CR-10,日本)测定叶片上表皮的明度(L*)、红度(a*)、黄度(b*)、彩度(C*)和色相角(h)。采用英国皇家园艺学会标准比色卡(RHSCC)对29个不同品系的彩叶桂叶片的不同时期进行比对。每个品系5个生物学重复。
-
色素分布观察采用徒手切片法[13];色素组分定性参照白新祥等[14]的方法;叶绿素测定采用体积分数为80%的丙酮浸提法[15];类胡萝卜素测定参照陈建等[16]的方法;花青素的提取使用甲醇∶水∶甲酸∶三氟乙酸=70∶27∶2∶1(体积比)的提取液[17],采用UPLC-Triple-TOF/MS系统对叶片中花青素进行测定。色谱柱为ACQUITY UPLC BEH-C18柱(1.7 μm,2.1 mm×100.0 mm),以体积分数为1%的甲酸水溶液(A)和1%的甲酸乙腈(B)为流动相,进样量为3 μL,柱温为40 ℃,流速0.4 mL·min−1。洗脱程序为:0 min,95%A和5%B (体积分数);2 min,90%A和10%B (体积分数);12 min,5%A和95%B (体积分数);14 min,5%A和95%B (体积分数);15 min,95%A和5%B (体积分数);17 min,95%A和5%B (体积分数)。花青素的检测波长为520 nm,通过标准品半定量法计算叶片中花青素相对于标准品的含量。花青素标准品为矢车菊素-3-O-芸香糖苷。
-
可溶性蛋白测定采用考马斯亮蓝法[15];可溶性糖测定采用蒽酮比色法[18];POD活性测定采用愈创木酚法[19];pH值测定参照唐前瑞等[20]的方法。
-
叶片色素和生理指标测定均进行3个生物学重复。使用Excel 2020、Origin 2021以及SPSS 27.0软件进行数据统计分析和作图,采用邓肯新复极差法对不同时期各指标数据进行差异显著性分析,采用皮尔逊系数对叶色表型参数和影响因素进行相关性分析。
-
在变色前期(S1和S2时期),彩叶桂叶片颜色呈现多样性,包括紫粉色、红色、红棕色、红橙色、黄棕色和橄榄棕色等多种颜色;而在变色中后期(S3至S5时期),叶片颜色相对趋于一致,普遍呈现从黄色、黄绿色到橄榄绿色的变化(表1)。从图1A~B可见:明度、红度、黄度在S1和S2时期相对接近,S3和S4时期也相对接近。S1和S2时期具有较高的红度,而S4和S5时期则具有较高的黄度。此外,S1、S2和S5时期具有较高的重叠度,S3则和S4时期具有较高的重叠度,同时S3和S4时期的明度和彩度均高于S1、S2和S5时期(图1C)。
表 1 不同彩叶桂品系叶色变化
Table 1. Leaf color changes of 29 cultivars of O. fragrans Colour Group
序号 品系 时期 S1 S2 S3 S4 S5 1 ‘罗彩2号’‘Luocai 2’ 紫粉色 红色 黄棕色 黄绿色 橄榄绿色 2 ‘罗彩3号’‘Luocai 3’ 红色 红棕色 黄棕色 黄绿色 橄榄绿色 3 ‘罗彩4号’‘Luocai 4’ 红棕色 红橙色 黄色 黄绿色 黄绿色 4 ‘罗彩6号’‘Luocai 6’ 红色 红色 黄绿色 黄绿色 橄榄绿色 5 ‘罗彩7号’‘Luocai 7’ 红橙色 红橙色 黄色 黄绿色 橄榄绿色 6 ‘罗彩22号’‘Luocai 22’ 红橙色 红橙色 黄色 黄绿色 黄绿色 7 ‘罗彩23号’‘Luocai 23’ 红棕色 红棕色 黄绿色 黄绿色 黄绿色 8 ‘罗彩26号’‘Luocai 26’ 红橙色 红色 橄榄棕色 黄绿色 橄榄绿色 9 ‘罗彩27号’‘Luocai 27’ 红橙色 黄棕色 橄榄棕色 黄绿色 橄榄绿色 10 ‘罗彩28号’‘Luocai 28’ 红色 红橙色 黄色 黄绿色 橄榄绿色 11 ‘罗彩29号’‘Luocai 29’ 红色 红棕色 橄榄棕色 黄绿色 橄榄绿色 12 ‘罗彩30号’‘Luocai 30’ 红色 红棕色 橄榄棕色 黄绿色 橄榄绿色 13 ‘罗彩31号’‘Luocai 31’ 红色 紫粉色 黄色 黄绿色 橄榄绿色 14 ‘罗彩33号’‘Luocai 33’ 红橙色 黄棕色 黄色 黄绿色 橄榄绿色 15 ‘罗彩34号’‘Luocai 34’ 红色 红色 黄色 黄绿色 橄榄绿色 16 ‘罗彩36号’‘Luocai 36’ 棕色 红橙色 橄榄棕色 黄绿色 橄榄绿色 17 ‘罗彩37号’‘Luocai 37’ 红色 红橙色 黄色 黄绿色 橄榄绿色 18 ‘罗彩46号’‘Luocai 46’ 红色 紫粉色 黄色 黄绿色 橄榄绿色 19 ‘罗彩47号’‘Luocai 47’ 红橙色 橄榄棕色 黄色 黄绿色 橄榄绿色 20 ‘罗彩55号’‘Luocai 55’ 红棕色 红棕色 黄色 黄绿色 橄榄绿色 21 ‘罗彩59号’‘Luocai 59’ 棕色 红棕色 黄棕色 黄绿色 橄榄绿色 22 ‘罗彩62号’‘Luocai 62’ 红色 红色 黄色 黄绿色 橄榄绿色 23 ‘罗彩65号’‘Luocai 65’ 红棕色 红棕色 黄色 黄绿色 黄绿色 24 ‘罗彩66号’‘Luocai 66’ 红橙色 红橙色 黄色 黄绿色 橄榄绿色 25 ‘罗彩77号’‘Luocai 77’ 红橙色 红橙色 黄色 黄绿色 黄绿色 26 ‘罗彩82号’‘Luocai 82’ 红棕色 红色 黄色 黄绿色 橄榄绿色 27 ‘罗彩88号’‘Luocai 88’ 红色 红棕色 黄色 黄绿色 黄绿色 28 ‘罗彩151号’‘Luocai 151’ 红棕色 橄榄棕色 黄色 黄绿色 黄绿色 29 ‘罗彩153号’‘Luocai 153’ 红色 红棕色 黄色 黄绿色 黄绿色 说明:不同时期的叶色均是通过英国皇家园艺学会标准比色卡(RHSCC)测定得来。 图 1 不同时期彩叶桂叶色参数的空间关系
Figure 1. Spatial relationship of color parameters of different strains of O. fragrans Colour Group
在S2时期,彩叶桂的叶色呈现出丰富的色彩,而且叶片发育相对成熟。因此,基于S2时期的叶色参数,对29个彩叶桂品系进行聚类分析,将其分为两大类共3个色系(图2):即红棕色系(第Ⅰ类第1亚类,包括‘罗彩23号’‘Luocai 23’至‘罗彩34号’‘Luocai 34’等12个品系)、橙棕色系(第Ⅰ类第2亚类,包括‘罗彩47号’‘Luocai 47’至‘罗彩27号’‘Luocai 27’等14个品系)和紫粉色系(第Ⅱ类,包括‘罗彩6号’‘Luocai 6’至‘罗彩46号’‘Luocai 46’等3个品系)。彩叶桂叶色参数在红度、黄度坐标上均分布在正数范围内,且各色系之间可明显区分(图3A)。在以明度、红度和黄度构建的三维象限图中,各色系集中分布在1条主线附近,呈带状分布(图3B)。通过对3个色系的明度、红度和黄度分析发现:橙棕色系的明度和黄度最高,红棕色系次之,而紫粉色系最低。尽管橙棕色系与红棕色系部分样本的明度存在重叠,但是可以通过红度和黄度进行区分。
-
对红棕色系和橙棕色系这2个颜色相近的色系进行研究发现:在叶片生长过程中,红棕色系的‘罗彩3号’叶片呈红色—红棕色—黄棕色—黄绿色—橄榄绿色的变化(图4A),橙棕色系的‘罗彩28号’‘Luocai 28’叶片呈红色—红橙色—黄色—黄绿色—橄榄绿色的变化(图4B)。这2个色系在叶片生长过程中的颜色变化略有不同,其中‘罗彩3号’在颜色过渡中呈现出较多的红色和红棕色调,而‘罗彩28号’则有更多的橙色和橙棕色调。解剖结构发现:在S1和S2时期,2个品系叶片的叶肉和叶脉横截面细胞中以红色色素为主,且主要分布在表皮细胞中。其中‘罗彩3号’细胞颜色逐渐加深,‘罗彩28号’的红色色素由多变少。随着叶片生长到S3至S5时期,叶肉细胞中的绿色色素逐渐增加,表皮细胞中红色色素逐渐减少。
图 4 彩叶桂在不同叶色期的表型和显色反应
Figure 4. Phenotype and color response of O. fragrans Colour Group at different leaf color stages
此外,显色反应表明:‘罗彩3号’和‘罗彩28号’在S1至S3时期石油醚的提取液呈接近透明的状态,推测叶片中可能不含或仅含少量类胡萝卜素;然而,在S4至S5时期,提取液逐渐呈现黄色,表明类胡萝卜素质量分数逐渐增加。在体积分数为10%的盐酸反应中,‘罗彩3号’和‘罗彩28号’在S1和S2时期的提取液呈现不同程度的红色,说明叶片中含有较多的花青素;然而,在S3至S5时期,提取液的颜色逐渐减淡,说明花青素质量分数逐渐减少。在体积分数为30%的氨水反应中,所有样品的提取液呈现浅棕色,表明叶片中均含有黄酮类或黄酮醇类化合物(图4C和图4D)。
-
色素测定(图5)发现:在叶片生长过程中,‘罗彩3号’和‘罗彩28号’的叶绿素a、叶绿素b呈明显的增加趋势,‘罗彩3号’在S5时期显著增加(P<0.05),而‘罗彩28号’在S4时期显著增加(P<0.05),这与叶片变绿的过程一致;同样,类胡萝卜素质量分数也随着叶片生长逐渐增加。相反的,花青素质量分数在叶片生长过程中显著减少(P<0.05)。2个品系的花青素/叶绿素以及花青素/类胡萝卜素均呈下降趋势。‘罗彩3号’在S1和S3时期类胡萝卜素/叶绿素相对较高,而‘罗彩28号’则在S1时期相对较高。
-
生理指标测定发现:在叶片生长过程中,可溶性蛋白质量分数没有明显的变化规律(图6A),但可溶性糖质量分数整体上呈先下降后上升的趋势。从S3时期开始,2个品系叶片中的可溶性糖质量分数开始增加,但‘罗彩3号’在S5时期出现轻微下降趋势(图6B)。此外,POD活性在叶片生长过程中呈上升趋势,‘罗彩3号’的POD活性持续增加,而‘罗彩28号’的POD活性前期上升较小,中后期上升幅度较大(图6C)。2个品系叶片细胞液的pH在整个生长过程中保持弱酸性水平,整体上无明显变化(图6D)。
-
相关性分析(图7)显示:彩叶桂叶片的明度、色相角与各色素及生理指标间均无显著相关;红度与花青素、花青素/叶绿素、类胡萝卜素/叶绿素间呈显著正相关(P<0.05),与花青素/类胡萝卜素间呈极显著正相关(P<0.01),与叶绿素和POD活性呈显著负相关(P<0.05),与类胡萝卜素呈极显著负相关(P<0.01);黄度与花青素、花青素/叶绿素、花青素/类胡萝卜素间呈极显著负相关(P<0.01);彩度与可溶性糖呈显著负相关(P<0.05)。此外,叶绿素与类胡萝卜、POD活性呈极显著正相关(P<0.01),与类胡萝卜素/叶绿素呈极显著负相关(P<0.01);类胡萝卜素与POD活性呈极显著正相关(P<0.01),与类胡萝卜素/叶绿素、花青素/类胡萝卜素间呈显著负相关(P<0.05);花青素与类胡萝卜素/叶绿素呈显著正相关(P<0.05),与花青素/叶绿素、花青素/类胡萝卜素间呈极显著正相关(P<0.01)。
-
彩叶桂以其丰富的叶色变化而备受青睐,具有较高的观赏价值。冯园园[10]根据成型叶叶片颜色将彩叶桂划分为红色系和黄色系,其中红色系在特定时期转为黄色。然而,这种分类方式相对宽泛,对色系划分不够精细。本研究通过对S2时期叶片颜色变化分析发现:叶片不仅呈色丰富,而且发育相对成熟。通过聚类分析将彩叶桂划分为两大类共3个色系,即红棕色系(第Ⅰ类第1亚类)、橙棕色系(第Ⅰ类第2亚类)和紫粉色系(第Ⅱ类)。其中,橙棕色系具有较高的明度和黄度,红棕色系次之,而紫粉色系则具有较高的红度。以上结果表明:彩叶桂整体上可分为2个明显的颜色类别,但第Ⅰ类可以进一步区分,这表明即使在同一主色系下,彩叶桂叶色仍存在差异。
叶片中的色素种类、质量分数、比例及分布位置等的差异都是影响叶色变化的关键因素[1]。叶绿素、类胡萝卜素和花青素变化时将导致叶片颜色发生改变[21]。在本研究中,2个品系的花青素主要分布在彩叶桂幼嫩叶片的上、下表皮细胞中。随着叶片的生长,红色色素逐渐减少,而绿色色素不断增加,最终导致成熟叶片呈现出稳定的绿色形态。通过对不同变色时期叶片的色素质量分数比较发现:花青素的减少伴随着叶绿素的持续上升,这可能是叶片颜色变化的重要因素之一;与此同时,虽然类胡萝卜素质量分数逐渐上升,但其变化并不显著,可能在叶片颜色形成过程中的作用相对较小。类似的变化也在其他植物如芍药Paeonia lactifora[22]、岭南槭Acer tutcheri[23]和红枫Acer palmatum‘Atropurpureum’ [24]中观察到。在S2时期,‘罗彩3号’和‘罗彩28号’叶片的叶绿素质量分数分别为67.42、64.04 μg·g−1;类胡萝卜素质量分数分别为18.14、29.01 μg·g−1;花青素质量分数分别为66.40、28.81 μg·g−1。2个品系的叶绿素质量分数相对接近,但花青素和类胡萝卜素的质量分数和比值存在差异。‘罗彩3号’的花青素/类胡萝卜素大于‘罗彩28号’,表明红棕色系和橙棕色系的区别在于花青素和类胡萝卜素的质量分数和比值。
糖类不仅是花青素合成的前体,还扮演着信号物质的角色;可溶性蛋白质在植物体内被认为是重要的渗透调节物质,通过一定生理代谢来调节花青素的形成[6]。聂庆娟等[25]对美国红栌Cotinus coggygria ‘Royal Purple’研究发现:变色期的红色叶片中具有较高的可溶性蛋白和可溶性糖。类似地,本研究2个品系在S1时期的红色叶片中也显示出相对较高的可溶性蛋白和可溶性糖。然而,两者均与叶片内花青素的相关性不显著,这与唐生森等[26]在枫香Liquidambar formosana中的研究结果相似。POD是以花青素为底物的酶,其作用是催化花青素的氧化过程,导致花青素失去颜色[7]。在本研究中,2个品系的POD活性均呈上升趋势。与此同时,POD活性与叶绿素和类胡萝卜素呈显著正相关,但与花青素的相关性则不显著,这与枫香[27]的研究结果相似。这暗示着POD可能不是彩叶桂叶片中影响花青素降解的主要酶,但对叶绿素和类胡萝卜素质量分数的积累具有正向促进作用,作用强弱因品系不同而略有差异。pH是液泡环境的重要特征,对水溶性色素的稳定性和活性产生影响;随着pH的升高,花色苷稳定性降低[28]。以红罗宾石楠Photinia × fraseri ‘Red Robin’[29]为例,其叶色变绿主要与叶片细胞液中的pH上升引起的花青素质量分数下降有关。然而,在整个变色期内,2个品系彩叶桂叶片的pH基本保持稳定,且始终保持在弱酸性水平,与叶色参数及色素间均不存在显著相关,这说明彩叶桂的叶色变化与pH无关。
-
综上所述,基于S2时期的叶色参数可对彩叶桂进行详细的色系划分。彩叶桂叶色变化主要受花青素质量分数减少和叶绿素质量分数增加的影响,而POD在其中发挥了重要作用。花青素和类胡萝卜素的质量分数及其比值可区分红棕色系和橙棕色系,不同品种的彩叶桂叶色变化受其自身特性的影响。
Color change and physiological characteristics in Osmanthus fragrans Colour Group
-
摘要:
目的 探讨彩叶桂Osmanthus fragrans Colour Group在生长过程中叶色变化及相关生理特征,为彩叶桂的品种分类、筛选和改良提供理论依据。 方法 选取29份彩叶桂种质材料,运用量化标准并结合聚类分析方法对其进行分类。同时,从中选择2个代表性品系(‘罗彩3号’‘Luocai 3’和‘罗彩28号’‘Luocai 28’)进行色素分布观察、组分定性、质量分数测定以及生理指标测定。 结果 基于叶片变色30%的叶色参数进行聚类分析,将彩叶桂品系分为两大类共3个色系,即红棕色系(第Ⅰ类第1亚类)、橙棕色系(第Ⅰ类第2亚类)和紫粉色系(第Ⅱ类)。解剖结构显示:花青素主要分布在幼嫩叶片的上下表皮细胞中,并随着叶片生长逐渐减退。同时,花青素质量分数逐渐下降,叶绿素质量分数持续上升,而类胡萝卜素质量分数虽逐渐上升但变化不显著。在叶片生长过程中,2个品系可溶性蛋白和可溶性糖质量分数的变化无明显规律,但在叶片变色为0时相对较高;过氧化物酶(POD)活性不断增加,但‘罗彩3号’在每个时期均高于‘罗彩28号’;叶片pH无显著变化且始终处于酸性范围。 结论 基于叶片变色30%的叶色参数可对彩叶桂进行色系划分。彩叶桂叶色变化主要受花青素质量分数减少和叶绿素质量分数增加的影响,而POD在其中发挥了重要作用。红棕色系和橙棕色系之间的区别在于花青素和类胡萝卜素的质量分数及其比值。图7表1参29 Abstract:Objective This study, with an investigation of the classification of Osmanthus fragrans Colour Group and the changes of leaf color and related physiological characteristics during its growth, is aimed to provide theoretical basis for the classification, selection and improvement of Colour Group. Method With a total of 29 germplasm materials of Colour Group selected and classified by quantitative criteria and cluster analysis, two representative lines (‘Luocai 3’and ‘Luocai 28’) were selected to observe the pigment distribution, component qualitative analysis, content determination and physiological index determination. Result Based on the cluster analysis at the stage of 30% leaf discoloration (S2), the cultivars were divided into two categories and three color series, namely the reddish brown series (the first subclass of Class Ⅰ), the orange brown series (the second subclass of Class I), and the purple pink series (the second subclass of Class Ⅱ). The anatomical structures of the two strains showed that anthocyanins were mainly distributed in the upper and lower epidermal cells of young leaves, and gradually decrease with leaf growth with the content of anthocyanins gradually decreasing, the content of chlorophyll continuing to rise and the content of carotenoids gradually increasing insignificantly. During the growth process of leaves, there was no significant pattern in the changes of soluble protein and soluble sugar content between the two, but they were relatively high in the S1 stage. The POD activity continued to increase, with ‘Luocai 3’ being higher than ‘Luocai 28’ at each stage and the pH value of the leaves showed no significant change and remained within the acidic range. Conclusion Based on the leaf color parameters of the S2 period, a detailed color scheme division can be carried out for Colour Group. The color change of Colour Group leaves is mainly affected by the decrease in anthocyanin content and the increase in chlorophyll content, in which POD plays an important role. The difference between the reddish brown and orange brown series lies in the content and ratio of anthocyanins and carotenoids. [Ch, 7 fig. 1 tab. 29 ref.] -
过量施用无机肥导致地表水体富营养化和土壤退化,从而使土壤生产力下降[1−4]。因此,优化养分管理措施,减少土壤氮磷的流失和提高肥料利用效率迫在眉睫。有机肥和炭基肥替代化肥是减少环境污染和维持作物产量的有效选择[5-7],两者均是通过调整土壤养分供应与作物养分需求,以达到增加肥料利用效率和减少氮磷流失的目的。有机肥养分供应速率取决于有机物质的矿化[8],炭基肥则取决于生物质炭和包覆材料的溶解与扩散[6]。有机肥替代化肥能减少稻田氮素淋溶和径流损失8.7%~25.6%[9-10] 并提高水稻Oryza sativa产量21%~24%[11],水稻氮素利用效率随有机肥比例的增高而增高,但有机肥比例超过 75%则氮素利用效率降低[10]。炭基肥能减少烟草Nicotiana tabacum地氮素淋溶损失的6.45%~8.36%,但减少氮素淋溶效应量随炭基肥添加量的增加而降低[12]。有机肥及炭基肥替代化肥对氮素利用效率和产量的影响效应量大小受肥料类型、施用量、替代率、栽培类型和作物种类影响。如相比尿素,炭基肥能分别提高茶Camellia sinensis 、肉桂Cinnamomum cassia和甜瓜Cucumis mel 产量43%、166%和 176%[13]。坡耕地土壤有着更高侵蚀风险,且即使同为坡耕地,种植甘薯Ipomoea batatas比荒草和谷子的侵蚀风险更高[14]。由于氮磷流失方式的间歇性、流失时间的随机性、流失机制的复杂性、流失途径和流失量的不确定性[15],坡地强化径流的条件下,甘薯坡耕地采用有机肥和炭基肥替代化肥的措施对氮磷养分径流损失的影响难以预测。本研究旨在探讨有机肥和炭基肥替代化肥对甘薯坡耕地土壤径流氮磷流失质量浓度、径流氮磷流失量及其形态的影响,同时分析了径流养分流失量和土壤化学性质之间的关系,以期为甘薯坡耕地径流流失情况和施肥管理措施提供理论依据。
1. 材料与方法
1.1 研究区概况
研究区位于浙江省杭州市临安区板桥镇葱坑村( 30°05′27.64″N,119°44′03.44″E)。该区属亚热带湿润季风气候,四季分明,年日照时数为1 946 h,无霜期为239 d,年平均气温为15.8 ℃,年平均降水量为1 629 mm。海拔为150 m,土壤为红壤土类黄红壤亚类。
1.2 试验设计
按照随机区组设计4个施肥处理(表1):不施肥(对照)、常规化肥、50%质量分数有机肥+50%质量分数化肥(有机肥50%替代)、炭基肥,每个处理重复3次,小区面积为30 m2。为防止发生侧渗和串灌,各小区之间均用水泥浇灌了宽20 cm,深30 cm的水泥墙。每个小区均配有1个单独的排水口和坡地径流池用于采集地表径流水。甘薯 ‘清香’I. batatas ‘Qingxiang’等高起垄栽插薯苗,行距50 cm,株距30 cm,密度为6.8 万株·hm−2。2020年6月8日施基肥,6月9日移栽插秧,7月20日施追肥,肥料均匀撒施后翻耕,肥料施于土层0~5 cm处。于2020年10月24日收获。
表 1 施肥方案Table 1 Fertilizer types and rates处理 施用量/(kg·hm−2) m(氮)︰m(五氧化二磷)︰
m(氧化钾)基肥 追肥 不施肥(对照) 0 0 0︰0︰0 常规化肥 尿素 195.66;钙镁磷肥 500.00;
硫酸钾 577.00尿素 195.66;钙镁磷肥500.00;
硫酸钾 577.0090︰60︰300 50%质量分数有机肥+50%质量
分数化肥 (有机肥50%替代)菜籽饼900.00;尿素 97.67;
钙镁磷肥312.67;硫酸钾 559.67菜籽饼900.00;尿素 97.67;钙
镁磷肥312.67;硫酸钾 559.6790︰60︰300 炭基肥 炭基肥500.00;钙镁磷肥291.67;硫
酸钾480.67炭基肥500.00;钙镁磷肥291.67;
硫酸钾480.6790︰60︰300 说明:尿素中氮质量分数为46%;钙镁磷肥中五氧化二磷质量分数为12%;硫酸钾中氧化钾质量分数为52%;菜籽饼中m(氮)∶m(五氧化二磷)∶m(氧化钾)∶m(碳)=5.0∶2.5∶1.0∶46.0,有机质质量分数为85%;炭基肥由遂昌绿金有机肥有限公司研制,m(氮)∶m(五氧化二磷)∶m(氧化钾)∶m(碳)=18∶5∶10∶25,直径为2~4 mm。其中,生物质炭质量分数为12%,由稻草通过在400~500 ℃缓慢热解,在无氧条件下热解1 h。生物炭质比表面积和孔体积分别为224.2 m2·g−1和0.11 cm3·g−1。 1.3 径流和土壤样品采集及处理
分别在2020年的6月22日、7月1日、7月7日、7月12日、7月17日、7月30日及9月21日收集地表径流,先测量径流池水位高度以计算径流水量,再将池内径流水充分搅匀,最后在池中不同部位、不同深度用采水器进行多点混合采集。水样置于4 ℃保存,并带回实验室即刻处理。
收获甘薯后,每个小区随机选择 5 个位置采集 0~20 cm 土层土样,充分混合后组成一个土样。在土壤样品采集过程中,使用不锈钢容重环刀(直径5.05 cm,高5.00 cm)采集土壤容重样品。将样品分为2份,1份湿土除去可见的根,过 2 mm 筛,用于测定土壤铵态氮和硝态氮。另1份风干,除去可见的根和有机物,然后木盘研磨并过2 mm筛,用于测定土壤pH、速效钾、有效磷。再从过2 mm 筛土壤样品中挑选部分土样用玛瑙研钵研磨并过0.15 mm 筛,用于测定土壤有机碳、总氮、总磷和总钾。
1.4 样品分析
径流水样总氮、可溶性氮采用碱性过硫酸钾消解紫外分光光度法(GB 11894—1989)测定。径流水样总磷和可溶性磷采用过硫酸钾消解钼蓝比色法(GB 11893—1989)。径流水样铵态氮和硝态氮采用间断分析仪测定。采用 pH 计法测定径流水样 pH。
土壤样品中的有机碳和总氮采用元素分析仪测定;土壤全磷采用高氯酸-硫酸消煮、钼锑抗比色法测定;土壤全钾采用氢氧化钠熔融、火焰光度法测定;土壤有效磷采用0.030 mol·L−1氟化铵-0.025 mol·L−1盐酸浸提、钼锑抗比色法测定;土壤速效钾采用醋酸铵浸提、火焰光度法测定;土壤硝态氮、氨态氮采用氯化钾浸提—间断分析仪测定。
1.5 计算和统计分析
氮磷流失量(R, kg·hm−2):
$ R = \displaystyle \sum\limits_{n = 1}^n {{C_i}} {V_i} $ ;氮磷流失系数(Cr):$ {C}_{\text{r}}=({R}_{\text{m}}-{R}_{0})/{R}_{\text{f}} $ ;颗粒态氮(PN)质量浓度(NP,mg·L−1):$ {N_{\rm{P}}} = {N_{\rm{T}}} - {N_{\rm{D}}} $ ;颗粒态磷(PP)质量浓度(PP,mg·L−1):$ {P_{\rm{P}}} = {P_{\rm{T}}} - {P_{\rm{D}}} $ ;可溶性有机氮(DON)质量浓度(NDO,mg·L−1):$ {N_{{\rm{DO}}}} = {N_{\rm{D}}} - {N_{\rm{N}}} - {N_{\rm{A}}} $ 。其中:Ci为第 i 次径流水中氮、磷的质量浓度(mg·L−1);Vi为第 i 次径流水的体积(m3);n为总径流次数;Rm为不同施肥类型氮磷流失量;R0为不施肥氮磷流失量;Rf 为不同施肥类型肥料施用量;NT为总氮(TN)质量浓度(mg·L−1);ND为可溶性总氮(DN)质量浓度(mg·L−1);PT为总磷(TP)质量浓度(mg·L−1);PD为可溶性总磷(DP)质量浓度(mg·L−1);NN为硝态氮(NN)质量浓度(mg·L−1);NA为铵态氮(AN)质量浓度(mg·L−1)。利用SPSS 26.0进行数据统计分析,采用单因素方差分析和邓肯法多重比较检验不同处理间的差异显著性(P<0.05)。利用主成分分析(PCA)确定径流氮磷及其形态之间相互依存的结构。利用冗余分析(RDA)检查土壤特性与土壤径流氮磷及其形态之间的关系。
2. 结果与分析
2.1 不同处理下径流产流时间对不同形态氮磷质量浓度和 pH 的影响
重复测量模型(图1)表明:不同处理、径流产流时间及其相互作用对径流总氮、颗粒氮、硝态氮和铵态氮质量浓度均存在显著影响(P<0.05),地表径流总氮、颗粒氮、硝态氮和铵态氮质量浓度存在峰值效应,并且不同径流产流过程中不同处理的影响也不同。施肥初期,与常规化肥相比,有机肥50%替代和炭基肥处理的径流总氮质量浓度分别减少了58.4%和49.0%;颗粒氮质量浓度分别减少了84.5%和78.3%;硝态氮质量浓度分别减少了32.1%和26.4%;铵态氮质量浓度分别减少了66.1%和80.0%。施肥中后期,常规化肥、有机肥50%替代和炭基肥对径流中总氮、颗粒氮、硝态氮和铵态氮质量浓度的影响较小。
不同处理和径流产流时间显著影响径流可溶性氮和总磷质量浓度(P<0.05),且不同肥料类型的影响趋向一致。无论径流产流时间如何变化,有机肥50%替代处理的径流中可溶性氮和总磷质量浓度分别为5.23 、1.03 mg·L−1,炭基肥处理的径流中分别为2.85、0.91 mg·L−1,均显著低于常规化肥处理(分别为8.59 和1.33 mg·L−1)。
径流产流时间显著影响径流可溶性有机氮和可溶性磷质量浓度(P<0.05),但两者并不受不同处理的影响(P>0.05)。另外,pH并不随径流产流时间变化而变化(P>0.05),常规化肥处理中pH值(7.45)低于有机肥50%替代(7.62)和炭基肥(7.79)处理。
2.2 不同处理下径流产流时间对不同形态氮磷流失量的影响
由图2A可见:在7次径流产流中,不同处理的径流流失量均无显著差异(P>0.05)。对于常规化肥处理,第1次降雨的径流氮素流失量占全年径流流失总量的46.2%,在这个时期,有机肥50%替代和炭基肥处理可分别减少总氮流失量1.78和1.25 kg·hm−2、硝态氮流失量0.29和0.21 kg·hm−2、铵态氮流失量0.27和0.32 kg·hm−2、可溶性有机氮0.64和0.30 kg·hm−2。由图2B可见:第1次降雨时径流中的磷素流失量占全年径流流失总量的53.9%。有机肥50%替代和炭基肥处理可分别减少总磷流失量的35.3%和32.1%、可溶性磷流失量的54.3%和13.5%、颗粒磷流失量的24.9%和42.3%。
2.3 不同处理对径流总氮和总磷流失量及其流失系数的影响
由图3A和图3B可见:不施肥处理每年径流中的总氮和总磷流失量分别为2.27和0.40 kg·hm−2。常规化肥处理每年径流总氮流失量是7.75 kg·hm−2,分别是有机肥50%替代处理(4.02 kg·hm−2)和炭基肥处理(4.68 kg·hm−2)的1.93和1.66倍。有机肥50%替代和炭基肥处理每年径流总磷流失量分别为1.22、1.11 kg·hm−2,是常规化肥处理(1.65 kg·hm−2)的73.9%和67.4%。
由图3C可见:常规化肥、有机肥50%替代和炭基肥处理总氮流失系数分别为6.09%、1.94%和2.67%, 而总磷流失系数分别为6.91%、4.53%和3.94%。相比常规化肥,有机肥50%替代和炭基肥处理的总氮流失系数分别降低了68.09%和56.11%,而总磷流失系数分别降低了34.54%和43.00%。
2.4 不同处理对土壤化学性质的影响
从表2可见:与常规化肥处理相比,有机肥50%替代和炭基肥处理的土壤有机碳、全磷、全钾、有机氮、铵态氮和有效钾质量分数都有所提高,但除了炭基肥处理显著提高了土壤有机碳质量分数(P<0.05)外,其余处理均未达显著水平。且与常规化肥处理相比,有机肥50%替代和炭基肥处理的硝态氮和有效磷质量分数分别显著降低了18.1%~26.2%和45.0%~65.0% (P<0.05)。
表 2 不同处理土壤化学性质Table 2 Effects of fertilizer types on soil properties处理 pH 有机碳/
(g·kg−1)全磷/
(g·kg−1)全钾/
(g·kg−1)有机氮/
(g·kg−1)硝态氮/
(mg·g−1)铵态氮/
(mg·kg−1)有效磷/
(mg·kg−1)有效钾/
(mg·kg−1)不施肥 5.62 bc 11.39 b 0.36 a 31.15 a 1.93 a 36.30 b 5.08 a 9.30 b 179.60 b 常规化肥 5.51 c 11.08 b 0.33 a 27.56 a 1.93 a 49.10 a 6.28 a 26.00 a 241.60 ab 有机肥50%替代 5.66 b 13.63 ab 0.41 a 27.73 a 2.10 a 40.28 b 7.72 a 9.10 b 212.10 ab 炭基肥 5.91 a 14.54 a 0.30 a 29.22 a 2.17 a 36.20 b 5.57 a 14.30 b 269.40 a 说明:同列不同小写字母表示差异显著(P<0.05)。 2.5 不同处理对径流不同形态氮磷组分的影响
与常规化肥处理相比,有机肥50%替代处理使硝态氮和可溶性有机氮的占比分别提高了28%和46%,但使铵态氮和颗粒态氮的占比分别减少了9%和18%;炭基肥处理则使硝态氮和可溶性有机氮的占比分别提高了26%和46%,但使铵态氮和颗粒态氮的占比分别减少了8%和20%(图4A)。常规化肥处理的可溶性磷占比(30%)高于有机肥50%替代处理(25%),而低于炭基肥处理(40%) (图4B)。
2.6 径流氮磷组分和土壤化学性质之间的关系
主成分分析(图5A)发现:2 个轴解释了径流氮磷形态组成中总变异的 90.1%,其中主成分1 对氮磷径流流失形态的贡献率为78.97%,这意味着横坐标是主要的变异因素。本研究中,径流氮磷组分分为 3 个主要组分,并且在主成分1的因素上,有机肥50%替代和炭基肥处理与不施肥、常规化肥处理均显著分开,这表明甘薯坡耕地土壤在经过不同施肥处理后,其径流中氮磷的组分与对照、常规处理相比发生了显著的变化,而有机肥50%替代和炭基肥处理之间的径流氮磷组分趋于一致。冗余分析中两坐标轴能够解释75.86%的关系信息, 说明该结果可较好地反映土壤的化学性质和径流氮磷及其形态之间的关系。冗余分析(图5B)显示:土壤有效磷质量分数与径流氮磷形态组成呈正相关(F=7.0,P=0.007),尤其是常规化肥处理土壤中硝态氮、铵态氮、可溶性有机氮、可溶性总氮、总氮、颗粒态磷、可溶性总磷和总磷径流流失量。
总氮与硝态氮、铵态氮、可溶性有机氮、颗粒态氮和可溶性氮的相关系数分别为0.88、0.71、0.94、0.90和0.98。意味着氮素之间转化是相互依赖和相互转化的。总磷与可溶性磷和颗粒态磷之间的相关系数分别为0.87和0.98,表明各个形态的磷组分间存在显著正相关(P<0.05)。甚至总氮与总磷的相关系数为0.82,即两者之间也呈显著正相关(图6),意味着氮和磷流失量之间为协变关系。径流氮磷流失与土壤化学性质息息相关,如土壤硝态氮能解释径流总氮和总磷的 49%和48%的变化。径流总氮(R2=0.60)和总磷(R2=0.41)流失量随土壤有效磷质量分数增大而增大(图7)。
3. 讨论
本研究表明:有机肥50%替代和炭基肥处理可减少甘薯坡耕地径流总氮质量浓度。在施肥初期,随着施肥时间延长,它们的效应大小甚至方向趋向一致,这可能与作物生长和施肥有关,在施肥初期植株的保水保肥能力较弱,刚施入的肥料未完全与土壤相结合,易于流失。而氮作为植株生长过程中需求量较大的元素,被植株吸收较多,因此土壤径流中各处理氮的质量浓度大幅降低。而孔文杰 [16]研究发现:有机肥和炭基肥对甘薯坡耕地径流总磷质量浓度的影响不随施肥时间推移而变化。然而,有机肥和炭基肥对稻田和蔬菜径流总磷和总氮的质量浓度影响则相反[17],表明在不同种植模式下有机肥和炭基肥影响径流养分质量浓度的效应是不同的。
不同肥料会影响径流中不同形态氮磷组成,如有机肥50%替代和炭基肥处理均较常规化肥处理可分别提升硝态氮、可溶性有机氮的占比,同时降低铵态氮、颗粒态氮的占比。这是由于有机肥的氮素矿化释放速率慢,以硝态氮和铵态氮形态存在于土壤和径流中相对少,不易发生损失[18]。王静等[19]研究发现:炭基肥对径流中氮磷产生影响的原因可能是增强了土壤持水能力,进而提高可溶性磷和硝态氮含量。肥料类型是影响甘薯氮磷径流流失量的一个重要因素。本研究有机肥50%替代处理较常规化肥处理减少了径流总氮和总磷的流失量,降低了总氮和总磷流失系数,与已有研究结果相同[20-22]。这表明有机肥无论是对菜田、稻田还是坡耕地都能起到减少径流总氮流失量,并能减少坡耕地和菜田径流总磷流失量。然而,有机肥对减少菜地、稻田和坡耕地径流氮磷流失量存在差异[23]。炭基肥处理较常规化肥处理可减少径流氮、磷总量,降低总氮和总磷流失系数,与已有研究结果[24-25]相同。
脱云飞等[26]、陈晓鹏等[27]研究证明:土壤有效磷、硝态氮的质量分数是影响径流氮磷流失量主要因素。本研究表明:径流总磷的流失量与土壤有效磷质量分数呈正相关,磷的移动性很小,径流中有效磷的累积流失量主要取决于径流对地表的冲刷和浸提,有效磷质量分数高的土壤能够有效指示径流携带的含磷量[28],同时王莺等[29]、刘晓玲等[30]在山核桃Carya cathayensis林和稻田上研究发现:土壤有效磷的质量分数与径流总磷流失量的关系与甘薯田基本一致。而地表径流氮素主要来源于土壤表层氮素的冲刷、溶出和淋溶,土壤硝态氮质量分数与径流总氮的流失量呈正比,王琼等[31]对土壤中硝态氮会直接影响径流中氮的流失进行过研究,而徐爱国等[32]在稻田和菜田中证明土壤硝态氮质量分数与径流液总氮流失量并没有显著相关性,表明土壤硝态氮质量分数预测总氮径流流失量因土地利用方式而异[33]。
4. 结论
本研究结果表明:①有机肥50%替代和炭基肥处理显著影响径流氮磷流失;相比较常规化肥处理,分别降低径流总氮质量浓度的58.4%和49.0%,降低径流总磷质量浓度的22.6%和31.6%;降低总氮流失量的48.1%和39.6%,降低总磷流失量的26.1%和32.7%。②有机肥50%替代和炭基肥处理改变了径流氮磷形态的组成,相比常规化肥处理显著降低了径流氮磷养分流失系数;有机肥50%替代和炭基肥处理的总氮流失系数分别降低了68.09%和56.11%,总磷流失系数分别降低了34.54%和43.00%。③有机肥和炭基肥施用主要是减少施肥前期氮磷养分的流失。随着施肥时间的延长,有机肥和炭基肥在减少氮磷径流流失与常规化肥施肥并无区别,意味着肥效逐渐递减效应和作物吸收的平衡。④土壤化学性质是影响径流氮磷流失量的主要因素。其中土壤硝态氮的质量分数仅可预测甘薯坡耕地土壤养分的流失,土壤有效磷的质量分数可以指示土壤的养分流失。因此,施用有机肥和炭基肥显著影响了径流氮磷流失,但不同肥料之间影响效果存在差别,比较而言,有机肥50%替代化肥处理更适合用于减少甘薯坡耕地径流氮流失,而炭基肥更适用于减少径流磷流失。合理的施肥措施可以有效减少土壤径流氮磷的流失。
-
表 1 不同彩叶桂品系叶色变化
Table 1. Leaf color changes of 29 cultivars of O. fragrans Colour Group
序号 品系 时期 S1 S2 S3 S4 S5 1 ‘罗彩2号’‘Luocai 2’ 紫粉色 红色 黄棕色 黄绿色 橄榄绿色 2 ‘罗彩3号’‘Luocai 3’ 红色 红棕色 黄棕色 黄绿色 橄榄绿色 3 ‘罗彩4号’‘Luocai 4’ 红棕色 红橙色 黄色 黄绿色 黄绿色 4 ‘罗彩6号’‘Luocai 6’ 红色 红色 黄绿色 黄绿色 橄榄绿色 5 ‘罗彩7号’‘Luocai 7’ 红橙色 红橙色 黄色 黄绿色 橄榄绿色 6 ‘罗彩22号’‘Luocai 22’ 红橙色 红橙色 黄色 黄绿色 黄绿色 7 ‘罗彩23号’‘Luocai 23’ 红棕色 红棕色 黄绿色 黄绿色 黄绿色 8 ‘罗彩26号’‘Luocai 26’ 红橙色 红色 橄榄棕色 黄绿色 橄榄绿色 9 ‘罗彩27号’‘Luocai 27’ 红橙色 黄棕色 橄榄棕色 黄绿色 橄榄绿色 10 ‘罗彩28号’‘Luocai 28’ 红色 红橙色 黄色 黄绿色 橄榄绿色 11 ‘罗彩29号’‘Luocai 29’ 红色 红棕色 橄榄棕色 黄绿色 橄榄绿色 12 ‘罗彩30号’‘Luocai 30’ 红色 红棕色 橄榄棕色 黄绿色 橄榄绿色 13 ‘罗彩31号’‘Luocai 31’ 红色 紫粉色 黄色 黄绿色 橄榄绿色 14 ‘罗彩33号’‘Luocai 33’ 红橙色 黄棕色 黄色 黄绿色 橄榄绿色 15 ‘罗彩34号’‘Luocai 34’ 红色 红色 黄色 黄绿色 橄榄绿色 16 ‘罗彩36号’‘Luocai 36’ 棕色 红橙色 橄榄棕色 黄绿色 橄榄绿色 17 ‘罗彩37号’‘Luocai 37’ 红色 红橙色 黄色 黄绿色 橄榄绿色 18 ‘罗彩46号’‘Luocai 46’ 红色 紫粉色 黄色 黄绿色 橄榄绿色 19 ‘罗彩47号’‘Luocai 47’ 红橙色 橄榄棕色 黄色 黄绿色 橄榄绿色 20 ‘罗彩55号’‘Luocai 55’ 红棕色 红棕色 黄色 黄绿色 橄榄绿色 21 ‘罗彩59号’‘Luocai 59’ 棕色 红棕色 黄棕色 黄绿色 橄榄绿色 22 ‘罗彩62号’‘Luocai 62’ 红色 红色 黄色 黄绿色 橄榄绿色 23 ‘罗彩65号’‘Luocai 65’ 红棕色 红棕色 黄色 黄绿色 黄绿色 24 ‘罗彩66号’‘Luocai 66’ 红橙色 红橙色 黄色 黄绿色 橄榄绿色 25 ‘罗彩77号’‘Luocai 77’ 红橙色 红橙色 黄色 黄绿色 黄绿色 26 ‘罗彩82号’‘Luocai 82’ 红棕色 红色 黄色 黄绿色 橄榄绿色 27 ‘罗彩88号’‘Luocai 88’ 红色 红棕色 黄色 黄绿色 黄绿色 28 ‘罗彩151号’‘Luocai 151’ 红棕色 橄榄棕色 黄色 黄绿色 黄绿色 29 ‘罗彩153号’‘Luocai 153’ 红色 红棕色 黄色 黄绿色 黄绿色 说明:不同时期的叶色均是通过英国皇家园艺学会标准比色卡(RHSCC)测定得来。 -
[1] 姜卫兵, 庄猛, 韩浩章, 等. 彩叶植物呈色机理及光合特性研究进展[J]. 园艺学报, 2005, 32(2): 352 − 358. JIANG Weibing, ZHUANG Meng, HAN Haozhang, et al. Progress on color emerging mechanism and photosynthetic characteristics of colored-leaf plants [J]. Journal of Horticulture, 2005, 32(2): 352 − 358. [2] ZHANG Qiong, WANG Lili, LIU Zhiguo, et al. Transcriptome and metabolome profiling unveil the mechanisms of Ziziphus jujuba Mill. peel coloration [J/OL]. Food Chemistry, 2020, 312: 125903[2024-01-15]. doi:10.1016/j.foodchem.2019.125903. [3] LEE W D, O’KEEFE J, HOLBROOK M N, et al. Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA [J]. Ecological Research, 2003, 18(6): 677 − 694. [4] ZHAO Minghui, LI Xiang, ZHANG Xinxin, et al. Mutation mechanism of leaf color in plants: a review [J/OL]. Forests, 2020, 11(8): 851[2024-01-15]. doi: 10.3390/f11080851. [5] HUGHES N M, MORLEY C B, SMITH W K. Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species [J]. The New Phytologist, 2007, 175(4): 675 − 685. [6] 梁玲, 江洁蓓, 张腾驹, 等. 不同色彩珙桐苞片与叶片的生理特性研究[J]. 植物研究, 2020, 40(4): 505 − 513. LIANG Ling, JIANG Jiebei, ZHANG Tengju, et al. Physiological characteristics of Davidia involucrata bracts and leaves with different colors [J]. Plant Research, 2020, 40(4): 505 − 513. [7] ZHU H, ZHANG T J, ZHANG P, et al. Pigment patterns and photoprotection of anthocyanins in the young leaves of four dominant subtropical forest tree species in two successional stages under contrasting light conditions [J]. Tree Physiology, 2016, 36(9): 1092 − 1104. [8] REHMAN U N R, YOU Yaohua, YANG Chengquan, et al. Characterization of phenolic compounds and active anthocyanin degradation in crabapple (Malus orientalis) flowers [J]. Horticulture,Environment,and Biotechnology, 2017, 58(4): 324 − 333. [9] 向民, 段一凡, 向其柏. 木犀属品种国际登录中心年报(1): 彩叶桂品种群的建立[J]. 南京林业大学学报(自然科学版), 2014, 38(1): 2, 187. XIANG Min, DUAN Yifan, XIANG Qibai. Annual report of the international registration center for Osmanthus species (1): establishment of a new group-Osmanthus fragrans Colour Group [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(1): 2, 187. [10] 冯园园. 彩叶桂种质资源调查与分类研究[D]. 杭州: 浙江理工大学, 2020. FENG Yuanyuan. Taxonomy and Germplasm Resources of Osmanthus fragrans Color [D]. Hangzhou: Zhejiang University of Technology, 2020. [11] 崔祺, 吴昀, 李东泽, 等. 彩叶桂叶片发育过程中叶色表型与色素成分变化[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 79 − 86. CUI Qi, WU Yun, LI Dongze, et al. Changes of coloration and pigment compositions during leaf development of Osmanthus fragrans colour group cultivar [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(2): 79 − 86. [12] GUO Peng, HUANG Ziqi, ZHAO Wei, et al. Mechanisms for leaf color changes in Osmanthus fragrans ‘Ziyan Gongzhu’ using physiology, transcriptomics and metabolomics [J]. BMC Plant Biology, 2023, 23(1): 453 − 453. [13] 杜庆鑫, 庆军, 朱景乐, 等. 7个变异红叶杜仲叶片色素及活性成分分析[J]. 植物研究, 2017, 37(3): 468 − 473. DU Qingxin, QING Jun, ZHU Jingle, et al. Pigments and active ingredients in leaves of seven Eucommia ulmoides variation-types [J]. Plant Research, 2017, 37(3): 468 − 473. [14] 白新祥, 胡可, 戴思兰, 等. 不同花色菊花品种花色素成分的初步分析[J]. 北京林业大学学报, 2006, 28(5): 84 − 89. BAI Xinxiang, HU Ke, DAI Silan, et al. Components of flower pigments in the petals of different color Chrysanthemum morifolium Ramat. cultivars [J]. Journal of Beijing Forestry University, 2006, 28(5): 84 − 89. [15] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. LI Hesheng. Principles and Techniques of Plant Physiological and Biochemical Experiments [M]. Beijing: Higher Education Press, 2000. [16] 陈建, 吕长平, 陈晨甜, 等. 不同花色非洲菊品种花色素成分初步分析[J]. 湖南农业大学学报(自然科学版), 2009, 35(增刊 1): 73 − 76. CHEN Jian, LÜ Changping, CHEN Chentian, et al. Components of flower pigments in the petals of different color Gerbera jamesonii [J]. Journal of Hunan Agricultural University (Natural Science Edition), 2009, 35(suppl 1): 73 − 76. [17] 宋洋, 雷霆, 金雪花, 等. 蓝亚麻花瓣中类黄酮化合物及代谢途径分析[J]. 广西植物, 2017, 37(11): 1368 − 1377. SONG Yang, LEI Ting, JIN Xuehua, et al. Flavonoid related compounds and their biosynthesis pathways in Linum pernne [J]. Guangxi Plant, 2017, 37(11): 1368 − 1377. [18] 郭玉华, 杨伟华, 郁有祝, 等. 蒽酮比色法测定棉花成熟纤维中水溶性总糖含量[J]. 中国棉花, 2011, 22(12): 23 − 26. GUO Yuhua, YANG Weihua, YU Youzhu, et al. Determination of total sugar content in mature cotton fibers using anthrone colorimetry [J]. China Cotton, 2011, 22(12): 23 − 26. [19] 孔祥生, 易现峰. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2008: 124 − 243. KONG Xiangsheng, YI Xianfeng. Experimental Techniques for Plant Physiology [M]. Beijing: China Agricultural Publishing House, 2008: 124 − 243. [20] 唐前瑞, 陈德富, 陈友云, 等. 红檵木叶色变化的生理生化研究[J]. 林业科学, 2006, 42(2): 111 − 115. TANG Qianrui, CHEN Defu, CHEN Youyun, et al. Changes of physiology and biochemistry during leaf color transformation in Loropetalum chinense var. rubrum [J]. Forestry Science, 2006, 42(2): 111 − 115. [21] LI Wenji, LI Huigen, SHI Lisha, et al. Leaf color formation mechanisms in Alternanthera bettzickiana elucidated by metabolite and transcriptome analyses [J]. Planta, 2022, 255(3): 59 − 59. [22] TANG Yuhan, FANG Ziwen, LIU Mi, et al. Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony (Paeonia lactiflora Pall. ) [J/OL]. 3 Biotech, 2020, 10: 76[2024-01-15]. doi: 10.1007/s13205-020-2063-3. [23] XIE Yating, PEI Nancai, HAO Zezhou, et al. Juvenile leaf color changes and physiological characteristics of Acer tutcheri (Aceraceae) during the spring season [J/OL]. Forests, 2023, 14(2): 328[2024-01-15]. doi: 10.3390/f14020328. [24] 黄可, 王小德, 柳翼飞, 等. 红枫春季叶色变化与色素含量的相关性[J]. 浙江农林大学学报, 2012, 29(5): 734 − 738. HUANG Ke, WANG Xiaode, LIU Yifei, et al. Leaf color changes in Acer palmatum ‘Atropurpureum’ and relations to pigment content. Journal of Zhejiang A&F University, 2012, 29(5): 734 − 738. [25] 聂庆娟, 史宝胜, 孟朝, 等. 不同叶色红栌叶片中色素含量、酶活性及内含物差异的研究[J]. 植物研究, 2008, 28(5): 599 − 602. NIE Qingjuan, SHI Baosheng, MENG Chao, et al. The enzyme activities, pigment and inclusion contents in different leaves color of Cotinus coggygria ‘Royal Purple’ in autumn [J]. Plant Studies, 2008, 28(5): 599 − 602. [26] 唐生森, 陈虎, 覃永康, 等. 枫香秋季变色期叶色变化及其生理基础[J]. 广西植物, 2021, 41(12): 2061 − 2068. TANG Shengsen, CHEN Hu, QIN Yongkang, et al. Physiological basis of Liquidambar formosana leaves during leaf color transformation in autumn [J]. Guihaia, 2021, 41(12): 2061 − 2068. [27] YIN Guoping, WANG Yong, XIAO Yufei, et al. Relationships between leaf color changes, pigment levels, enzyme activity, photosynthetic fluorescence characteristics and chloroplast ultrastructure of Liquidambar formosana Hance [J]. Journal of Forestry Research, 2022, 33(5): 1559 − 1572. [28] SCHMITZER V, VEBERIC R, OSTERC G, et al. Color and phenolic content changes during flower development in ground cover rose [J]. Journal of the American Society for Horticultural Science, 2010, 135(3): 195 − 202. [29] 万仁平, 罗德义, 张少露, 等. 红罗宾石楠叶色变化及色素含量动态[J]. 应用与环境生物学报, 2023, 29(4): 954 − 960. WAN Renping, LUO Deyi, ZHANG Shaolu, et al. Changes in color and pigment content of the Photinia ×fraseri ‘Red Robin’ [J]. Journal of Applied and Environmental Biology, 2023, 29(4): 954 − 960. 期刊类型引用(0)
其他类型引用(4)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240160