-
光系统Ⅱ(PSⅡ)是植物对温度胁迫最敏感的光合系统组分[1-3],利用非损伤、检测时间短、灵敏度高的快速叶绿素荧光诱导动力学技术[4-5],可以方便地研究温度与PSⅡ光化学活性之间的关系。低温胁迫会引起快速叶绿素荧光诱导动力学曲线(OJIP曲线)趋向平缓、O相升高、J相下降或上升、I相和P 相下降、K 点和L点出现[6-8]等变化,反映出PSⅡ有活性的反应中心数量减少[9],反应中心吸收和热耗散的能量增加[9-11],以及PSⅡ受体侧的电子传递速率降低等光合作用的“内在变化”[11-12]。低温胁迫还会使叶片叶绿素降解[12-13],导致光合作用的物质基础发生改变。目前多数研究采用离体试验材料、野外观测、设置单一温度处理等方式,温度与PSⅡ光化学活性的关系难以被准确描述。为获得不同胁迫程度下叶绿素荧光的综合性指标,当前研究主要利用隶属函数法[14-15]、主成分分析法[16-17]、TOPSIS综合评价法[18-19]和综合生物反应指数(integrated biomarker response,IBR)[20]计算综合指标。其中IBR评价法具有操作简单、实用性强和应用广泛的特点,但尚未用于计算低温胁迫下的叶绿素荧光综合指标。南极假山毛榉Nothofagus antarctica为壳斗科Fagaceae假山毛榉属Nothofagus落叶乔木或灌木,主要分布在南美洲南部的温带森林,耐寒能力极强[21],为探索低温环境下南极假山毛榉光合生理特性,本研究采用连续测定与控制试验的方法,观测低温胁迫下南极假山毛榉叶片相对叶绿素含量(relative chlorophyll content)、OJIP曲线特征、快速叶绿素荧光诱导动力学测量(JIP-test)参数等的变化,并将JIP-test参数代入IBR评价法,用以阐明低温胁迫对南极假山毛榉PSⅡ光化学活性的影响规律,并检验IBR评价法用于计算低温胁迫下的叶绿素荧光综合指标的可行性。
-
供试材料为2年生南极假山毛榉实生苗(山西省林业科学研究院基地培育),株高(50±5) cm。2018年9月初,选取长势良好,无病虫害,大小相近的南极假山毛榉5盆,置于人工气候箱中适应培养3 d。人工气候箱参数为:温度25 ℃;昼夜相隔时间12 h;光照强度500 μmol·m−2·s−1;相对湿度(60±3)%,根据表土干燥情况适量浇水。设置25、15、5、−5、−15和−25 ℃等6个测试温度,从25 ℃依次降低,降温速率为2 ℃·h−1,待植株在5 ℃的人工气候箱中测试完毕,转移到3 ℃预冷的冰柜中,继续以2 ℃·h−1的速率依次降到−5、−15和−25 ℃;各温度下处理时间为24 h。冰柜装有人工光源,光照强度500 μmol·m−2·s−1,采用大气采样仪(QC-1S,北京市科安劳保新技术公司)从冰柜门缝隙处向内缓慢送气。
各测试温度下处理完成后,在原处理环境下关闭光源,使植株暗适应20 min;立刻进行快速叶绿素荧光诱导动力学测量,随后立即测定相对叶绿素含量。同1株上的2项测量均在同1片健康、成熟的叶片上进行,测量位置相互错开。每个处理5盆,每盆作为1个独立重复实验,测定5片·盆−1。以25 ℃处理为对照(ck)。10:00测定各项指标。
-
采用叶绿素测定仪(SPAD-502Plus,KONICA MINOLTA,日本)测定各温度处理下植株的相对叶绿素含量(SPAD值)。
-
采用叶绿素荧光仪(Yaxin-116G,雅欣理仪公司)测定快速叶绿素荧光诱导动力学曲线(OJIP),测定前暗适应20 min,选取叶肉部分用3 000 μmol·m−2·s−1饱和蓝闪光照射1 s,以10 μs (300 μs之前)、100 μs (300 μs~3 ms)和1 ms (3 ms之后)的间隔记录荧光信号,并计算叶绿素荧光动力学参数。
-
叶片经过暗适应后再给予饱和蓝闪光照射,散发的荧光随时间变化的曲线,构成叶绿素荧光诱导动力学曲线。暗适应后出现最小荧光O相,此时PSⅡ处于“完全开放”状态;照射强光后,陆续出现J、I相,最终由于PSⅡ反应中心关闭,达到P相。将不同温度处理的OJIP曲线离差标准化。应用公式VO-P=(Ft−FO)/(FP−FO)计算FO与FP间相对可变荧光强度(VO-P),其中Ft表示t时的荧光强度,FO表示暗适应后的最小荧光强度,FP表示暗适应后的最大荧光强度。应用公式△VO-P=VO-P(处理)−VO-P(ck)计算FO与FP间相对可变荧光强度差值(△VO-P)。FO与FJ、FK间的相对可变荧光强度差值(△VO-J和△VO-K)的计算方式同VO-P和△VO-P。
-
暗适应后照光,O、L、K、J、I、P点分别表示最小荧光、0.15 ms荧光,0.30 ms荧光,2.00 ms荧光、30.00 ms荧光和最大荧光[22],其中0.15和0.30 ms时的相对荧光强度用VL和VK表示,PSⅡ单位面积反应中心数量(RC/CSO)、单位反应中心吸收的能量(ABS/RC)、单位反应中心以热能形式耗散的能量(DIO/RC)、单位反应中心捕获的用于还原初级醌受体(QA)的能量(TRO/RC)、单位反应中心用于将电子从QA−传递到质体醌(PQ)的能量(ETO/RC)、单位反应中心用于将电子从QA−传递到光系统Ⅰ(PSⅠ)的能量(REO/RC)、PSⅡ光化学初级最大效率(φPO,意义与暗适应下PSⅡ的最大量子产额Fv/Fm相同)、PSⅡ捕获的电子从QA−传递到PQ的效率(ψEO)、电子从PQH2传递到PSⅠ最终受体侧的效率(δRO)、叶片性能指数(PIABS)等参数计算参照文献[22]和[23]。
-
计算方法参照文献并略有改动:①计算各项荧光参数在所有处理下的平均值m和标准差s;②代入公式(1)对各处理下的各项荧光参数(X)标准化,得到Y;③对不同温度处理下的各项荧光参数进行回归拟合,如果某项荧光参数的拟合曲线随着温度降低而上升,则Z=Y,反之则Z=−Y;④依据公式(2)计算不同温度处理下单项荧光参数的得分Si,其中|Zm
in|是某温度处理下所有荧光参数Z值的最小值的绝对值;⑤以某温度处理下某项荧光参数的Si值作为辐射线的长度绘制星状图,各温度处理下的综合生物反应指数(IBR)由顺时针相邻荧光参数的辐射线围成的三角形面积Ai之和得到公式(3),公式(3)中的Ai依据公式(4)计算,公式(4)中的n为参与计算的荧光参数的个数。 $$ Y = \frac{{X - m}}{s}\text{;} $$ (1) $$ {S_i} = Z + {\rm{ }}\left| Z_{\rm{min}} \right|\text{;} $$ (2) $$ {I_{{\rm{BR}}}} = \mathop \sum \limits_{t = 11}^n {A_i}\text{;} $$ (3) $$ {A_i} = \frac{\,1\,}{\,2\,}\sin \left( {\frac{{360}}{n}} \right){S_i}{S_i}_{ + 1}\text{。} $$ (4) -
将各处理所得的IBR、Fv/Fm、
PIABS、相对叶绿素含量进行相关性分析,依据Pearson参数和显著性,检验IBR评价法用于计算低温胁迫下的叶绿素荧光综合指标的可行性。采用SPSS 22进行数据统计分析,应用最小显著差法(LSD)进行多重比较,采用Origin 2018进行回归分析和绘图。 -
由图1可知:15和5 ℃时相对叶绿素含量无显著变化,−5 ℃时开始显著下降,−25 ℃时极显著降低,与对照相比降低了63.8%。表明≤−5 ℃的低温环境会导致南极假山毛榉叶片相对叶绿素含量显著降低。
-
由图2可知:5、15和25 ℃处理下OJIP曲线出现O、J、I、P各相(图2A、B),表明这些温度下电子传递链运转正常;−5、−15和−25 ℃的OJIP曲线较为平缓(图2A),缺少J相和I相(图2B)。将标准化的各处理曲线与ck相减,可见J相和I相合并,并且在光照极短时间(约0.03 ms)出现1个较大峰(图2C),表明电子传递链严重受阻。OJIP曲线在5 ℃出现典型的K点(图2D)和L点(图2E),表明PSⅡ供体侧和PSⅡ反应中心受损。
-
由图3A可知:VK
随着温度降低,−5、−15和−25 ℃时均与对照达到显著差异,表明≤−5 ℃的低温处理会造成PSⅡ供体侧损伤。 -
−5、−15、−25 ℃处理下VL
上升明显(图3B),表明≤−5 ℃的低温导致PSⅡ各单位之间的能量流通不畅。从−5 ℃到−25 ℃,RC/CSO随着温度降低逐渐减少(图3C),但−15 ℃的RC/CSO显著高于−5 ℃,表明−15 ℃时PSⅡ单位面积反应中心数量出现短暂回升。从−5 ℃开始,随着温度降低,ABS/RC(图3D)、TRO/RC(图3E)和DIO/RC(图3F)持续增加,−25 ℃时分别比对照增加331.0%、134.7%和1 112.7%,表明由于缺少可供还原的QA,PSⅡ单位反应中心集聚了大量能量。 -
与对照相比,ETO/RC(图3G)和REO/RC(图3H)在−15和15 ℃时短暂下降,REO/RC在−25 ℃时又显著下降,表明高于−15 ℃的温度对PSⅡ受体侧的能量传输影响较小。当温度从25 ℃降低到5 ℃时,φPO(图3I)和ψEO(图3J)与对照相比无显著差异,δRO(图3K)仅在15 ℃时出现短暂下降;当温度继续降低到−5 ℃时,3项参数均显著下降,表明≤−5 ℃的低温对PSⅡ的电子传递效率有显著负面影响。
-
随着温度降低,Fv/Fm与φPO的变化趋势相同(图4)。5 ℃时,
PIABS显著低于对照,−5、−15和−25 ℃时, PIABS接近于0,表明≥15 ℃的环境温度对南极假山毛榉叶片的光能吸收无显著影响,≤5 ℃时开始出现低温胁迫,≤−5 ℃会造成严重的冰冻胁迫(图5)。 -
随着温度从25 ℃降至−25 ℃,VK
、VL、ABS/RC、DIO/RC、TRO/RC的拟合曲线持续上升,其余参数的拟合曲线持续下降(图3),因此对VL 、VK、ABS/RC、DIO/RC、TRO/RC的标准后数值取正值,其余参数取负值,绘制星状图(图6)并计算IBR(图7)。与对照相比,IBR在5、−5和−15 ℃时显著增加,−25 ℃极显著升高。对IBR作回归分析显示:22 ℃为IBR拐点,高于或低于此温度均导致IBR升高;表明IBR与温度胁迫程度呈正相关,南极假山毛榉叶片对光能的吸收利用效率最佳值在22 ℃,≤5 ℃的低温会对南极假山毛榉PSⅡ光化学活性造成胁迫。 -
对各温度处理下的Fv/Fm、PIABS、相对叶绿素含量、IBR和各测试温度进行相关性分析可见(表1):IBR、相对叶绿素含量和温度均为显著负相关,表明IBR能较准确反映温度对南极假山毛榉PSⅡ光化学活性以及对相对叶绿素含量的影响。Fv/Fm和PIABS虽然也与温度呈显著相关,但与相对叶绿素含量无显著相关,表明IBR与相对叶绿素含量的相关度高于上述2项参数。
表 1 Fv
/Fm、IABS、相对叶绿素含量、IBR和温度的相关性分析 Table 1. Correlation analysis of Fv
/Fm, PIABS, SPAD value, IBR and temperature 参数 IBR PIABS Fv/Fm 相对叶绿
素含量测试
温度IBR 1 PIABS −0.73 1 Fv/Fm −0.72 0.94** 1 相对叶绿素含量 −0.95** 0.79 0.77 1 测试温度 −0.88* 0.90* 0.92* 0.90* 1 说明:*表示P<0.05,**表示P<0.01 -
本研究中,当温度从25 ℃降低到15 ℃时,相对叶绿素含量、OJIP曲线、快速叶绿素荧光诱导动力学测量参数和IBR没有显著变化,说明15 ℃的环境温度对南极假山毛榉PSⅡ光化学活性的扰动轻微。当温度降低到5 ℃时,OJIP曲线出现K点和L点,PIABS开始显著下降,表明此阶段的低温主要对PSⅡ供体侧和反应中心构成胁迫,即放氧复合体(OCE)出现损伤,PSⅡ各单位之间的能量流通不畅。从−5 ℃降至−25 ℃,相对叶绿素含量显著降低,PSⅡ供体侧受损加剧;进入电子传递链的电子减少,引起电子传递效率下降;光反应的激发能不能及时传递到PSⅡ受体侧而大量积累,最终造成PSⅡ各单位之间的能量流通混乱,部分能量只能以热能的形式耗散。
OJIP曲线特征位点的变化能直观地反映出PSⅡ反应中心原初光化学反应的变化。HU等[9]发现低温处理下狗牙根Cynodon dactylon叶片OJIP曲线的相对荧光强度降低;曲丽娜等[7]进一步发现低温处理导致风箱果Physocarpus amurensis叶片的OJIP 曲线趋于平缓、P相下降、K点和L点出现;刘倩倩等[6]也得出相似结论,并发现低温处理导致O相上升。本研究发现:随着温度降低,南极假山毛榉叶片OJIP曲线的O相逐渐上升,−5、−15和−25 ℃的OJIP曲线趋于平滑,与前述研究结论相似;但前述物种均只涉及冷害胁迫(>0 ℃),而南极假山毛榉经历冻害胁迫(<0 ℃)才出现上述现象,这可能与其耐寒性强有关。−5、−15和−25 ℃处理时OJIP曲线在0.03 ms附近出现新拐点,可能因为冰冻胁迫导致PSⅡ反应中心成为能量陷阱,能吸收光能但不能推动电子传递[22],大量能量的积聚造成的。
JIP-test分析以OJIP曲线为数据基础,可提供大量反映光合器官的结构和功能的变化[23]。刘倩倩等[6]发现低温胁迫导致PSⅡ供体侧电子传递速率降低,PSⅡ反应中心数量减少;曲丽娜等[7]研究表明低温会造成放氧复合体受损,PSⅡ反应中心各单位之间的能量流通不畅,以及PSⅡ受体侧电子由初级电子受体(QA)向次级电子受体(QB)的传递过程受阻。伴随温度降低,南极假山毛榉的VK、VL、ABS/RC、TRO/RC和DIO/RC逐渐升高,RC/CSO逐渐减少,与前人研究结果相似;−15 ℃时RC/CSO出现短暂显著回升,推测是南极假山毛榉面对低温胁迫的应激反应,即通过增加PSⅡ单位面积光合机构含有的反应中心数量,以加大光能吸收量,弥补由于PSⅡ受体侧电子传递受阻而缺失的能量。
DUARTE等[20]利用IBR评价法,以JIP-test参数为数据源构建了光化学胁迫指数,证实了该参数与环境胁迫程度呈负相关关系。本研究发现IBR值与温度呈显著负相关,与DUARTE等[20]的结论相似。本研究还观察到,与Fv/Fm和
PIABS不同,IBR与相对叶绿素含量亦存在极显著负相关关系,可能预示IBR对低温胁迫的反映更具有广泛性。 多项研究显示,5 ℃的低温会引起Fv/Fm和PIABS显著降低[6-8,11];本研究发现:高于5 ℃时南极假山毛榉叶片的Fv/Fm和IBR无显著变化,高于15 ℃时PIABS无显著变化,表明南极假山毛榉叶片PSⅡ的温度适应性强,这可能是南极假山毛榉耐寒性强的生理基础之一。研究还发现:冰冻胁迫对PSⅡ的光吸收能力抑制明显,预示在南极假山毛榉的生长季需要预防零度以下的寒潮侵袭。STECCONI等[24]发现南极假山毛榉的最适生长温度为18.5 ℃/7.0 ℃(昼/夜),回归分析显示IBR的最小值出现在22 ℃,这一温度与上述研究结果仍有差距,可能与低温处理时间,以及参与计算IBR的参数种类有关,还需进一步探究。
Effect of low temperature on photosystem Ⅱ in Nothofagus antarctica
-
摘要:
目的 探究低温对南极假山毛榉Nothofagus antarctica光系统Ⅱ(PSⅡ)的影响,利用综合生物反应指数(IBR)评价法计算低温胁迫下的叶绿素荧光综合指标的可行性。 方法 采取逐步降低环境温度的方法(从25 ℃降至−25 ℃),测量并分析南极假山毛榉叶片的相对叶绿素含量和快速叶绿素荧光,计算各温度下植株的综合生物反应指数,综合评价温度降低对PSⅡ光化学活性的影响。 结果 环境温度为15 ℃时,PSⅡ光化学活性无变化;环境温度为5 ℃时,放氧复合体损伤,PSⅡ各单位之间的能量流通受阻。低温(−5、−15和−25 ℃)导致相对叶绿素含量显著降低,PSⅡ供体侧受损加剧,电子传递效率下降,PSⅡ各单位之间的能量流通混乱,热耗散显著增加。各温度处理下植株的综合生物反应指数和相对叶绿素含量与测试温度均表现为显著负相关。 结论 低于−5 ℃的低温会对南极假山毛榉PSⅡ的光化学活性造成严重胁迫,综合生物反应指数可以综合评价低温胁迫对植株PSⅡ光化学活性和相对叶绿素含量的影响。图7表1参24 Abstract:Objective Nothofagus antarctica PSⅡ photochemical performance under low temperature was assessed and its results were used in calculation integrated biomarker response (IBR) to assess the synthetical indicator of chlorophyll fluorescence under low temperature stress. Method The environment temperature of N. antarctica was changed gradually (from 25 ℃ to −25 ℃). After exposed, relative chlorophyll content (SPAD value) and fast chlorophyll fluorescence were measured and analysed, IBR were calculated, to assess the effect of low temperature PSⅡ photochemical activity. Result 15 ℃ hardly affects the PSⅡ photochemical activity. Oxygen-evolving complex and energy flow between PSⅡ units were disturbed under −5 ℃. Under the low temperature of −5, −15 and −25 ℃, SPAD value was remarkably reduced, and the PSⅡ donor side, electron transport of PSⅡ, energy flow between PSⅡunits were all disturbed seriously; heat dissipation was remarkably increased. IBR under different temperature treatments have a significant negative correlation with SPAD value and temperature. Conclusion The damage of PSⅡ photochemical activity by low temperature (below −5 ℃) was serious, and IBR can be used as a comprehensive parameter to evaluate the effect of low temperatures on PSⅡ photochemical activity and SPAD value. [Ch, 7 fig. 1 tab. 24 ref.] -
西红花Crocus sativus为鸢尾科Iridaceae番红花属Crocus多年生草本植物,又称番红花、藏红花,以干燥柱头入药,属药食同源中药材,被历代医家所推崇,被誉为“红色金子”,2018年被浙江省人民政府认定为新“浙八味”之一。西红花原产于伊朗、希腊、印度、西班牙、意大利、摩洛哥等地[1],喜冷凉、耐寒、不耐涝,适合在疏松肥沃、腐殖质丰富、排水良好的沙质土壤种植[2],在中国山东、江苏、北京、河南等20多个省、市都有一定的种植面积。大量研究发现:西红花具有调血脂[3]、抗肿瘤[4]、抗氧化[5-7]、抗癌[8-9]、防治动脉粥样硬化[10]、抗抑郁[11-12]、预防阿尔茨海默症[13]等多种药用活性。除柱头外,副产物花瓣也具有抗氧化的药用活性[14]。但是西红花是三倍体植物,只能通过无性繁殖繁育新球茎,极易积累病害;同时由于西红花种植面积不断扩大,球茎腐烂病逐年加重,大量球茎在田间生长期和收获储藏期腐烂,球茎减产严重,西红花的产量与品质受到影响[15-19]。目前,围绕西红花的研究主要集中于以下方面:①西红花苷、西红花酸等主要药用成分药理活性研究,进一步开发西红花潜在的药用价值[3, 14]。②西红花苷生物合成途径的解析,如对西红花苷生物合成途径相关合成酶基因进行挖掘和功能解析[20-22]。③西红花价格昂贵、产量低,市面上西红花以次充好、品质参差不齐,因此精准、高效地对西红花的真伪进行鉴定显得尤为重要[23-27]。④优化西红花栽培管理模式和施肥方式,以提高西红花的品质,降低病害发生率[28-30]。⑤西红花球茎腐烂病致病菌的分离与鉴定[15]。球茎腐烂病是困扰西红花产业发展的主要问题,致病菌的分离鉴定以及相应杀菌剂或生物农药的开发利用能为产业良性发展提供保障[15]。本研究围绕西红花土壤真菌性病害、西红花内生真菌、西红花真菌性病害生防菌的挖掘鉴定等展开综述,为全面了解西红花真菌性病害、防治现状以及产业化发展提供理论依据。
1. 西红花致病真菌的分离与鉴定
细菌、真菌、病毒等微生物都能引起西红花病害,以真菌引起的病害最为常见,造成的经济损失也最为严重[31],西红花球茎腐烂病成为当前制约西红花产业发展的主要因素。球茎腐烂病是球茎生长期间的主要病害,常见于连作田及排水差的田块,通常由真菌引起,每年有30%以上的种植面积遭受病害[15],严重影响球茎、柱头的产量和品质。
西红花球茎腐烂病主要有黑腐病和白腐病2种,其中黑腐病主要发生在球茎休眠期,白腐病主要发生在球茎大田生长期[32]。邹凤莲等[33]从西红花种球中分离到1株链格孢菌Alternaria alternata,回接试验发现其可引起西红花球茎腐烂,并与青霉菌一起感染球茎;相比感染单种真菌病害,腐烂更加严重。表明西红花球茎腐烂病可能是多种致病菌共同作用的结果。张国辉等[34]通过组织分离法从感病球茎中分离得到了2种致病真菌,分别为炭疽菌Anthracnose sp. 和尖孢镰刀菌Fusarium oxysporum;回接试验发现:这2种真菌共同感染西红花球茎从而引起腐烂病的发生。王海玲[32]从腐烂球茎中分离获得巴西曲霉Aspergillus brasiliensis、尖孢镰刀菌F. oxysporum和桔青霉菌Penicillium citrinum等3种致病菌,但是这3种菌复合接种是否引起球茎腐烂,目前尚无明确的报道。WANI等[35]从健康球茎中分离出内生真菌红棕孔韧革菌CSE26菌株Porostereum sp.,经球茎回接及田间植株回接试验,发现该菌产生的水解酶和氯代甲氧苯基代谢物可引起西红花球茎腐烂,但病症较轻,表明红棕孔韧革菌是一种致病性较弱的病原菌。吴李芳[15]分离得到了尖孢镰刀菌和腐皮镰刀菌F. solani,通过回接试验证明:此2种真菌是新发现的能引起西红花球茎腐烂的致病真菌。ZHANG等[36]从浙江省建德市西红花专业合作社采样,并从黑腐病的球茎中分离鉴定了1种新的能引起西红花球茎腐烂的离生青霉菌菌株P. solitum。迄今为止,已公开报道的引起西红花球茎腐烂的致病菌包括曲霉属Aspergillus sp.、镰刀菌属Fusarium sp.、青霉菌属Penicillium sp.、炭疽菌属Anthracnose sp. 和链格孢菌属Alternaria sp.,其中镰刀菌属还会引起其他药用植物如黄芪Astragalus membranaceus[16]、人参Panax ginseng[19]、半夏Pinellia ternata[37]等根茎的腐烂(表1)。因此,防治镰刀菌属真菌病害可减少西红花田间病害的发生,在生产上具有实际应用价值。
表 1 西红花球茎腐烂致病真菌及其来源Table 1 Summary of pathomycete isolation from rotting bulbs of C. sativus2. 西红花内生真菌的分离与功能鉴定
植物内生真菌是指广泛寄生于植物组织或细胞内部,但不会引起宿主感染的真菌[39],通常与宿主形成互惠的共生关系[40]。
2.1 西红花内生真菌的分离
研究表明:同一物种内生真菌的种类和数量会受品种、生长条件、取材的组织部位等因素影响,并常存在显著差异[41]。因此,分离西红花内生真菌需要对植株的不同组织部位(如根、茎、叶等)分别取材。目前,西红花内生真菌的分离主要采用组织分离法,即分别将不同部位的西红花组织切成小块彻底消毒后,将其置于马铃薯葡萄糖培养基上25 ℃培养,待其生长出菌落后挑其边缘进行纯化,已纯化的内生真菌还需要进行形态学鉴定和分子水平鉴定。西红花内生真菌形态学鉴定主要包括真菌的宏观和微观特征。宏观特征如菌落正反面颜色、菌落质地(絮状、毛毡状、质密、疏松)、菌落生长速度、菌落表面是否产生液滴等[42-44];微观特征如菌丝形状、孢子形状(卵形、倒棒形、倒梨形、卵圆形、椭圆形等)、有无隔膜、有无孢子等[45]。西红花内生真菌分子水平鉴定指采用通用引物对真菌基因组DNA特定基因序列进行扩增。目前西红花分子鉴定的引物主要包括:内部转录间隔区引物(ITS)、RNA聚合酶Ⅱ亚基引物(RPB2)和β-微管蛋白基因引物(β-tubulin)[46]。
2.2 西红花内生真菌的功能
内生真菌可从宿主中吸取营养供给自身生长所需,并产生代谢物刺激植物组织的生长与发育,提高宿主对生物或非生物胁迫的耐受性,调控宿主细胞次生代谢产物的生物合成,具有单独生产与宿主相同或相似活性物质的能力,是有益的微生物资源[35]。此外,内生真菌及其代谢产物还具有抑菌[47-49]、固氮[50]、提高植物抗性[50-51]、抗癌[48]等多种功能。可见内生真菌具有促进植物生长、提高抗性的作用。
西红花主要活性成分(如西红花苷、西红花酸等)药用价值较高,但产量低、价格昂贵。因此,许多科研工作者将目光转向了西红花内生真菌的研究。WANI等[52]发现:西红花内生真菌被孢霉Mortierella alpina CS10E4在促进西红花生长、增加类胡萝卜素积累、提高植株抗性等方面具有显著效果;田间试验表明:经过内生处理的西红花植株,球茎总生物量、球茎大小、柱头生物量、顶端出芽芽数、不定根数等形态和生理性状均有显著改善。分子机制可能是该菌通过调控关键代谢途径基因的表达,将代谢流引向促进类胡萝卜素合成的路径,从而显著提高寄主类胡萝卜素的含量。ZHENG等[53]从西红花内生真菌酒色青霉P. vinaceum培养物的活性成分中分离到了喹唑啉生物碱化合物,认为其具有潜在的细胞毒性和抗真菌活性。WANI等[54]研究发现:西红花内生真菌甘瓶霉Phialophora mustea可提高寄主植物对多种环境胁迫因子的耐受性,代谢产物具有潜在的抗菌和抗癌活性。多数内生真菌还会产生大量吲哚乙酸(IAA)以促进宿主植物的生长[42, 54]。此外,WEN等[55]对内生真菌胞外多糖(EPS)的研究发现:EPS能有效清除超氧化物阴离子自由基,是一种潜在的生物活性来源,适用于制药和食品工业。
由此可见,内生菌是重要的生物资源。研究植物内生菌,了解植物与微生物之间的关系,有助于促进西红花的可持续栽培,提高产量。
3. 西红花致病真菌的生物防治
生物防治菌是存在于种植土壤或植物根系表面的微生物,可通过多种机制抑制病原菌,如拮抗作用[56]、溶菌作用、营养和空间竞争[57]、提高植物抗性[58]、促进植物生长[59]、产生抗生素或刺激植物防御反应等。因此,生防菌可作为化学药剂的环保替代品,在降低西红花发病率的同时,对环境和寄主无任何损伤[31]。目前西红花栽培方面研究较为成熟的生防菌有假单胞菌Pseudomonas[60]、木霉菌Trichoderma[61]和芽孢杆菌Bacillus[62]等。
3.1 西红花生防菌的挖掘与验证
芽孢杆菌是一种能够有效防治西红花真菌病害的生防细菌。陶中云等[63]从西红花土壤中分离并鉴定了1株蜂房类芽孢杆菌Paenibacillus alvei ZJUB2011-1菌株,该菌株对西红花球茎腐烂病的防治效率高达57.14%,与多菌灵防治效率相当[64]。吴李芳[15]从西红花根际土壤中分离到1株对西红花球茎腐烂病具有较好防治效果的解淀粉芽孢杆菌Bacillus amyloliquefaciens C612菌株,发现C612菌株通过产生脂肽类抗生素抑制病原菌的生长,并且对西红花有较好的促生长作用。KOUR等[65]从西红花根际土壤中分离了3种芽孢杆菌,分别为苏云金芽孢杆菌B. thuringiensis DC1菌株、巨大芽孢杆菌B. megaterium VC3菌株和解淀粉芽孢杆菌B. amyloliquefaciens DC8菌株;田间试验发现这3株芽孢杆菌都能明显促进西红花植株生长,降低球茎发病率。此外,GUPTA等[66]发现枯草芽孢杆菌B. subtilis、荧光假单胞菌P. fluorescens和棘孢木霉菌T. asperellum不仅降低了西红花病原菌数量和病害发生率,有效防治西红花球茎腐烂病,还有利于延长西红花的花期(表2)。目前,针对芽孢杆菌生物防治和促进植物生长方面已开展了系统的研究,部分菌株已实现商品化,产生了较大的经济效益[67]。
表 2 已报道的西红花生防菌Table 2 Biocontrol bacterium of C. sativus had been reported菌株名称 菌株类型 来源 作 用 参考文献 蜂房类芽孢杆菌 Paenibacillus alvei ZJUB2011-1 细菌 根际土壤 防治球茎腐烂病 [63] 解淀粉芽孢杆菌 Bacillus amyloliquefaciens C612 细菌 根际土壤 抑制病原菌生长 [15] 苏云金芽孢杆菌 B. thuringiensis DC1 细菌 根际土壤 抑制病原菌,促进植株生长 [65] 巨大芽孢杆菌 B. megaterium VC3 细菌 根际土壤 抑制病原菌,促进植株生长 [65] 解淀粉芽孢杆菌 B. amyloliquefaciens DC8 细菌 根际土壤 抑制病原菌,促进植株生长 [65] 枯草芽孢杆菌 B. subtilis 细菌 生防药剂 防治球茎腐烂病 [66] 荧光假单胞菌 Pseudomonas fluorescens 细菌 生防药剂 防治球茎腐烂病 [66] 棘孢木霉菌 Trichoderma asperellum 真菌 生防药剂 防治球茎腐烂病 [66] 解淀粉芽孢杆菌 B. amyloliquefaciens W2 细菌 根际土壤 防治球茎腐烂病 [67] 3.2 生防菌在其他药用植物中的挖掘与验证
生防菌作为化学农药的良好替代品,可改善环境污染、降低农药残留,药用植物生防菌的挖掘与验证也是科学研究的热点。ANISHA等[68]从生姜Zingiber officinale中分离到1株顶孢属真菌Acremonium sp.,具有良好的抑菌活性;进一步研究发现:该菌可产生胶霉毒素(gliotoxin),对病原菌具有较强的拮抗作用,表明该菌具有生物防治潜力。HAN等[69]从人参根际土壤中分离到1株具有较高抗菌活性的紫色色杆菌Chromobacterium sp. JH7菌株,该菌能产生几丁质酶、蛋白酶等抗菌分子,为开发人参生物防治剂提供了理论依据。姜云等[70]研究发现:施用生防菌株FG14可湿性粉剂能有效防治人参锈腐病,效率高达68.69%。将三菌合剂“宁盾”施用于浙贝母Fritillaria thunbergii根腐病地块,发现其对植株有显著促生长、防病作用[71](表3)。综上所述,生防菌对药用植物的绿色高效种植、提升品质具有重要作用和广阔的应用前景。
表 3 生防菌在其他药用植物的挖掘与验证Table 3 The excavation and verification of biocontrol bacteria in other traditional Chinese medicine plants菌株名称 菌株类型 来源 功能 参考文献 顶孢属真菌 Acremonium sp. 真菌 健康生姜 产生胶霉毒素抑制病原菌 [68] 紫色色杆菌 Chromobacterium sp. JH7 细菌 人参根际土壤 产生几丁质酶、蛋白酶抑制病原菌 [69] 深海链霉菌 Streptomyces scopuliridis 细菌 人参根际土壤 产生几丁质酶、蛋白酶抑制病原菌 [69] 灰锈赤链霉菌 S. griseorubiginosus 放线菌 川芎根茎 抑制4种川芎根腐病原菌 [72] 团孢链霉菌 S. agglomeratus 放线菌 川芎根茎 抑制4种川芎根腐病原菌 [72] 解淀粉芽孢杆菌 B. amyloliquefaciens C10 细菌 人参根际土壤 改变真菌群落结构 [73] 萎缩芽孢杆菌 B. atrophaeus SXKF16-1 细菌 黄芪根际土壤 定植于根际土壤,改善土壤微生态环境 [74] 哈茨根霉 Trichoderma harzianum TharDOB-31 真菌 健康姜黄根茎 定植于根茎,产生抗真菌化合物 [75] 4. 展望
西红花优质种质资源匮乏,土地连作障碍,有效的杀菌剂或生物农药匮乏,众多不利因素导致球茎腐烂病日益严重,品质和产量难以保障[15]。要解决这些困扰产业发展的核心问题,可从以下方面集中科研攻关。一是基于现代宏基因组测序技术挖掘西红花球茎腐烂致病菌、生防菌。获得不同菌株并进行功能验证,分析西红花球茎腐烂病与根际土壤微生物群落的关系,为杀菌剂或生物农药的开发提供理论依据[76-77]。如已有研究[76]通过对人参锈腐病的根际土壤、感病人参根部分别进行宏基因组测序,比较土壤微生物群落和感病人参根部微生物群落差异,分析土壤中金属元素等与锈腐病发生的相关性,系统挖掘人参锈腐病的潜在致病菌,探明了连作土壤中金属离子失衡是人参锈腐病的潜在连作障碍诱因。二是基于合成生物学和发酵工程原理,将中药活性物质代谢合成的催化酶基因在大肠埃希菌Escherichia coli、酵母、烟草Nicotiana tabacum等模式原核和真核物种中进行基因表达重构,以实现药效物质的异源高效生物合成,从而解决目前优质中药药源紧缺、药效物质不稳定等问题。目前托品烷生物碱-莨菪碱(hyoscyamine)、青蒿素(artemisinin)等药用活性物质已实现基于合成生物学技术方法的异源生物全合成[78-80]。因此,从分子水平解析西红花苷、西红花酸等主要活性成分代谢合成的催化酶基因或调控基因,能为优质西红花转基因新品种的培育以及基于合成生物学技术手段的西红花主要活性成分的异源生物合成提供理论和应用依据[81-82]。三是脱毒中药种苗的规模化应用可有效缓解中药植物连作引起的病虫害频发的生产问题。目前,滁菊Chrysanthemum morifolium [83]、半夏Pinellia ternata[84]、怀地黄Rehmannia glutinosa [85]等中药材脱毒种苗在生产上的规模化应用有效扭转了土地连作引起的病虫害频发、严重影响生产效能的不利局面。西红花植株病害严重,创制西红花脱毒新种质,能为生产上提供可靠的优质西红花种源,提高生产效益[86-89]。
-
表 1 Fv
/Fm、IABS、相对叶绿素含量、IBR和温度的相关性分析 Table 1. Correlation analysis of Fv
/Fm, PIABS, SPAD value, IBR and temperature 参数 IBR PIABS Fv/Fm 相对叶绿
素含量测试
温度IBR 1 PIABS −0.73 1 Fv/Fm −0.72 0.94** 1 相对叶绿素含量 −0.95** 0.79 0.77 1 测试温度 −0.88* 0.90* 0.92* 0.90* 1 说明:*表示P<0.05,**表示P<0.01 -
[1] POSPÍŠIL P, YAMAMOTO Y. Damage to photosystem Ⅱ by lipid peroxidation products [J]. BBA Gen Subj, 2017, 1861(2): 457 − 466. [2] SZYMAŃSKA R, ŚLESAK I, ORZECHOWSKA A, et al. Physiological and biochemical responses to high light and temperature stress in plants [J]. Environ Exp Bot, 2017, 139: 165 − 177. [3] CAMEJO D, RODRÍGUEZ P, MORALES M A, et al. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility [J]. J Plant Physiol, 2005, 162(3): 281 − 289. [4] 周哲宇,徐超,胡策,等. 毛竹快速生长期的叶绿素荧光参数特征[J]. 浙江农林大学学报, 2018, 35(1): 75 − 80. ZHOU Zheyu, XU Chao, HU Ce, et al. Chlorophyll fluorescence characteristics of Phyllostachys edulis during its fast growth period [J]. J Zhejiang A&F Univ, 2018, 35(1): 75 − 80. [5] GOLTSEV V N, KALAJI H M, PAUNOV M, et al. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus [J]. Russ J Plant Physiol, 2016, 63(6): 869 − 893. [6] 刘倩倩,马寿宾,冯希环,等. 嫁接对高温和低温胁迫下辣椒幼苗快速叶绿素荧光诱导动力学特性的影响[J]. 园艺学报, 2016, 43(5): 885 − 896. LIU Qianqian, MA Shoubin, FENG Xihuan, et al. Effects of grafting on the fast chlorophyll fluorescence induction dynamics of pepper seedlings under temperature stress [J]. Acta Hortic Sin, 2016, 43(5): 885 − 896. [7] 曲丽娜,许楠,张会慧. 风箱果和紫叶风箱果叶片光系统Ⅱ功能对秋季低温的响应[J]. 东北林业大学学报, 2018, 46(8): 44 − 50. QU Lina, XU Nan, ZHANG Huihui. Response of photosynthetic function of photosystem Ⅱ in leaves of Physocarpus amurensis Maxim and P. opulifolius in autumn low temperature stress in cold regions [J]. J Northeast For Univ, 2018, 46(8): 44 − 50. [8] PAGTER M, LIU Fulai, JENSEN C R, et al. Effects of chilling temperatures and short photoperiod on PSⅡ function, sugar concentrations and xylem sap ABA concentrations in two Hydrangea species [J]. Plant Sci, 2008, 175(4): 547 − 555. [9] HU Zhengrong, FAN Jibiao, XIE Yan, et al. Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin [J]. Plant Physiol Biochem, 2016, 100: 94 − 104. [10] ZHANG Kun, CHEN Baihong, HAO Yan, et al. Effects of short-term heat stress on PSⅡ and subsequent recovery for senescent leaves of Vitis vinifera L. cv. Red Globe [J]. J Integrative Agric, 2018, 17(12): 2683 − 2693. [11] 马飞,徐婷婷,陈立同,等. 低温胁迫下二倍体杂交种高山松光系统Ⅱ功能稳定性研究[J]. 西北植物学报, 2011, 31(6): 1174 − 1179. MA Fei, XU Tingting, CHEN Litong, et al. Functional stability of photosystem Ⅱ in the diploid hybrid species (Pinus densata) under low temperature stress [J]. Acta Bot Boreal-Occident Sin, 2011, 31(6): 1174 − 1179. [12] 许改平,刘芳,吴兴波,等. 低温胁迫下毛竹叶片色素质量分数与反射光谱的相关性[J]. 浙江农林大学学报, 2014, 31(1): 28 − 36. XU Gaiping, LIU Fang, WU Xingbo, et al. Pigment content correlated to reflectance spectrums in Phyllostachys edulis leaves stressed by low temperature [J]. J Zhejiang A&F Univ, 2014, 31(1): 28 − 36. [13] KOOCHEKI A, SEYYEDI S M. Mother corm origin and planting depth affect physiological responses in saffron (Crocus sativus L.) under controlled freezing conditions [J]. Ind Crops Prod, 2019, 138: 111468. [14] 丁龙,赵慧敏,曾文静,等. 5种西北旱区植物对干旱胁迫的生理响应[J]. 应用生态学报, 2017, 28(5): 1455 − 1463. DING Long, ZHAO Huimin, ZENG Wenjing, et al. Physiological responses of five plants in northwest China arid area under drought stress [J]. Chin J Appl Ecol, 2017, 28(5): 1455 − 1463. [15] 吴久赟,廉苇佳,刘志刚,等. 不同葡萄品种叶绿素荧光参数的高温响应及其耐热性评价[J]. 西北农林科技大学学报(自然科学版), 2019, 47(6): 80 − 88. WU Jiuyun, LIAN Weijia, LIU Zhigang, et al. High temperature response of chlorophyll fluorescence parameters and heat tolerance evaluation of different grape cultivars [J]. J Northwest A&F Univ Nat Sci Ed, 2019, 47(6): 80 − 88. [16] KALAJI H M, SCHANSKER G, LADLE R J, et al. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues [J]. Photosynth Res, 2014, 122(2): 121 − 158. [17] 李惠,梁曼曼,赵丹,等. 不同砧木对‘绿岭’核桃叶片光合和叶绿素荧光特性的影响[J]. 西北林学院学报, 2017, 32(2): 90 − 96. LI Hui, LIANG Manman, ZHAO Dan, et al. Effects of different rootstocks on photosynthesis and chlorophyll fluorescence characteristics in ‘Lyulin’ walnut [J]. J Northwest For Univ, 2017, 32(2): 90 − 96. [18] 李孟洋,巢建国,谷巍,等. 不同产地茅苍术对淹水胁迫的生理生化响应及耐淹性的TOPSIS综合评价[J]. 生态学杂志, 2016, 35(2): 407 − 414. LI Mengyang, CHAO Jianguo, GU Wei, et al. Physiological-biochemical response of Atractylodes lancea from different habitats to waterlogging stress and comprehensive evaluation of their waterlogging tolerance with TOPSIS approach [J]. Chin J Ecol, 2016, 35(2): 407 − 414. [19] 韩晓,王海波,王孝娣,等. 不同砧木对‘87-1’葡萄光合特性及荧光特性的影响[J]. 中国农业科学, 2018, 51(10): 1972 − 1981. HAN Xiao, WANG Haibo, WANG Xiaodi, et al. Effects of different rootstocks on ‘87-1’ grape photosynthetic and chlorophyll fluorescence characteristics [J]. Sci Agric Sin, 2018, 51(10): 1972 − 1981. [20] DUARTE B, PEDRO S, MARQUES J C, et al. Zostera noltii development probing using chlorophyll a transient analysis (JIP-test) under field conditions: integrating physiological insights into a photochemical stress index [J]. Ecol Indic, 2017, 76: 219 − 229. [21] SØNDERGAARD P. Experiences with Nothofagus in West-Norway and East-Denmark [J]. Dansk Dendrologisk Arsskrift, 1997, 15: 61 − 94. [22] 李鹏民,高辉远,STRASSER R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物 学学报, 2005, 31(6): 559 − 556. LI Pengmin, GAO Huiyuan, STRASSER R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study [J]. J Plant Physiol Mol Biol, 2005, 31(6): 559 − 556. [23] TSIMILLI-MICHAEL M, STRASSER R J. In vivo assessment of impact on plants’ vitality: applications in detecting and evaluating the impact of mycorrhization on host plants[M]//VARMA A. Mycorrhiza: Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics, 3rd ed. Berlin Herdebelg: Springer-Verlaf, 2008: 679 − 703. [24] STECCONI M, PUNTIERI J, BARTHÉLÉMY D. Annual shoot-growth in Nothofagus Antarctica (G. Forster) Oersted (Nothofagaceae) from northern Patagonia [J]. Trees, 2000, 14(5): 289 − 296. 期刊类型引用(5)
1. 邱远金,张际昭,赵亚琴,阿依别克·热合木都拉,樊丛照,王果平,朱军. 基于Illumina Novaseq高通量测序技术分析番红花不同生长期根际土壤中放线菌群落结构与多样性研究. 时珍国医国药. 2024(13): 3039-3046 . 百度学术
2. 邱远金,赵亚琴,张际昭,樊丛照,阿依别克·热合木都拉,王果平,朱军. 基于高通量测序研究番红花不同生长期根际土壤中真菌群落结构及多样性. 中国现代中药. 2023(03): 574-581 . 百度学术
3. 董丽丽,余青华. 解淀粉芽孢杆菌产酶特性及其抑制禾谷镰刀菌性能研究. 安徽农业科学. 2023(14): 11-14 . 百度学术
4. 李军,高广春,李白,朱志明. 西红花球茎腐烂病发生及综合防控对策. 植物保护. 2023(06): 10-15+39 . 百度学术
5. 吴皆宁,桂思琦,曹佳佳,杜雪,李俊博,李秀娟,开国银,周伟. 西红花茎腐病致病真菌的分离与鉴定. 浙江农林大学学报. 2022(05): 1080-1086 . 本站查看
其他类型引用(0)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190366