留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机肥部分替代化肥对露地茄生长及品质的影响

吴金栋 何勇 朱祝军

刘俊, 李龙, 陈玉龙, 等. 杜仲WOX家族基因鉴定及在叶片发育中的表达[J]. 浙江农林大学学报, 2023, 40(1): 1-11. DOI: 10.11833/j.issn.2095-0756.20210725
引用本文: 吴金栋, 何勇, 朱祝军. 有机肥部分替代化肥对露地茄生长及品质的影响[J]. 浙江农林大学学报, 2021, 38(6): 1195-1202. DOI: 10.11833/j.issn.2095-0756.20200767
LIU Jun, LI Long, CHEN Yulong, et al. Identification of WOX gene family and their expression in the leaf development of Eucommia ulmoides[J]. Journal of Zhejiang A&F University, 2023, 40(1): 1-11. DOI: 10.11833/j.issn.2095-0756.20210725
Citation: WU Jindong, HE Yong, ZHU Zhujun. Effects of partial substitution of chemical fertilizer with organic fertilizer on growth and quality of Solanum melongena in open field[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1195-1202. DOI: 10.11833/j.issn.2095-0756.20200767

有机肥部分替代化肥对露地茄生长及品质的影响

DOI: 10.11833/j.issn.2095-0756.20200767
基金项目: 国家重点研发计划项目(2018YFD0201209);浙江省重点研发计划项目(2019C02012)
详细信息
    作者简介: 吴金栋(ORCID: 0000-0002-5002-0750),从事蔬菜栽培生理研究。E-mail: 18705185589@163.com
    通信作者: 朱祝军(ORCID: 0000-0001-8551-7751),教授,从事园艺作物生理和分子生物学、设施园艺等领域的基础和应用研究。E-mail: zhuzj@zafu.edu.cn
  • 中图分类号: S641.1

Effects of partial substitution of chemical fertilizer with organic fertilizer on growth and quality of Solanum melongena in open field

  • 摘要:   目的  探讨有机肥替代化肥在茄Solanum melongena生产中的作用。  方法  以单施化肥为对照(ck),设置有机肥替代基肥中50%化肥氮(T1)和有机肥替代基肥中100%化肥氮(T2)2个处理,测定分析不同处理对露地茄产量、品质及土壤肥力的影响。  结果  相比ck,处理组土壤pH显著升高(P<0.05),土壤速效钾、有机质、微生物碳氮质量分数均显著增加(P<0.05);单果质量和单株结果数均显著提高(P<0.05),产量增加了13.8%~22.3%,其中T1产量最大,为70 099.5 kg·hm−2;处理组茄果皮花青素质量分数显著增加(P<0.05),茄外表皮紫红颜色更深;果实中镁和硫质量分数显著增加(P<0.05),可溶性糖、可溶性蛋白质和维生素C质量分数和氨基酸质量摩尔浓度均有不同程度提高,其中T1综合效果更优。  结论  选择有机肥替代基肥中50%的化肥可以有效地提高露地茄产量,改良品质,并改善土壤肥力。表9参40
  • Wuschel-related homeobox (WOX)是植物特有的新型转录因子,属于Homepbox (HOX)超家族,包含由60~65个氨基酸组成的螺旋-环-螺旋-转角-螺旋的保守结构域。WOX家族基因分为3个独立进化支,即现代进化支(modern clade,WUS),中间进化支(intermediate clade)和远古进化支(ancient clade)[1-3],其中WUS是最早发现的WOX家族成员[4]。WOXs蛋白在植物胚胎形成[5]、干细胞维持[6]和花发育[7]等方面发挥重要作用。拟南芥Arabidopsis thaliana中WOX家族有15个成员,分别是AtWUS和AtWOX1~AtWOX14[4],其中,AtWOX10、AtWOX13和AtWOX14蛋白属于远古进化分支,AtWUS和AtWOX1~7等8个蛋白质属于WUS分支,AtWOX8、AtWOX9、AtWOX11和AtWOX12蛋白属于中间进化分支。AtWUS在胚珠、花药和茎尖分生组织中表达,是维持中央分生组织的关键基因,AtWOX11和AtWOX12参与新生根器官发生,在顶端分生组织发育阶段,AtWUS参与干细胞稳态维持[8]。超表达AtWUS促进棉花Gossypium hirsutum体细胞胚胎发育和器官发生[9]。水稻Oryza sativa中,OsWOX11激活冠根的萌发和生长,过表达OsWOX11可促进雌蕊增加[10]OsWOX3A参与水稻叶片、小穗、分蘖和侧根的发育[11];在茎顶端分生组织和腋分生组织中OsWOX4正调控干细胞[12]。超表达WOX11 (PeWOX11aPeWOX11b)或WOX11/12a增加转基因植株不定根数量[13-14]。在小麦Triticum aestivum中超表达TaWUS影响外花轮状器官发育,TaWOX9促进转基因拟南芥根的发育[15]

    WOXs转录因子不仅调控植物生长发育,而且参与胁迫响应。在水稻中OsWOX12AOsWOX12B等基因的表达受干旱、寒冷和盐胁迫差异调控,超表达OsWOX11通过促进根毛生长发育提高转基因植株干旱胁迫耐受性[16-17]。84K杨树Populus alba×P. glandulosa中,干旱胁迫诱导PagWOX11/12a基因强烈表达,促进根系伸长和生物量生长,上游调控因子PagERF35激活PagWOX11/12a表达[18]PagWOX11/12a通过调控PagCYP736A12基因表达,调节活性氧(reactive oxygen species,ROS )清除,提高杨树耐盐性[19]

    杜仲Ecommia ulmoides是杜仲科Eucommiaceae杜仲属Eucommia的落叶乔木,为中国二级保护植物,叶片、树皮和果皮中富含杜仲胶,是重要的胶用和药用经济树种,具有极高的开发利用价值[20]。杜仲叶片中含有绿原酸、黄酮类、木脂素类、环烯醚萜类、α­-亚麻酸等药用成分,具有抗疲劳、抗衰老、抗肿瘤、增强免疫力等重要作用[21-22]。鉴于WOX基因在拟南芥、水稻、玉米Zea mays、杨树、油菜Brassica napus、铁皮石斛Dendrobium officinale等中的作用,推测WOX家族基因可能在杜仲叶芽的形成和激活过程中起关键作用。本研究以杜仲基因组数据为基础,对杜仲WOX家族基因进行了全基因组鉴定和生物信息学分析,基于转录组分析WOX在杜仲叶片不同发育时期以及杜仲胶形成中的表达模式,利用实时荧光定量PCR(RT-qPCR)检测杜仲WOX基因(EuWOXs)在‘紫叶’杜仲‘Ziye’叶片发育中的表达水平,以期为EuWOXs功能的深入研究奠定基础。

    自西北农林科技大学苗圃(陕西杨凌),取生长正常长势一致的2年生‘紫叶’杜仲幼苗的叶芽(茎尖)、生长叶(3 cm长叶片)、幼叶(完全展开的新叶),用液氮迅速处理,置于−80 ℃冰箱保存。

    1.2.1   杜仲WOX蛋白(EuWOXs)的鉴定及理化性质分析

    拟南芥WOX蛋白序列下载于TAIR数据库(https://www.arabidopsis.org/index.jsp),根据Pfam号(PF00046)在杜仲基因组数据库中筛选出WOX家族基因候选序列,利用美国国立生物技术信息中心(National Center for Biotechnology Information,NCBI)的保守结构域搜索服务(Conserved Domain Search Service,CD Search)检测蛋白质保守结构域,筛选出具有完整WOX结构域的蛋白质作为EuWOX家族成员,利用生物信息学方法[23]分析EuWOXs的理化性质。

    1.2.2   杜仲WOX家族基因染色体定位及系统进化分析

    通过杜仲基因组数据库搜索WOX基因在染色体上的位置及每条染色体长度,利用MapGene2Chromosome v2 (http://mg2c.iask.in/mg2c_v2.0/)软件绘制WOX家族基因染色体定位。利用DNAMAN进行蛋白序列比对,通过Clustal X 1.83对杜仲、拟南芥、毛果杨、水稻和玉米WOXs蛋白进行多序列比对,利用MEGA 6.0邻接法(neighbor-joining),重复次数设置为1 000次[24],构建系统发育树,根据拟南芥同源基因对EuWOXs蛋白命名。

    1.2.3   EuWOXs的结构、基序及启动子分析

    利用GSDS (http://gsds.gao-lab.org/index.php)软件分析EuWOXs的内含子和外显子分布。利用MEME (http://meme-suite.org/)软件分析EuWOXs基序,参数设置为:any number of Repetitions,maximum number of Motifs=20,minimum width≥6,and maximum width≤50。分离EuWOXs启动子(ATG)上游2 000 bp序列,利用Plant CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/htmL/)分析EuWOXs启动子顺式作用元件。

    1.2.4   EuWOXs的表达模式分析

    从NCBI的Short Read Arshive (SRA)数据库中下载‘秦仲1号’‘Qinzhong No.1’叶片不同发育时期(叶芽、初生叶、幼叶、老叶)(版本号:SRP218063)[25]及高产胶杜仲品种‘秦仲2号’‘Qinzhong No.2’、低产胶杜仲品种‘小叶’‘Xiaoye’(版本号:SRP158357)[26]的转录组数据,使用每1百万个映射上的碱基中映射到外显子的每1千个碱基上的碱基个数(fragments per kilobase million,FPKM)值表示EuWOXs相对表达丰度,取对数(log2)进行统计分析,利用TBtools工具绘制基因表达图谱[27]

    使用Trizol(天根DP424)提取RNA,反转录成cDNA,通过Primer 3.0软件设计EuWOXs特异性引物(引物序列见表1),通过Quant Studio 6(新加坡Life Technologies公司),All-in-One SYBR Premix EX TaqTM kit(美国Gene Copoeia公司)进行实时荧光定量PCR(RT-qPCR)反应,10 μL反应体系:2× mix 5.00 μL、正向引物/反向引物各0.25 μL、cDNA 2.00 μL、ROX 0.20 μL、双蒸水2.30 μL。反应程序:95 ℃预变性5 min,95 ℃变性10 s,60 ℃退火10 s,72 ℃延伸20 s,45个循环。以UBCE2为内参基因[26],通过$2^{-\Delta \Delta C_t} $法对3次生物学重复进行数据分析。

    表 1  引物序列
    Table 1  Primer sequences
    基因名上游引物(5′→3′)下游引物(5′→3′)
    EuWOX1 ATGGTGGGTGACCAGCTTAG TTCTCTGGCCTTGTGGTTCT
    EuWOX2 ACCGTACCCCAACCTACTCC ACTTCCCGTTGGATGAAGTG
    EuWOX4-1 GGAACCCTACGCAAGAACAG GCGCTTCTGCTTTTGTCTCT
    EuWOX4-2 TAGAGCAGATCACGGCACAG CTAGGGTCGGATGTTGGAGA
    EuWOX5 GACGGAGCAAGTGAGAGTCC TCTCCCGTGCCTTATGATTC
    EuWOX11 ACTCGAGTTTTGTGGCCTGT AATTGGAGGCATCTGGATTG
    EuWOX13-1 GGTCTGAGGGCATGTGTTTT TTGGAGATATGGGTGGTGGT
    EuWOX13-2 GGGTTGTTCGTCAAGGTCAT GTTGGAATCCACCGTTGTCT
    UBCE2 AGTGGGTGGTGCTGTAGTCC AACTCCCGTTTCGTTTGTTG
    下载: 导出CSV 
    | 显示表格
    1.2.5   EuWOXs蛋白互作关系分析

    通过STRING软件(https://string-db.org/)上传EuWOXs蛋白质序列,利用拟南芥数据库,根据拟南芥WOXs蛋白已知互作关系,预测EuWOXs互作蛋白,通过Cytoscape 3.7.0软件对EuWOXs蛋白质互作信息进行评估和预测[28]

    表2可知:从杜仲基因组中共鉴定到8个EuWOXs,分布在8条染色体上(图1);均含有HD保守结构域,其中EuWOX1序列最长,编码352个氨基酸,EuWOX13-2序列最短,编码191个氨基酸。EuWOXs分子量为22.12~40.36 kDa,EuWOX11等电点最小,为5.62,EuWOX4-1等电点最大,为9.04;亚细胞定位预测结果显示:EuWOXs均定位在细胞核中,均为亲水性蛋白。

    表 2  EuWOXs蛋白质序列特征及亚细胞定位
    Table 2  Sequence characteristics and subcellular location of E. ulmoides WOX proteins
    基因号基因名拟南芥
    同源基因
    染色体位置CDS长度/
    bp
    氨基酸数/
    分子量/
    kDa
    等电点亚细胞
    定位
    EUC13591-RA EuWOX1 AT3G18010.1 Super-Scaffold_235 3540694-3544292 1059 352 40.36 5.78 细胞核
    EUC12552-RA EuWOX2 AT5G59340.1 Scaffold912_obj 156744-159059 810 269 30.16 8.11 细胞核
    EUC15721-RA EuWOX4-1 AT1G46480.1 Super-Scaffold_242 604979-606289 618 205 23.48 9.04 细胞核
    EUC21176-RA EuWOX4-2 AT1G46480.1 Scaffold272_obj 37477-39280 642 213 24.31 8.82 细胞核
    EUC18832-RA EuWOX5 AT3G11260.1 Super-Scaffold_117 336319-340482 549 182 20.70 6.92 细胞核
    EUC00362-RA EuWOX11 AT3G03660.1 Super-Scaffold_154 68808-70507 765 254 27.67 5.62 细胞核
    EUC00756-RA EuWOX13-1 AT4G35550.1 Super-Scaffold_233 319468-325733 810 269 30.42 6.22 细胞核
    EUC02503-RA EuWOX13-2 AT4G35550.1 Super-Scaffold_71 6332599-6364092 576 191 22.11 6.54 细胞核
    下载: 导出CSV 
    | 显示表格
    图 1  EuWOXs染色体位点
    Figure 1  Chromosome site of EuWOXs genes

    利用DNAMAN软件对8个EuWOXs及12个拟南芥WOXs蛋白(AtWOXs)保守结构域进行序列分析。结果(图2)显示:WOXs蛋白质HD结构域氨基酸及其分布具有显著的相似性,均包含由60个氨基酸组成的螺旋-环-螺旋-转角-螺旋,螺旋较环和转角保守。谷氨酰胺(Q)、亮氨酸(L)和脯氨酸(Pro)是螺旋Ⅰ (Helix Ⅰ)结构域的保守氨基酸,脯氨酸、异亮氨酸(Ile)和亮氨酸是螺旋Ⅱ (Helix Ⅱ)结构域的保守氨基酸,相比之下,螺旋Ⅲ (Helix Ⅲ)结构域最为保守,其中保守氨基酸有天冬酰胺(N)、缬氨酸(V)、色氨酸(W)、苯丙氨酸(F)、谷氨酰胺、天冬酰胺和精氨酸(R)。EAR-like仅存在于EuWOX1、EuWOX2、EuWOX4-1、EuWOX4-2和EuWOX5中,属于WUS,暗示EuWOXs在进化过程中具有保守性。

    图 2  拟南芥和杜仲WOXs的蛋白质同源结构域序列分析
    Figure 2  Sequence analysis of WOX proteins homeo domain in A. thaliana and E. ulmoides

    对8个杜仲EuWOXs、15个拟南芥AtWOXs、18个毛果杨Populus trichocarpa WOX蛋白(PotriWOXs)、13个水稻OsWOXs、20个玉米ZmWOXs的蛋白质序列进行多重比对,构建无根系统发育树。结果如 图3所示:74个WOXs蛋白共分为3组[远古进化支、中间进化支和现代进化支(WUS)],其中远古进化支含有12个WOXs蛋白,中间进化支含22个WOXs蛋白,现代进化支包含的蛋白数量最多,共有40个。8个EuWOXs中,EuWOX13-1和EuWOX13-2属于远古进化支,EuWOX11属于中间进化支,EuWOX1、EuWOX2、EuWOX5、EuWOX4-1和EuWOX4-2等5个蛋白质属于WUS。进化结果显示:杜仲与毛果杨亲缘关系最近。

    图 3  杜仲、拟南芥、毛果杨、水稻和玉米WOXs蛋白系统发育树
    Figure 3  WOX proteins phylogenetic trees of E. ulmoides, A. thaliana, P. trichocar, O. sativa and Z. mays

    利用GSDS软件构建EuWOXs基因内含子-外显子结构图,结果如图4显示:EuWOXs含有1~3个内含子,EuWOX13-2、EuWOX2和EuWOX5基因含有2个外显子,EuWOX11、EuWOX13-1、EuWOX4-1和EuWOX4-2含有3个外显子,EuWOX1含有4个外显子。不同进化分支基因结构差异显著,同一分支基因结构也存在差异。属于中间进化支的EuWOX11含有3个外显子,同属远古进化支的EuWOX13-1和EuWOX13-2分别含有3个和2个外显子,在WUS中,EuWOX2和EuWOX5含有2个外显子,EuWOX4-1和EuWOX4-2含有3个外显子,而EuWOX1含有4个外显子。

    图 4  杜仲WOX家族基因的结构分析
    Figure 4  Structural analysis of WOX gene family in E. ulmoides

    蛋白质保守基序分析显示:EuWOXs含有10个保守基序,分别命名为Motif 1~Motif 10 (图5),其中Motif 1和Motif 2最为保守,是WOX的核心基序,存在于所有EuWOXs中。Motif 6较为保守,存在于4个EuWOXs蛋白质(EuWOX4-2、EuWOX2、EuWOX1和EuWOX5)中。相同分支EuWOXs含有相似的保守基序,不同分支EuWOXs基序之间存在显著差异,Motif 4~Motif 10只存在于现代进化分支,Motif 3只在EuWOX13-1和EuWOX13-2蛋白质中存在。

    图 5  杜仲WOX基因家族保守基序分析
    Figure 5  Conserved motifs analysis of E. ulmoides WOX gene family

    顺式作用元件分析结果(图6)显示:EuWOXs启动子中主要包括脱落酸(ABRE)和水杨酸反应元件(TCA-element)、厌氧响应元件(ARE)、光响应元件(Box 4)及玉米蛋白代谢调节元件(O2-site)。所有顺式作用元件中光响应元件最多,达77个,其中Box 4元件有26个,所占比例是34%;G-box和GT1-motif元件均有9个,占比为12%,表明EuWOXs基因表达可能与光合作用有关。EuWOXs共含有46个激素响应元件,32个胁迫响应元件,其中ABRE和ARE元件数量最多,均含有14个,所占比例分别为31%和44%,暗示EuWOXs参与杜仲激素及胁迫响应。此外EuWOXs共含有12个生长发育调控相关元件,其中O2-site有6个,占50%。

    图 6  EuWOXs基因启动子顺式作用元件分析
    Figure 6  Cis-element analysis of EuWOX genes promoter

    利用‘秦仲1号’叶片不同发育时期转录组数据对EuWOXs基因的表达模式进行分析。结果(图7)可见:EuWOXs在叶片不同发育时期表达丰度存在显著差异,EuWOX11和EuWOX2在杜仲叶芽、初生叶、幼叶、老叶时期均不表达,EuWOX5仅在叶芽和老叶中低表达,EuWOX13-2在4个时期中的FPKM值均大于20,推测EuWOX13-2参与杜仲叶片的整个发育过程;EuWOX13-1和EuWOX4-1在叶芽中表达丰度最高,随着叶片发育表达水平逐渐降低,表明EuWOX13-1和EuWOX4-1主要在叶芽中发挥作用;EuWOX1在生长叶中表达量相对较高,其余EuWOXs基因表达丰度较低,FPKM值小于5。

    图 7  EuWOXs在杜仲叶片不同发育阶段的表达模式
    Figure 7  Expression patterns of EuWOXs at different developmental stages in E. ulmoides leaves

    利用RT-qPCR检测EuWOXs在‘紫叶’杜仲叶片不同发育阶段(叶芽、生长叶、幼叶)的表达水平。结果(图8)可见:EuWOX1、EuWOX2、EuWOX4-1、EuWOX5和EuWOX13-2在生长叶中表达量最高,随着叶片发育表达水平呈先升高后降低趋势,EuWOX4-2在幼叶中表达量最高,EuWOX13-1在叶芽中表达量最高,随着叶片发育,表达量逐渐降低,暗示EuWOX13-1在叶片发育的起始阶段发挥重要作用。EuWOX1、EuWOX13-1和EuWOX13-2在‘紫叶’杜仲叶片中的表达趋势与‘秦仲1号’一致。

    图 8  杜仲EuWOXs基因在杜仲叶片不同发育时期的表达模式
    Figure 8  Expression pattern of EuWOX genes in E. ulmoides leaves at different developmental stages

    利用‘秦仲2号’和‘小叶’杜仲成熟叶片转录组数据检测EuWOXs的表达模式。由如图9可见:大部分EuWOXs转录水平较低,其中有6个EuWOXs基因几乎不表达,EuWOX13-2表达水平最高,FPKM值>40,不同胶含量样品之间无显著差异,推测EuWOXs在杜仲胶形成过程中发挥作用较小。

    图 9  EuWOXs在杜仲胶形成中的表达模式
    Figure 9  Expression patterns of EuWOX genes in the form of Eu-rubber      

    植物WOXs蛋白由多基因家族编码,蛋白质之间可能存在相互作用。利用STRING数据库,构建EuWOXs蛋白相互作用网络。图10显示:该网络包含21个节点(互作蛋白)和82条边(相互作用组合)。EuWOX4-1可与20个蛋白质互作,其中包含干细胞分化抑制因子(CLE41和CLE44),细胞增殖和愈伤组织形成蛋白(CLV1、CLV3和ACT7),胚胎发育相关蛋白(TPL、BBM和APM1),维管组织发育蛋白(PXY、HB-8、ATHB-15、MOL和RUL1),细胞程序化死亡调控因子(LOL1),参与DNA的复制和延伸(MCM1、POLD2)以及信号转导蛋白(F14K14),花药发育关键调控因子(RPK2),参与DNA的复制植物发育相关转录因子GRAS(HAM3和SCL27)等,推测EuWOXs全面参与了杜仲的生长发育。

    图 10  EuWOXs蛋白互作网络预测
    Figure 10  Prediction of interaction network between EuWOX proteins

    WOX蛋白是植物特有的高度保守的一类转录因子,广泛参与植物的生长发育、干细胞维持、组织器官发生和形成等多种生物学过程。到目前为止,WOX家族基因已在多个物种进行了研究报道,如拟南芥中含有15个、毛果杨18个、水稻中有13个、玉米中有20个、毛竹Phyllostachys edulis 中存在27个[29],小麦中有26个[30]、茶树Camellia sinensis中包含18个[31],黄瓜Cucumis sativus中有11个[3],陆地棉Gossypium hirsutum中含有38个[32]。小麦(17 Gb)[33]、玉米(2 300 Mb)[34]和毛竹(2 021 Mb)[35]基因组大于杜仲(1.2 Gb)[36],拟南芥(164 Mb)[37]、水稻(441 Mb) [38]和毛果杨(392.3 Mb)[39]基因组小于杜仲。杜仲WOX数量低于拟南芥、毛果杨、水稻、玉米、小麦和毛竹,表明WOXs基因的丰富程度与基因组大小无关,这可能与基因重复有关。

    杜仲基因组中共鉴定出8个EuWOXs,分布在8条染色体上。EuWOXs均为核定位蛋白,在现代进化支(WUS)、中间进化支和远古进化支分别含有5、1和2个成员,其系统发育模式与拟南芥、水稻、陆地棉等类似[2931-32]EuWOXs基因启动子中含有多种生长发育、激素响应、非生物胁迫以及光周期响应元件。在水稻中,WUS的OsWOX5和中间进化支的OsWOX11、OsWOX12A和OsWOX12B基因表达受生长素、细胞分裂素和赤霉素调节,超表达OsWOX11可提高水稻抗旱性[16-17]。细胞分裂素强烈促进苹果Malus pumila WOX1和WOX3基因表达,生长素诱导黄瓜CsWOX1b和CsWOX3基因表达[3]。在拟南芥中,生长素反应因子5 (AUXIN RESPONSE FACTOR,ARF5)上调AtWOX1和PRS (AtWOX3)基因的表达,ARF2、ARF3和ARF4抑制AtWOX1和PRS的表达[40]OsWOX3A参与水稻器官发育、叶片横向轴伸长、颖花外稃形态发生以及分蘖和侧根发育[10]MtWOX1的同源基因STENOFOLIA是蒺藜苜蓿Medicago truncatula叶片生长和维管组织形成的必须基因[41]PttWOX4在杨树形成层中特异表达,PttWOX4a/b RNAi干扰后导致维管形成层宽度缩小,次生生长减弱[42]。推测EuWOXs可能在杜仲生长发育、激素和胁迫响应等生物学过程中发挥重要作用。

    WOX家族基因参与叶片发育。属于中间支的AtWOX9/STIMPY过表达导致拟南芥叶缘波浪化[43]SlLAM1主要在番茄Solanum lycopersicum叶片、花和果实中表达,SlLAM1缺失导致叶片变窄,次生小叶数量减少[44],超表达黄瓜CsWOX9导致转基因拟南芥角果变短,莲座叶和分枝数目增加[3]。来源于WUS的AtWOX3是拟南芥侧托叶发育的必需基因,Atwox1和Atwox3缺失突变体导致叶片和花器官变窄,影响叶片横向扩张和花瓣融合[45-46]GhWOX9_AtGhWUSa_AtGhWUSb_Dt主要在棉花幼叶中高量表达[47]。远古进化分支中的OsWOX13在水稻叶、茎、根维管组织中表现为空间表达调控,在花和发育中的种子中是时间表达调控[48]。在杜仲中,EuWOX13-1在叶芽中表达量最高,随着叶片发育,转录水平逐渐降低,暗示EuWOX13-1主要在杜仲叶片发育的早期阶段发挥作用。EuWOX13-2在生长叶中表达量较高,在叶片发育过程中呈现先升高后降低的趋势。EuWOX13-1和EuWOX13-2是一对重复基因,其表达水平的差异可能与基因结构不同有关,也可能是EuWOX13-1和EuWOX13-2在重复后发生了功能分化。在甘蓝型油菜Brassica napus中,BnCWOX13a与BnCWOX13c互为同源基因,然而它们的表达趋势完全不同[49],在拟南芥中,AtWOX13在初生根、侧根、雌蕊和胚发育中动态表达,而AtWOX13的直系同源基因AtWOX14只在侧根形成的早期阶段和发育的花药中特异表达[50],由此推测EuWOX13-2可能只获得了EuWOX13-1基因的部分功能,具体功能还需要进一步研究。

  • 表  1  施肥方案

    Table  1.   Fertilization scheme

    处理施基肥/(kg·hm−2)6月1日追
    施复合肥/
    (kg·hm−2)
    7月16日追
    施复合肥/
    (kg·hm−2)
    有机肥复合肥硼砂
    ck 0 1 200 45 150 150
    T1 4 245 600 45 150 150
    T2 8 490 0 45 150 150
    下载: 导出CSV

    表  2  不同施肥处理对土壤性状的影响

    Table  2.   Effects of different fertilization treatments on soil properties

    处理pH碱解氮/(mg·kg−1)有效磷 /(mg·kg−1)速效钾/(mg·kg−1)有机质/(g·kg−1)微生物碳/(mg·kg−1)微生物氮/(mg·kg−1)微生物碳氮比
    ck4.3±0.1 b188.2±6.5 b21.1±1.9 a201.8±4.1 c41.6±1.2 c389.0±2.5 c47.8±0.9 c8.1±0.2 a
    T15.1±0.1 a385.7±6.7 a22.1±3.9 a378.5±1.8 a55.6±3.6 a628.3±1.4 a122.4±2.1 a5.1±0.1 b
    T25.0±0.1 a182.6±13.2 b22.0±1.5 a255.7±3.8 b45.4±2.4 b509.8±1.1 b60.6±1.0 b8.4±0.1 a
      说明:同列不同小写字母表示处理间差异显著(P<0.05)
    下载: 导出CSV

    表  3  不同施肥处理对茄种植前后土壤性状的影响

    Table  3.   Effects of different fertilization treatments on soil properties before and after eggplant planting

    处理△pH△碱解氮/
    (mg·kg−1)
    △有效磷/
    (mg·kg−1)
    △速效钾/
    (mg·kg−1)
    △有机质/
    (g·kg−1)
    △微生物碳/
    (mg·kg−1)
    △微生物氮/
    (mg·kg−1)
    △微生物碳
    氮比
    ck−0.5−80.04.9110.719.2106.227.6−5.9
    T10.3187.55.9287.433.2345.5102.2−8.9
    T20.2−15.65.8164.623.0227.040.4−5.6
      说明:△表示增量
    下载: 导出CSV

    表  4  不同施肥处理对茄生长指标的影响

    Table  4.   Effects of different fertilization treatments on growth indexes of eggplant

    处理株高/cm茎粗/mm果长/cm果直径/cm单果质量/g单株结果数/个产量/(kg·hm−2)
    ck106.8±6.3 a21.3±1.1 c25.7±1.6 b2.3±0.1 b60.0±7.0 b8.4±2.5 c57 300.0±1 501.5 c
    T1105.2±5.8 a26.8±1.3 a27.6±1.5 a2.5±0.1 a72.2±3.4 a16.2±3.8 a70 099.5±1 552.5 a
    T2105.1±5.3 a24.4±1.3 b27.3±1.7 a2.4±0.2 a71.7±11.8 a12.3±2.3 b65 200.5±1 819.5 b
      说明:同列不同小写字母表示处理间差异显著(P<0.05)
    下载: 导出CSV

    表  5  不同施肥处理对茄叶面积、叶片数和SPAD的影响

    Table  5.   Effects of different fertilization treatments on leaf area and leaf number and SPAD value of eggplant

    处理叶面积/cm2叶片数SPAD
    ck196.6±3.6 c94.2±29.6 a74.6±3.9 a
    T1226.5±6.3 a100.1±16.8 a69.4±2.9 b
    T2215.6±9.3 b99.2±8.7 a65.4±4.8 c
      说明:同列不同小写字母表示处理间差异显著(P<0.05)
    下载: 导出CSV

    表  6  不同处理对茄果皮硬度和颜色的影响

    Table  6.   Effects of different fertilization treatments on hardness and color of eggplant peel

    处理a*b*L*C果皮硬度/N花青素/(mg·g−1)
    ck16.1±1.3 a−6.2±0.3 c18.2±0.2 a5.1±0.1 c6.6±0.7 b9.4±0.8 c
    T111.3±0.5 c−4.5±0.4 a16.7±1.4 a6.2±0.2 a7.7±0.8 b13.3±1.5 a
    T212.7±0.7 b−5.5±0.2 b17.7±0.8 a5.7±0.2 b7.9±0.8 a11.4±0.2 b
      说明:a*表示果皮红绿色度,a*<0显示绿色,a*>0显示红色,数值越大果皮越红;b*表示果皮黄蓝色度,b*<0显示蓝色,      b*>0显示黄色,数值越大果皮越黄;L*表示果皮亮度,L*=0显示黑色,L*=100显示白色,数值越大,果皮越亮。C为红色     葡萄果实颜色指数(CIRG),是间接反映花青苷质量分数及着色的重要值[23],与花青素质量分数达到了0.835的线性相关[24],     C<2显示黄绿,2<C<4显示粉红,4<C<5显示红色,5<C<6显示深红,C>6显示蓝黑。同列不同小写字母表示处理间     差异显著(P<0.05)
    下载: 导出CSV

    表  7  不同处理对茄果肉硬度、可溶性糖、可溶性蛋白质和维生素C的影响

    Table  7.   Effects of different treatments on hardness, soluble sugar, soluble protein and vitamin C content of eggplant fruit

    处理果肉硬度/N可溶性糖/(mg·g−1)可溶性蛋白质/(mg·g−1)维生素C/(mg·g−1)
    ck3.32±0.55 a101.29±9.10 c7.51±0.53 b0.15±0.04 c
    T12.83±0.42 b158.81±10.13 a10.00±1.34 a0.34±0.01 a
    T23.29±0.37 a136.32±8.20 b9.57±0.71 a0.22±0.04 b
      说明:同列不同小写字母表示处理间差异显著(P<0.05)
    下载: 导出CSV

    表  8  不同施肥处理对茄果实中游离氨基酸的影响

    Table  8.   Effects of different fertilization treatments on the content of free amino acids in eggplant fruit

    处理苏氨酸/
    (μmol·g−1)
    缬氨酸/
    (μmol·g−1)
    蛋氨酸/
    (μmol·g−1)
    赖氨酸/
    (μmol·g−1)
    异亮氨酸/
    (μmol·g−1)
    亮氨酸/
    (μmol·g−1)
    苯丙氨酸/
    (μmol·g−1)
    ck4.52±1.01 b9.90±2.76 b0.32±0.08 c7.03±1.63 b4.37±0.93 b5.02±0.37 b8.33±0.82 c
    T14.16±0.92 b22.72±1.26 a1.45±0.15 a32.61±2.23 a17.03±1.64 a10.46±2.17 a10.88±0.34 a
    T211.55±2.94 a11.42±1.08 b0.97±0.13 b9.45±1.52 b5.82±1.60 b4.89±0.76 b9.25±0.42 b
    处理天冬氨酸/
    (μmol·g−1)
    丝氨酸/
    (μmol·g−1)
    谷氨酸/
    (μmol·g−1)
    甘氨酸/
    (μmol·g−1)
    组氨酸/
    (μmol·g−1)
    精氨酸/
    (μmol·g−1)
    丙氨酸/
    (μmol·g−1)
    ck11.22±2.99 c25.03±3.11 c1.29±0.96 a1.39±0.34 b99.17±8.97 b5.51±1.88 b3.48±0.83 b
    T135.76±2.73 a124.19±1.96 a1.82±0.76 a1.96±0.31 a135.56±15.31 a6.25±2.13 b3.70±1.42 b
    T214.63±1.38 b44.78±7.97 b1.35±0.17 a1.89±0.35 a106.89±6.87 b10.48±2.97 a13.38±3.06 a
    处理脯氨酸/
    (μmol·g−1)
    半胱氨酸/
    (μmol·g−1)
    酪氨酸/
    (μmol·g−1)
    必需氨基酸/
    (μmol·g−1)
    非必需氨基酸/
    (μmol·g−1)
    总氨基酸/
    (μmol·g−1)
    ck112.04±25.88 b1.34±0.10 c0.28±0.06 b39.49±7.6 c260.75±45.12 c300.24±52.72 b
    T1129.52±9.83 b3.45±0.33 a1.23±0.20 a99.31±8.71 a443.44±34.94 b542.75±43.65 a
    T2308.39±17.72 a2.40±0.29 b0.37±0.13 b53.35±8.45 b504.56±40.95 a557.91±49.4 a
      说明:同列不同小写字母表示处理间差异显著(P<0.05)
    下载: 导出CSV

    表  9  不同施肥处理对茄果实营养元素的影响

    Table  9.   Effects of different fertilization treatments on the content of nutrients in eggplant fruit

    处理氮/(mg·g−1)磷/(mg·g−1)钾/(mg·g−1)钙/(mg·g−1)镁/(mg·g−1)硫/(mg·g−1)
    ck19.23±0.77 b3.42±0.20 b31.38±1.60 b1.59±0.14 b1.09±0.10 c0.18±0.02 c
    T121.78±0.41 a4.31±0.13 a33.41±1.42 a1.90±0.07 a1.37±0.11 b0.22±0.03 a
    T219.52±0.20 b3.61±0.29 b31.03±1.74 b1.86±0.16 b1.79±0.10 a0.20±0.03 b
    处理锰/(μg·g−1)锌/(μg·g−1)铜/(μg·g−1)铁/(μg·g−1)硼/(μg·g−1)
    ck24.21±1.39 b19.50±1.29 b9.64±0.65 a27.11±1.54 b13.44±0.90 a
    T127.02±2.21 a23.57±1.68 a9.32±0.44 a30.67±1.59 a13.91±1.52 a
    T224.14±1.61 b19.18±1.77 b9.34±0.80 a26.21±1.50 b14.18±1.38 a
      说明:同列不同小写字母表示处理间差异显著(P<0.05)
    下载: 导出CSV
  • [1] 中华人民共和国农业农村部. 关于印发《到2020年化肥使用量零增长行动方案》和《到2020年农药使用量零增长行动 方案》的通知[R/OL]. (2015-02-17)[2020-12-11]. http://www.moa.gov.cn/ztzl/mywrfz/gzgh/201509/t20150914_4827907.htm.
    [2] 中华人民共和国农业农村部. 农业部关于印发《开展果菜茶有机肥替代化肥行动方案》的通知[R/OL]. (2017-02-08) [2020-12-11]. http://www.moa.gov.cn/nybgb/2017/derq/201712/t20171227_6130977.htm.
    [3] 刘欢. 化学氮肥减量配施有机肥对白菜产量和品质的影响[D]. 沈阳: 沈阳农业大学, 2016.

    LIU Huan. The Effect of Combined Application of Organic and Inorganic Fertilizers on Yield and Quality of Chinese Cabbage [D]. Shenyang: Shenyang Agricultural University, 2016.
    [4] MIN Ju, ZHANG Hailin, SHI Weiming. Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production [J]. Agric Water Manage, 2012, 111: 53 − 59.
    [5] 孙小钧, 伍国勇, 任秀. 化肥投入变化对粮食生产效率的影响: 基于贵州省县域面板数据的实证分析[J]. 南方农业学报, 2019, 50(8): 1869 − 1877.

    SUN Xiaojun, WU Guoyong, REN Xiu. The impact of chemical fertilizer input changes on grain production efficiency: an empirical analysis based on panel data of counties in Guizhou Province [J]. J Southern Agric, 2019, 50(8): 1869 − 1877.
    [6] 陈贵, 赵国华, 张红梅, 等. 长期施用有机肥对水稻产量和氮磷养分利用效率的影响[J]. 中国土壤与肥料, 2017(1): 92 − 97.

    CHEN Gui, ZHAO Guohua, ZHANG Hongmei, et al. Effect of long-term organic fertilizers application on rice yield, nitrogen and phosphorus use efficiency [J]. Soil Fert Sci China, 2017(1): 92 − 97.
    [7] 刘丹, 崔彦玲, 潜宗伟. 茄子种业现状及遗传育种研究进展[J]. 北方园艺, 2019(1): 165 − 170.

    LIU Dan, CUI Yanling, QIAN Zongwei. Research advances in the seed industry and breeding of eggplant [J]. Northern Hortic, 2019(1): 165 − 170.
    [8] 卢家柱, 赵贵宾, 颉建明, 等. 不同施氮量对茄子产量、品质及肥料利用率的影响[J]. 华北农学报, 2016, 31(3): 205 − 211.

    LU Jiazhu, ZHAO Guibin, XIE Jianming, et al. Effects of different nitrogen fertilizer application rates on yield, quality and fertilizer utilization rate of eggplant [J]. Acta Agric Boreali-Sin, 2016, 31(3): 205 − 211.
    [9] CHEN Yimin, ZHANG Jinyuan, XU Xin, et al. Effects of different irrigation and fertilization practices on nitrogen leaching in facility vegetable production in northeastern China [J]. Agric Water Manage, 2018, 210: 165 − 170.
    [10] MAUCERI A, BASSOLINO L, LUPINI A, et al. Genetic variation in eggplant for nitrogen use efficiency under contrasting NO3 supply [J]. J Integr Plant Biol, 2020, 62(4): 487 − 508.
    [11] 张雅. 茄子不同器官在不同生育期对氮磷钾吸收差异的比较分析[J]. 浙江农业学报, 2011, 23(6): 1134 − 1139.

    ZHANG Ya. Comparative analysis on NPK uptake by different organs of eggplants during different growth stages [J]. Acta Agric Zhejiang, 2011, 23(6): 1134 − 1139.
    [12] 宋慧, 黄芸萍, 臧全宇, 等. 甜瓜幼苗不同叶位SPAD值与叶绿素含量的变化规律及相关性[J]. 华北农学报, 2019, 34(增刊): 99 − 104.

    SONG Hui, HUANG Yunping, ZANG Quanyu, et al. Variation and correlation analysis of SPAD value and chlorophyll content of leaves at different position in melon seedling [J]. Acta Agric Boreali-Sin, 2019, 34(suppl): 99 − 104.
    [13] SCHINDELIN J, RUEDEN C T, HINER M C, et al. The ImageJ ecosystem: an open platform for biomedical image analysis [J]. Mol Rep Dev, 2015, 82(7/8): 518 − 529.
    [14] 吴瑞媛. ‘翠玉’梨果实糖代谢规律及提高果实品质技术研究[D]. 杭州: 浙江大学, 2013.

    WU Ruiyuan. A Study on Sugar Metabolism in Fruit and Technology for Improving Fruit Quality in ‘Cuiyu’ Pear[D]. Hangzhou: Zhejiang University, 2013.
    [15] NIU Shanshan, XU Changjie, ZHANG Wangshu, et al. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor [J]. Planta, 2010, 231(4): 887 − 899.
    [16] 童兰艳, 余文琴, 朱玲玲, 等. 蔬菜和水果中维生素C含量测定及其稳定性[J]. 食品工业, 2020, 41(5): 87 − 89.

    TONG Lanyan, YU Wenqin, ZHU Lingling, et al. Determination of vitamin C in vegetables and fruits and its stability [J]. Food Ind, 2020, 41(5): 87 − 89.
    [17] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2003: 111-114.
    [18] GAUDIN Z, CERVEAU D, MARNET N, et al. Robust method for investigating nitrogen metabolism of 15N labeled amino acids using AccQ·Tag ultra performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry: application to a parasitic plant-plant interaction [J]. Anal Chem, 2014, 86(2): 1138 − 1145.
    [19] 袁建民, 何璐, 杨晓琼, 等. 微波消解ICP-OES法同时测定香茅草中11种微量元素[J]. 中国农学通报, 2020, 36(14): 69 − 73.

    YUAN Jianmin, HE Lu, YANG Xiaoqiong, et al. Simultaneous determination of 11 trace elements in Cymbopogon citratus by ICP-OES with microwave digestion [J]. Chin Agric Sci Bullet, 2020, 36(14): 69 − 73.
    [20] VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biol Biochem, 1987, 19(6): 703 − 707.
    [21] BROOKES P C, LANDMAN A, PRUDEN G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method for measuring microbial biomass nitrogen in soil [J]. Soil Biol Biochem, 1985, 17(6): 837 − 842.
    [22] 薛沛沛, 王兵, 牛香. 大岗山不同海拔毛竹林土壤肥力的灰色关联度分析[J]. 浙江农业学报, 2013, 25(6): 1354 − 1359.

    XUE Peipei, WANG Bing, NIU Xiang. Grey relation analysis of soil fertility of moso bamboo forests at different altitudes in Dagang Mountain [J]. Acta Agric Zhejiang, 2013, 25(6): 1354 − 1359.
    [23] CARREÑO J, MARTÍNEZ A, ALIMELA L, et al. Measuring the color of table grapes [J]. Color Res Appl, 1996, 21(1): 50 − 54.
    [24] 卢彩玉, 黄春辉, 郑小艳, 等. 根域限制对巨玫瑰葡萄果实外观、色素及内在品质的影响[J]. 果树学报, 2009, 26(5): 719 − 724.

    LU Caiyu, HUANG Chunhui, ZHENG Xiaoyan, et al. Effects of root restriction on visual quality, pigments and inner quality of Jumeigui grape berries [J]. J Fruit Sci, 2009, 26(5): 719 − 724.
    [25] 黄婷, 荀卫兵, 张瑞福. 长期不同施肥对北方旱地轮作土壤有机质和作物产量影响的抽样调查[J]. 浙江农林大学学报, 2017, 34(2): 253 − 260.

    HUANG Ting, XUN Weibing, ZHANG Ruifu. Soil organic matter and crop yield with long-term fertilization schemes for an upland crop rotation in northern China [J]. J Zhejiang A&F Univ, 2017, 34(2): 253 − 260.
    [26] 禹朴家, 范高华, 韩可欣, 等. 基于土壤微生物生物量碳和酶活性指标的土壤肥力质量评价初探[J]. 农业现代化研究, 2018, 39(1): 163 − 169.

    YU Pujia, FAN Gaohua, HAN Kexin, et al. Soil quality assessment based on soil microbial biomass carbon and soil enzyme activities [J]. Res Agric Modernization, 2018, 39(1): 163 − 169.
    [27] 曾全超, 李鑫, 董杨红, 等. 黄土高原不同乔木林土壤微生物量碳氮和溶解性碳氮的特征[J]. 生态学报, 2015, 35(11): 3598 − 3605.

    ZENG Quanchao, LI Xin, DONG Yanghong, et al. Soil microbial biomass nitrogen and carbon, water soluble nitrogen and carbon under different arbors forests on the Loess Plateau [J]. Acta Ecol Sin, 2015, 35(11): 3598 − 3605.
    [28] 张成霞, 南志标. 土壤微生物生物量的研究进展[J]. 草业科学, 2010, 27(6): 50 − 57.

    ZHANG Chengxia, NAN Zhibiao. Research progress of soil microbial biomass in China [J]. Pratacul Sci, 2010, 27(6): 50 − 57.
    [29] 陈琨, 喻华, 上官宇先, 等. 有机无机肥配施对冬水田水稻产量和耕层土壤性质的影响[J]. 中国稻米, 2020, 26(2): 32 − 35, 40.

    CHEN Kun, YU Hua, SHANGGUAN Yuxian, et al. Impacts of organic-inorganic fertilizer application on yield of rice and soil properties in the waterlogged paddy field [J]. China Rice, 2020, 26(2): 32 − 35, 40.
    [30] 武星魁, 姜振萃, 陆志新, 等. 有机肥部分替代化肥氮对叶菜产量和环境效应的影响[J]. 中国生态农业学报, 2020, 28(3): 349 − 356.

    WU Xingkui, JIANG Zhencui, LU Zhixin, et al. Effects of the partial replacement of chemical fertilizer with manure on the yield and nitrogen emissions in leafy vegetable production [J]. Chin J Eco-Agric, 2020, 28(3): 349 − 356.
    [31] 李淑仪, 邓许文, 陈发, 等. 有机无机肥配施比例对蔬菜产量和品质及土壤重金属含量的影响[J]. 生态环境, 2007, 16(4): 1125 − 1134.

    LI Shuyi, DENG Xuwen, CHEN Fa, et al. EFfects of the quantity and proportion of organic and mineral fertlizers on vegetable yield and quality and soil heavy metal contents [J]. Ecol Environ, 2007, 16(4): 1125 − 1134.
    [32] GAIZ A, KUNDUR A R, COLSON N, et al. Assessment of in vitro effects of anthocyanins on platelet function [J]. Alternative Ther Health Med, 2020, 26(1): 12 − 17.
    [33] 吕玲玲, 冯雪锋, 李威, 等. 茄子花青素研究进展[J]. 分子植物育种, 2018, 16(15): 5065 − 5071.

    LÜ Lingling, FENG Xuefeng, LI Wei, et al. Research progress of anthocyanin in eggplant [J]. Mol Plant Breeding, 2018, 16(15): 5065 − 5071.
    [34] MORI T, SAKURAI M, SASUTA M. Effects of conditioned medium on activities of PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa [J]. Plant Sci, 2001, 160(2): 355 − 360.
    [35] HARDISSON A, RUBIO C, BAEZ A, et al. Mineral composition of the banana (Musa acuminata) from the island of Tenerife [J]. Food Chem, 2001, 73(2): 153 − 161.
    [36] LYSIAK G. The influence of harvest maturity and basic macroelement content in fruit on the incidence of diseases and disorders after storage of the ‘Ligol’ apple cultivar [J]. Folia Hortic, 2013, 25(1): 31 − 39.
    [37] 杜振宇, 史衍玺, 王清华. 施硒对茄子吸收转化硒和品质的影响[J]. 植物营养与肥料学报, 2004, 10(3): 298 − 301.

    DU Zhenyu, SHI Yanxi, WANG Qinghua. Effects of selenium application on the selenium absorption and transformation of eggplant and its qualities [J]. Plant Nutr Fert Sci, 2004, 10(3): 298 − 301.
    [38] POSSNER D R E, KLIEWER W M. The localization of acids, sugars, potassium and calcium in developing grape berries [J]. Vitis, 1985, 24: 229 − 240.
    [39] 李大伟, 周加顺, 潘根兴, 等. 生物质炭基肥施用对蔬菜产量和品质以及氮素农学利用率的影响[J]. 南京农业大学学报, 2016, 39(3): 433 − 440.

    LI Dawei, ZHOU Jiashun, PAN Genxing, et al. Effect of biochar-based compound fertilizer on the yield, fruit quality and N use efficiency of vegetables [J]. J Nanjing Agric Univ, 2016, 39(3): 433 − 440.
    [40] 魏孝荣. 旱地长期定位试验对土壤锌、铜、锰、铁化学特性影响的研究[D]. 杨凌: 西北农林科技大学, 2004.

    WEI Xiaorong. Effects of Long-Term Experiment on the Chemical Characteristics of Soil Zinc, Copper, Manganese, Iron in Dry Land[D]. Yangling: Northwest A&F University, 2004.
  • [1] 宋艳冬, 潘心禾, 杨杰, 施拥军.  浙西南地区黄甜竹地上部营养元素质量分数及分配特性 . 浙江农林大学学报, 2021, 38(4): 871-877. doi: 10.11833/j.issn.2095-0756.20200646
    [2] 姜仕昆, 周运超, 谭伟, 陈竹, 黄剑峰.  马尾松林近自然不同经营管理措施下土壤肥力 . 浙江农林大学学报, 2020, 37(5): 876-882. doi: 10.11833/j.issn.2095-0756.20190549
    [3] 王祯, 王洁, 项海萍, 樊泽鹏, 孙诚蔓, 邢丙聪, 邵清松.  白及花花青素微波提取方法的优化 . 浙江农林大学学报, 2020, 37(5): 1020-1026. doi: 10.11833/j.issn.2095-0756.20190581
    [4] 吕素华, 徐萌, 张新凤, 刘京晶, 斯金平.  不同杂交家系铁皮石斛花多糖、浸出物及氨基酸质量分数分析 . 浙江农林大学学报, 2016, 33(5): 749-755. doi: 10.11833/j.issn.2095-0756.2016.05.004
    [5] 国靖, 汪贵斌, 曹福亮.  施肥对银杏叶片光合作用及营养元素质量分数的影响 . 浙江农林大学学报, 2016, 33(6): 969-975. doi: 10.11833/j.issn.2095-0756.2016.06.007
    [6] 叶晶, 陶立华, 柯和佳, 项婷婷, 吴家森.  绿竹地上部营养元素的吸收、积累和分配特性 . 浙江农林大学学报, 2015, 32(4): 545-550. doi: 10.11833/j.issn.2095-0756.2015.04.008
    [7] 郭帅, 徐秋芳, 沈振明, 李松昊, 秦华, 李永春.  雷竹林土壤氨氧化微生物对不同肥料的响应 . 浙江农林大学学报, 2014, 31(3): 343-351. doi: 10.11833/j.issn.2095-0756.2014.03.003
    [8] 朱美琴, 叶功富, 游水生, 尤龙辉, 白永会, 高伟.  滨海沙地主要造林树种的热值和营养元素及其相关性 . 浙江农林大学学报, 2012, 29(6): 829-834. doi: 10.11833/j.issn.2095-0756.2012.06.005
    [9] 蒋俊明, 朱维双, 刘国华, 费世民, 陈秀明.  川南毛竹林土壤肥力研究 . 浙江农林大学学报, 2008, 25(4): 486-490.
    [10] 吴家森, 张立钦, 吴进才, 吴长义, 陈荣.  南方红豆杉幼苗营养元素质量分数与分布 . 浙江农林大学学报, 2008, 25(2): 195-199.
    [11] 刘克林, 孙向阳, 赵铁蕊, 康向阳.  三倍体毛白杨不同无性系叶片营养元素质量分数差异 . 浙江农林大学学报, 2007, 24(3): 297-301.
    [12] 戴文圣, 黎章矩, 程晓建, 喻卫武, 符庆功.  香榧林地土壤养分、重金属及对香榧子成分的影响 . 浙江农林大学学报, 2006, 23(4): 393-399.
    [13] 吴家森, 周国模, 钱新标, 杨芳, 吴学敏.  不同经营类型毛竹林营养元素的空间分布 . 浙江农林大学学报, 2005, 22(5): 486-489.
    [14] 刘力, 林新春, 金爱武, 冯天喜, 周昌平, 季宗富.  苦竹各器官营养元素分析 . 浙江农林大学学报, 2004, 21(2): 172-175.
    [15] 俞益武, 吴家森, 姜培坤, 吴小红.  湖州市不同森林植被枯落物营养元素分析 . 浙江农林大学学报, 2002, 19(2): 153-156.
    [16] 何光训.  连栽杉木林地土壤肥力退化的症结 . 浙江农林大学学报, 2002, 19(1): 100-103.
    [17] 陈爱玲, 陈光水, 谢锦升, 杨玉盛.  杉枫轮栽生物量及营养元素分布的研究 . 浙江农林大学学报, 2000, 17(4): 369-372.
    [18] 姜培坤, 俞益武.  雷竹叶营养元素含量与土壤养分的关系 . 浙江农林大学学报, 2000, 17(4): 360-363.
    [19] 江志标, 俞勤民.  施肥对杉木实生苗某些生理特性和土壤养分的影响 . 浙江农林大学学报, 1999, 16(4): 365-368.
    [20] 林平, 叶正环, 朱昌乐, 侯建育.  柳杉连栽林地的土壤肥力特性 . 浙江农林大学学报, 1994, 11(2): 138-142.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200767

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/6/1195

计量
  • 文章访问数:  839
  • HTML全文浏览量:  184
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-11
  • 修回日期:  2021-05-13
  • 网络出版日期:  2021-12-08
  • 刊出日期:  2021-12-08

有机肥部分替代化肥对露地茄生长及品质的影响

doi: 10.11833/j.issn.2095-0756.20200767
    基金项目:  国家重点研发计划项目(2018YFD0201209);浙江省重点研发计划项目(2019C02012)
    作者简介:

    吴金栋(ORCID: 0000-0002-5002-0750),从事蔬菜栽培生理研究。E-mail: 18705185589@163.com

    通信作者: 朱祝军(ORCID: 0000-0001-8551-7751),教授,从事园艺作物生理和分子生物学、设施园艺等领域的基础和应用研究。E-mail: zhuzj@zafu.edu.cn
  • 中图分类号: S641.1

摘要:   目的  探讨有机肥替代化肥在茄Solanum melongena生产中的作用。  方法  以单施化肥为对照(ck),设置有机肥替代基肥中50%化肥氮(T1)和有机肥替代基肥中100%化肥氮(T2)2个处理,测定分析不同处理对露地茄产量、品质及土壤肥力的影响。  结果  相比ck,处理组土壤pH显著升高(P<0.05),土壤速效钾、有机质、微生物碳氮质量分数均显著增加(P<0.05);单果质量和单株结果数均显著提高(P<0.05),产量增加了13.8%~22.3%,其中T1产量最大,为70 099.5 kg·hm−2;处理组茄果皮花青素质量分数显著增加(P<0.05),茄外表皮紫红颜色更深;果实中镁和硫质量分数显著增加(P<0.05),可溶性糖、可溶性蛋白质和维生素C质量分数和氨基酸质量摩尔浓度均有不同程度提高,其中T1综合效果更优。  结论  选择有机肥替代基肥中50%的化肥可以有效地提高露地茄产量,改良品质,并改善土壤肥力。表9参40

English Abstract

刘俊, 李龙, 陈玉龙, 等. 杜仲WOX家族基因鉴定及在叶片发育中的表达[J]. 浙江农林大学学报, 2023, 40(1): 1-11. DOI: 10.11833/j.issn.2095-0756.20210725
引用本文: 吴金栋, 何勇, 朱祝军. 有机肥部分替代化肥对露地茄生长及品质的影响[J]. 浙江农林大学学报, 2021, 38(6): 1195-1202. DOI: 10.11833/j.issn.2095-0756.20200767
LIU Jun, LI Long, CHEN Yulong, et al. Identification of WOX gene family and their expression in the leaf development of Eucommia ulmoides[J]. Journal of Zhejiang A&F University, 2023, 40(1): 1-11. DOI: 10.11833/j.issn.2095-0756.20210725
Citation: WU Jindong, HE Yong, ZHU Zhujun. Effects of partial substitution of chemical fertilizer with organic fertilizer on growth and quality of Solanum melongena in open field[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1195-1202. DOI: 10.11833/j.issn.2095-0756.20200767
  • 化肥减量增效对农业可持续发展具有重要意义。2015年,农业农村部制定《到2020年化肥使用量零增长行动方案》[1],随后于2017年出台《开展果菜茶有机肥替代化肥的行动方案》[2],提出“精、调、改、替”4种技术策略以实现化肥使用量零增长,其中“替”就是用有机肥替代化肥从而减少化肥用量[3]。已有研究[4]表明:施用有机肥时,减少化学肥料用量并不会降低蔬菜产量。有机肥肥效周期长,能够促进土壤微生物活动,改良土壤结构;化肥养分释放周期短,营养供应速度快;将有机肥和化肥配合施用,不仅能弥补单施肥料的不足,还能充分发挥两者的优点,满足作物在生育期内对养分的持续需求,同时兼顾作物在生长和发育关键时期对养分的特殊需求[56]。茄Solanum melongena是中国南方露地栽培的主要蔬菜之一[7],目前关于茄栽培中肥料施用的研究,普遍侧重于减少养分流失、提高养分利用率等方面[810],而有关有机肥替代化肥对茄产量和品质影响的研究较少。本研究分析了不同比例有机肥替代化肥处理对茄花青素、氨基酸和营养元素等品质及产量的影响,同时分析土壤肥力的变化,以期为茄生产中化肥减量增效提供参考。

    • 试验地位于浙江省龙泉市屏南镇百步村,该地属亚热带季风气候,年平均气温为17~18 ℃。供试土壤为红壤,基本理化性质:pH 4.81,碱解氮198.2 mg·kg−1,有效磷16.2 mg·kg−1,速效钾91.1 mg·kg−1,有机质22.4 g·kg−1,微生物碳282.8 mg·kg−1,微生物氮20.2 mg·kg−1,微生物碳氮比为14。

    • 供试茄品种为‘杭茄2010’ S. melongena ‘Hangqie 2010’,由浙江省杭州市农业科学研究院提供;无机复合肥(氮16%,五氧化二磷6%,氧化钾23%,以质量分数计)购自深圳市芭田生态工程股份有限公司,有机肥(pH 7.6,氮2%,五氧化二磷4%,氧化钾2%,有机质83%,以质量分数计)购自浙江省龙泉市惠农生物科技有限公司。

    • 本试验为大田试验。根据前人研究结果[11],按每生产1 000 kg茄子需要3.0 kg氮,以75 000 kg·hm−2为预期产量,设置施氮量240 kg·hm−2为施肥量基准。

      以单施化肥(100%化肥)为对照(ck),设置T1处理为有机肥替代基肥中50%的化肥氮,T2处理为有机肥替代基肥中100%的化肥氮。设置3次重复,随机区组排列,田间常规管理完全相同。施肥方案见表1

      表 1  施肥方案

      Table 1.  Fertilization scheme

      处理施基肥/(kg·hm−2)6月1日追
      施复合肥/
      (kg·hm−2)
      7月16日追
      施复合肥/
      (kg·hm−2)
      有机肥复合肥硼砂
      ck 0 1 200 45 150 150
      T1 4 245 600 45 150 150
      T2 8 490 0 45 150 150

      移栽前(2019年4月8日),按处理方案一次性施入全部基肥。选用长势一致、“三叶一心”的茄子幼苗进行移植,畦栽栽培,并用薄膜覆盖。5月11日定植,行距0.5 m,株距0.6 m。于挂果初期(2019年6月1日)和盛果期(2019年7月16日)追肥,施肥方法为水肥一体化,肥料随水灌入。

    • 收获期内,各处理随机选取30株茄植株,统计并记录叶片数;采摘下最大功能叶,测定叶绿素相对含量(SPAD)[12],并用平台扫描仪结合Image J软件测定叶长、叶宽、叶面积[13]。果实采收时,各小区随机采摘10个果实,测量果实长度、直径、质量,总产量以实际称量结果计算。测定果实外观色差和模拟感官硬度[14];采用pH示差法测定果皮花青素质量分数[15];采用HPLC法测定果实维生素C质量分数[16];采用考马斯亮蓝G-250法测定可溶性蛋白质质量分数,采用蒽酮法测定果实可溶性糖质量分数[17];用Waters Acc Q-Tag法测定果实氨基酸质量摩尔浓度[18];果实氮质量分数采用凯氏定氮法测定,其他元素质量分数采用ICP-OES法测定[19]

      分别于种植施肥前和茄子收获后,按五点采样法用土壤螺旋钻于各处理小区随机取0~20 cm表层土壤样品;各处理土壤样品彻底混合后,四分法留样,过2 mm筛,鲜样测土壤微生物碳、氮(氯仿熏蒸浸提、TOC法测定)[2021];剩余土壤风干后过1 mm筛,用重铬酸钾容量法测定土壤有机质,用碱解扩散法测土壤碱解氮,用碳酸氢钠浸提-钼锑抗比色法测土壤有效磷,用醋酸铵浸提-火焰光度计法测土壤速效钾,用电位法测土壤pH [22]

    • 采用Excel 2010处理数据和绘图,采用Data Processing System (DPS V14.10)分析数据,采用Duncan新复极差法进行差异显著性检验(P<0.05)。

    • 表2可知:相比ck,处理组土壤pH显著升高(P<0.05),土壤速效钾、有机质、微生物碳和微生物氮质量分数均显著增加(P<0.05),其中T1分别增加了87.6%、33.7%、61.5%和156.1%,效果最显著(P<0.05)。由表3可知:与T2和ck相比,T1土壤碱解氮质量分数显著增加,同时微生物碳氮比显著降低(P<0.05)。上述结果表明,相较于ck与T2,T1对土壤肥力的改善效果最佳。

      表 2  不同施肥处理对土壤性状的影响

      Table 2.  Effects of different fertilization treatments on soil properties

      处理pH碱解氮/(mg·kg−1)有效磷 /(mg·kg−1)速效钾/(mg·kg−1)有机质/(g·kg−1)微生物碳/(mg·kg−1)微生物氮/(mg·kg−1)微生物碳氮比
      ck4.3±0.1 b188.2±6.5 b21.1±1.9 a201.8±4.1 c41.6±1.2 c389.0±2.5 c47.8±0.9 c8.1±0.2 a
      T15.1±0.1 a385.7±6.7 a22.1±3.9 a378.5±1.8 a55.6±3.6 a628.3±1.4 a122.4±2.1 a5.1±0.1 b
      T25.0±0.1 a182.6±13.2 b22.0±1.5 a255.7±3.8 b45.4±2.4 b509.8±1.1 b60.6±1.0 b8.4±0.1 a
        说明:同列不同小写字母表示处理间差异显著(P<0.05)

      表 3  不同施肥处理对茄种植前后土壤性状的影响

      Table 3.  Effects of different fertilization treatments on soil properties before and after eggplant planting

      处理△pH△碱解氮/
      (mg·kg−1)
      △有效磷/
      (mg·kg−1)
      △速效钾/
      (mg·kg−1)
      △有机质/
      (g·kg−1)
      △微生物碳/
      (mg·kg−1)
      △微生物氮/
      (mg·kg−1)
      △微生物碳
      氮比
      ck−0.5−80.04.9110.719.2106.227.6−5.9
      T10.3187.55.9287.433.2345.5102.2−8.9
      T20.2−15.65.8164.623.0227.040.4−5.6
        说明:△表示增量
    • 表4可知:相比ck,处理组茄植株茎粗显著增加(P<0.05),茄果实长度、果实直径显著增加(P<0.05),单果质量和单株结果数显著增加,产量大幅提升(P<0.05)。其中T1产量最高,为70 099.5 kg·hm−2,相比T2增产7.5%,相比ck增产22.3%。

      表 4  不同施肥处理对茄生长指标的影响

      Table 4.  Effects of different fertilization treatments on growth indexes of eggplant

      处理株高/cm茎粗/mm果长/cm果直径/cm单果质量/g单株结果数/个产量/(kg·hm−2)
      ck106.8±6.3 a21.3±1.1 c25.7±1.6 b2.3±0.1 b60.0±7.0 b8.4±2.5 c57 300.0±1 501.5 c
      T1105.2±5.8 a26.8±1.3 a27.6±1.5 a2.5±0.1 a72.2±3.4 a16.2±3.8 a70 099.5±1 552.5 a
      T2105.1±5.3 a24.4±1.3 b27.3±1.7 a2.4±0.2 a71.7±11.8 a12.3±2.3 b65 200.5±1 819.5 b
        说明:同列不同小写字母表示处理间差异显著(P<0.05)
    • 表5可知:相比ck,处理组叶片叶面积显著增加(P<0.05),其中T1叶面积最大,为226.5 cm2,较ck增加15.2%;SPAD由高到低依次为T1、T2、ck,其中T1叶片SPAD较T2增加了7.5%,较ck增加了14.1%。

      表 5  不同施肥处理对茄叶面积、叶片数和SPAD的影响

      Table 5.  Effects of different fertilization treatments on leaf area and leaf number and SPAD value of eggplant

      处理叶面积/cm2叶片数SPAD
      ck196.6±3.6 c94.2±29.6 a74.6±3.9 a
      T1226.5±6.3 a100.1±16.8 a69.4±2.9 b
      T2215.6±9.3 b99.2±8.7 a65.4±4.8 c
        说明:同列不同小写字母表示处理间差异显著(P<0.05)
    • 表6可知:相比ck,T1果皮硬度显著降低(P<0.05);3个处理茄果皮红绿色度(a*)均大于零,黄蓝色度(b*)均小于零,即颜色均在红蓝色区域;T1的红色葡萄果实颜色指数(CIRG)最大,为6.2,属于蓝黑,而T2和ck均属于深红色。相比ck,处理组果皮花青素质量分数显著增加(P<0.05),其中T1花青素高达13.3 mg·g−1,比ck增加了41.5%,比T2增加了16.7%。

      表 6  不同处理对茄果皮硬度和颜色的影响

      Table 6.  Effects of different fertilization treatments on hardness and color of eggplant peel

      处理a*b*L*C果皮硬度/N花青素/(mg·g−1)
      ck16.1±1.3 a−6.2±0.3 c18.2±0.2 a5.1±0.1 c6.6±0.7 b9.4±0.8 c
      T111.3±0.5 c−4.5±0.4 a16.7±1.4 a6.2±0.2 a7.7±0.8 b13.3±1.5 a
      T212.7±0.7 b−5.5±0.2 b17.7±0.8 a5.7±0.2 b7.9±0.8 a11.4±0.2 b
        说明:a*表示果皮红绿色度,a*<0显示绿色,a*>0显示红色,数值越大果皮越红;b*表示果皮黄蓝色度,b*<0显示蓝色,      b*>0显示黄色,数值越大果皮越黄;L*表示果皮亮度,L*=0显示黑色,L*=100显示白色,数值越大,果皮越亮。C为红色     葡萄果实颜色指数(CIRG),是间接反映花青苷质量分数及着色的重要值[23],与花青素质量分数达到了0.835的线性相关[24],     C<2显示黄绿,2<C<4显示粉红,4<C<5显示红色,5<C<6显示深红,C>6显示蓝黑。同列不同小写字母表示处理间     差异显著(P<0.05)
    • 表7可知:相比ck,T1果肉硬度显著降低(P<0.05);处理组可溶性糖、可溶性蛋白质和维生素C质量分数分别增加了34.6%~56.8%、28.0%~33.3%和41.8%~122.2%。除可溶性蛋白质外,其他营养物质T1显著优于T2(P<0.05)。

      表 7  不同处理对茄果肉硬度、可溶性糖、可溶性蛋白质和维生素C的影响

      Table 7.  Effects of different treatments on hardness, soluble sugar, soluble protein and vitamin C content of eggplant fruit

      处理果肉硬度/N可溶性糖/(mg·g−1)可溶性蛋白质/(mg·g−1)维生素C/(mg·g−1)
      ck3.32±0.55 a101.29±9.10 c7.51±0.53 b0.15±0.04 c
      T12.83±0.42 b158.81±10.13 a10.00±1.34 a0.34±0.01 a
      T23.29±0.37 a136.32±8.20 b9.57±0.71 a0.22±0.04 b
        说明:同列不同小写字母表示处理间差异显著(P<0.05)
    • 表8可知:相比ck,处理组蛋氨酸、苯丙氨酸、天冬氨酸、丝氨酸、甘氨酸和半胱氨酸质量摩尔浓度显著增加(P<0.05),其中除甘氨酸外,T1提升效果显著高于T2 (P<0.05);同时T1的缬氨酸、赖氨酸、异亮氨酸、亮氨酸、组氨酸和酪氨酸质量摩尔浓度显著高于ck (P<0.05),T2处理下苏氨酸、精氨酸、丙氨酸和脯氨酸质量摩尔浓度显著高于ck (P<0.05)。就必需氨基酸而言,T1达99.31 μmol·g−1,是ck的2.5倍,是T2的1.9倍,差异显著(P<0.05)。不同处理下茄非必需氨基酸总质量摩尔浓度由高到低依次为T2、T1、ck;相比ck,处理组氨基酸总量显著提高了80.8%~85.8% (P<0.05)。

      表 8  不同施肥处理对茄果实中游离氨基酸的影响

      Table 8.  Effects of different fertilization treatments on the content of free amino acids in eggplant fruit

      处理苏氨酸/
      (μmol·g−1)
      缬氨酸/
      (μmol·g−1)
      蛋氨酸/
      (μmol·g−1)
      赖氨酸/
      (μmol·g−1)
      异亮氨酸/
      (μmol·g−1)
      亮氨酸/
      (μmol·g−1)
      苯丙氨酸/
      (μmol·g−1)
      ck4.52±1.01 b9.90±2.76 b0.32±0.08 c7.03±1.63 b4.37±0.93 b5.02±0.37 b8.33±0.82 c
      T14.16±0.92 b22.72±1.26 a1.45±0.15 a32.61±2.23 a17.03±1.64 a10.46±2.17 a10.88±0.34 a
      T211.55±2.94 a11.42±1.08 b0.97±0.13 b9.45±1.52 b5.82±1.60 b4.89±0.76 b9.25±0.42 b
      处理天冬氨酸/
      (μmol·g−1)
      丝氨酸/
      (μmol·g−1)
      谷氨酸/
      (μmol·g−1)
      甘氨酸/
      (μmol·g−1)
      组氨酸/
      (μmol·g−1)
      精氨酸/
      (μmol·g−1)
      丙氨酸/
      (μmol·g−1)
      ck11.22±2.99 c25.03±3.11 c1.29±0.96 a1.39±0.34 b99.17±8.97 b5.51±1.88 b3.48±0.83 b
      T135.76±2.73 a124.19±1.96 a1.82±0.76 a1.96±0.31 a135.56±15.31 a6.25±2.13 b3.70±1.42 b
      T214.63±1.38 b44.78±7.97 b1.35±0.17 a1.89±0.35 a106.89±6.87 b10.48±2.97 a13.38±3.06 a
      处理脯氨酸/
      (μmol·g−1)
      半胱氨酸/
      (μmol·g−1)
      酪氨酸/
      (μmol·g−1)
      必需氨基酸/
      (μmol·g−1)
      非必需氨基酸/
      (μmol·g−1)
      总氨基酸/
      (μmol·g−1)
      ck112.04±25.88 b1.34±0.10 c0.28±0.06 b39.49±7.6 c260.75±45.12 c300.24±52.72 b
      T1129.52±9.83 b3.45±0.33 a1.23±0.20 a99.31±8.71 a443.44±34.94 b542.75±43.65 a
      T2308.39±17.72 a2.40±0.29 b0.37±0.13 b53.35±8.45 b504.56±40.95 a557.91±49.4 a
        说明:同列不同小写字母表示处理间差异显著(P<0.05)
    • 表9可知:相比ck,处理组镁和硫质量分数显著增加,其中T1的果实硫质量分数较T2增加了10%,较ck增加了22.2%;T1的果实氮、磷、钾、钙、锰、锌和铁质量分数均显著增加(P<0.05),较ck分别增加了13.5%、26.5%、6.4%、18.8%、11.6%、21.0%和13.3%。

      表 9  不同施肥处理对茄果实营养元素的影响

      Table 9.  Effects of different fertilization treatments on the content of nutrients in eggplant fruit

      处理氮/(mg·g−1)磷/(mg·g−1)钾/(mg·g−1)钙/(mg·g−1)镁/(mg·g−1)硫/(mg·g−1)
      ck19.23±0.77 b3.42±0.20 b31.38±1.60 b1.59±0.14 b1.09±0.10 c0.18±0.02 c
      T121.78±0.41 a4.31±0.13 a33.41±1.42 a1.90±0.07 a1.37±0.11 b0.22±0.03 a
      T219.52±0.20 b3.61±0.29 b31.03±1.74 b1.86±0.16 b1.79±0.10 a0.20±0.03 b
      处理锰/(μg·g−1)锌/(μg·g−1)铜/(μg·g−1)铁/(μg·g−1)硼/(μg·g−1)
      ck24.21±1.39 b19.50±1.29 b9.64±0.65 a27.11±1.54 b13.44±0.90 a
      T127.02±2.21 a23.57±1.68 a9.32±0.44 a30.67±1.59 a13.91±1.52 a
      T224.14±1.61 b19.18±1.77 b9.34±0.80 a26.21±1.50 b14.18±1.38 a
        说明:同列不同小写字母表示处理间差异显著(P<0.05)
    • 黄婷等[25]研究发现:有机肥替代化肥可增加土壤有机质含量。本研究发现:有机肥替代处理组(T1与T2)土壤有机质质量分数均显著上升,但有机肥全部替代化肥(T2)土壤有机质少于有机肥替代50%化肥(T1)。这可能是因为土壤微生物碳氮与土壤活性有机质正相关[26-28],T2处理土壤微生物碳氮质量分数显著低于T1,说明有机肥投入过多并不能增加额外的有机质[29]。土壤微生物碳氮比可以反映土壤氮素的供应能力,碳氮比越小说明土壤氮素生物有效性较高。

    • 武星魁等[30]在叶菜蔬菜有机肥替代化肥的研究中发现:有机肥替代化肥可以提高叶菜产量与品质,但并不是有机肥替代化肥的比例越高效果越好,而是存在着最佳的比例。本研究发现:相比单施化肥,在提高茄维生素C质量分数等品质和产量方面,有机肥替代50%化肥处理优于有机肥完全替代化肥,这与李淑仪等[31]结果相似。

      花青素是一类影响茄果实品质的类黄酮化合物[32]。已有研究[33]发现:光照和环境温度对花青素合成与积累有影响。本研究发现:有机肥部分替代化肥能显著增加果皮中花青素质量分数,使茄果皮颜色加深,外观品质更好。推测原因可能是有机肥增加了类黄酮物质生物合成前提的苯丙氨酸的含量[34],提高了花青素质量分数,具体生理机制有待进一步研究。

      有机肥部分替代化肥对茄果实营养元素的影响鲜见报道。矿物质元素是维持人体生长发育所需的营养物质,也是品质因子的成分之一[35-36];硫元素能够组成蛋氨酸和半胱氨酸[37],钾元素参与果实中糖的形成与积累[38]。本研究发现:有机肥施入处理后茄硫元素质量分数显著提升,这可能是茄中蛋氨酸和半胱氨酸增加的原因;有机肥替代50%化肥处理后茄钾元素质量分数最高,这可能是T1中可溶性糖质量分数高的原因。配施有机肥显著提高某些元素含量一方面在于有机肥本身可为植物提供多种元素,如李大伟等[39]发现有机肥本身含有一定数量的铁,对提升白菜铁含量有利;另一方面,有机肥中的某些物质可能与矿物质元素具有协同吸收作用,如魏孝荣[40]发现:土壤有效态锌与土壤有机质呈正相关,配施有机肥处理通过提高锌的生物有效性从而提高了茄中锌的质量分数。

      综上所述,有机肥替代基肥中50%的化肥可以提高露地茄的产量和品质,并改善土壤肥力。

参考文献 (40)

目录

/

返回文章
返回