-
土壤有机质(soil organic matter, SOM)是指存留于土壤中的动植物残体、微生物体、根系分泌物和一些高度稳定的腐殖质等多种有机组分。SOM可通过保持基本的营养成分和水分以及改变土壤中关键的物理、化学和生物过程等途径维持植物、动物和微生物的生命,并在不断变化的环境中维持土壤生态系统的稳定性[1-2]。SOM矿化可直接提供植物生长所需的氮、磷等营养元素;另一方面,SOM可为土壤中的固氮菌提供其固氮所需要的能量,间接影响植物生长所需元素的可利用性[3-4]。SOM可改变土壤的物理条件、缓冲能力和离子交换能力,SOM损失会使土壤出现硬化、紧实和结块等现象,进而影响土壤的通气性、持水量和渗透能力;土壤缓冲能力和交换能力会随着腐殖质的增加而逐渐增强,研究发现[5]:土壤20%~70%的交换能力都是由土壤中的胶状腐殖质维持的。此外,SOM作为异养微生物所需的能量或底物来源,直接影响土壤微生物的数量和活性[6-7]。因此,SOM在土壤的物理、化学和生物转化过程中扮演着重要的角色。土壤是陆地生态系统最大的碳库,土壤有机碳总量达1 550亿t,作为土壤有机碳的最大来源,SOM在恢复和建立碳平衡、土壤碳和氮元素循环、环境可持续性和气候条件等方面起着至关重要的作用[8-9]。SOM积累和流失的速度直接影响大气中二氧化碳浓度,进而影响全球气候变化。SOM中碳的积累和流失通常通过2种方法进行估算,一种是直接通过测定有机质含量的变化计算,另外一种是根据放射性碳测定的有机物年龄推断,但对SOM中碳的估算高度依赖观测时间的范围[10]。在数月到数年内,新鲜植物凋落物分解过程中的质量损失速率接近于凋落物添加到土壤中的速率,因此,凋落物分解是土壤碳损失的主要途径;而在数千年的时间尺度上,碳储量的变化不能被直接观测到,通常是通过计算基岩,相似成土因素(基岩物质、气候和植被)下的风化时间来估算,因此土壤碳的数量和年龄受与风化有关的矿物变化控制。据估算,在过去的12 000 a里,人类的土地利用导致全球表层2 m土层的土壤流失了133 Pg碳[10-12]。认识控制SOM中碳稳定和释放的机制,探明近几十年到几个世纪内土壤有机碳储量的变化,对于预测全球气候变化的影响和制定提高土壤碳固存的管理策略具有重要意义[11, 13]。
然而,长期以来,解析SOM的化学成分十分困难,因为SOM是复杂的混合物,并在土壤中经历了短至数天、长至数千年的转化,化学成分十分复杂[14]。根据对生物降解的敏感性,SOM可分为易降解成分和腐殖质成分。前者主要是指仍能够判定出其前体(多糖、蛋白质和脂质)化学特征的成分,可用水解、浸提的方法进行测定;后者则是指复杂的有机聚合体,主要包括多酚、蛋白质、活性酶、脂质、多聚糖等及其衍生物,具有呈黄色或黑色、高分子量和难以降解的特征,靠常规方法往往难以测定[15-16]。近年来,热裂解气质联用(pyrolysis-gas chromatography/mass spectrometry,Py-GC/MS)技术被广泛用来测定SOM的化学成分和化学组成[17-19]。Py-GC/MS技术通过高温将SOM中的大分子降解成小分子和片段,然后通过气相色谱进行分离,是一种快速、有效、易操作、易重现的技术。SOM的稳定性主要取决于输入物质的化学性质[20]和分解过程[21]以及环境条件[22],所有这些因素都会在SOM组成上留下化学指纹。Py-GC/MS技术通过对SOM化学成分的解析,可提供SOM的“指纹图谱”(fingerprint),实现对SOM的定性分析,同时,通过测定热裂解产生的各种化学分子的相对丰度,可实现对SOM化学成分的定量分析[22-24]。
关于SOM化学组成研究进展已有一些报道。LEINWEBER等[25]从有机质前体物质和组成以及特定有机成分的功能方面进行了论述。KÖGEL-KNABNER等[26]总结认为Py-GC/MS可以有效追踪SOM成分的来源。LÜTZOW等[27]对Py-GC/MS在SOM稳定性方面的应用进行了分析,指出微生物能够分解自然界中的所有有机质,并认为微生物优先分解SOM中的易降解物质和选择性保留难降解物质这一机制只有在特定的环境下才成立。MEHRABANIAN[28]对Py-GC/MS表征SOM的优点进行总结,同时更新了脂肪酸、碳水化合物、木质素、芳香烃和含氮化合物组成的数据。DERENNE等[29]较为完整地总结了Py-GC/MS、热解场电离质谱法、热裂解质谱技术在SOM研究中的应用进展,从不同热裂解技术的优缺点,热裂解对SOM产物的鉴定,在土壤生态过程中的应用和研究SOM化学组成对环境变化的响应等4个方面进行了总结。MA等[30]对Py-GC/MS在不同生态系统中的应用和SOM化学组成及其影响因素进行了总结。目前,Py-GC/MS除用于表征不同环境下SOM化学组成之外,还从分子层面对SOM影响土壤元素循环的内在机制方面进行了一些研究。本研究在对SOM的来源和组成以及Py-GC/MS技术综述的基础上,重点阐述基于Py-GC/MS技术研究SOM化学的进展,为深入研究SOM在生态系统过程的作用提供参考。
Soil organic matter chemistry based on pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) technology: a review
-
摘要: 土壤有机质(soil organic matter, SOM)是陆地生态系统的重要组成部分,在土壤元素的生物地球化学循环中扮演重要角色,植物源、微生物源和动物源有机残留物的微生物和物理化学转化导致了SOM化学成分的复杂性和多样性,进而使得解析SOM结构和组成具有一定的挑战性。近年来,热裂解气质联用 (pyrolysis-gas chromatography/mass spectrometry,Py-GC/MS)技术被广泛用于测定SOM的结构和化学组成,实现了对SOM化学成分的定性和半定量分析。本研究在分析SOM组成及来源的基础上,综述了目前基于Py-GC/MS技术研究SOM化学组成的研究成果,主要包括SOM化学组成和其来源的前体物质及特殊SOM化学成分解析,评估SOM的稳定性,探讨土壤物质循环过程,研究SOM对气候变化和土地利用方式的响应机制。研究表明:①不同生态系统SOM的化学组成存在一定差异,这是由于不同植物来源的化合物在土壤中的积累过程和初始凋落物的化学成分直接影响着SOM化学组成,②SOM化学组成和外界环境条件密切相关,影响SOM含量和动态过程的最重要因子是气候,它通过影响植被类型分布、光合作用物质生成量和土壤微生物活性调节SOM的化学组成,土地利用方式、野火、耕作方式等也影响着SOM的含量和组成。基于Py-GC/MS技术从SOM的本质,也就是SOM化学成分和化学组成角度揭示土壤生态过程及其对气候变化和人类活动的响应机制是未来的研究方向。图1参107
-
关键词:
- 土壤有机质 /
- 土壤生态 /
- 土壤化学 /
- 气候变化 /
- 热裂解气质联用(Py-GC/MS)
Abstract: Soil organic matter (SOM), an important component of ecosystems, plays an important role in the biogeochemical cycling of soil nutrients. However, it is difficult to analyze SOM chemistry due to its complexity and diversity resulting from microbial and physicochemical transformations of organic residues from plants, microorganisms and animals. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) is a fast and reproducible technique to obtain qualitative and quantitative analysis of SOM chemistry, in which has been commonly used in recent years. This paper summarized the components and sources of SOM, accordingly, reviewed the literature which study on chemical composition of SOM with Py-GC/MS technology. The basic theoretical studies of SOM chemistry with Py-GC/MS technology mainly focus on: the chemical composition of SOM and precursor substances from which it is derived, the analysis of specific SOM chemical components, SOM responses to climate change and land use change, and the effects of SOM chemistry on soil processes and functions. The application of Py-GC/MS technology on SOM chemistry included: evaluating the stability of SOM, investigating the cycling of soil nutrition and the succession process of ecosystem. This study showed that: (1) There are some differences in SOM chemical composition among different ecosystems, because the accumulation of compounds from different plants and the mechanisms related to the chemical composition of initial litter can directly influenced the chemical composition of SOM; (2) The SOM chemical composition is closely related to the external environmental conditions and is the result of the comprehensive influence of several factors. For instance, climate is the most important factor that influenced the content and dynamic of SOM by affecting the distribution of vegetation, photosynthetic production and soil microbial activity. Besides, nitrogen deposition, land use change, wildfire and tillage pattern also can influence the contents and qualities of SOM. Overall, it is important to investigate the SOM-related ecological process and the mechanism of SOM response to climate change and human activities, from the perspective of the essence of SOM (chemical composition and structure) based on Py-GC/MS technology. [Ch, 1 fig. 107 ref.]-
Key words:
- soil organic matter (SOM) /
- soil ecology /
- soil chemistry /
- climate change /
- Py-GC/MS
-
[1] RUMPEL C, CHABBI A, NUNAN N, et al. Impact of landuse change on the molecular composition of soil organic matter [J]. J Anal Appl Pyrolysis, 2009, 85(1): 431 − 434. [2] BUURMAN P, ROSCOE R. Different chemical composition of free light, occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields, Minas Gerais, Brazil: a pyrolysis-GC/MS study [J]. Eur J Soil Sci, 2011, 62(2): 253 − 266. [3] HARRISON-KIRK T, BEARE M H, MEENKEN E D, et al. Soil organic matter and texture affect responses to dry/wet cycles: changes in soil organic matter fractions and relationships with C and N mineralisation [J]. Soil Biol Biochem, 2014, 74: 50 − 60. [4] NOTTINGHAM A T, TURNER B L, STOTT A W, et al. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils [J]. Soil Biol Biochem, 2015, 80: 26 − 33. [5] HASHIMOTO Y, YAMAGUCHI N. Chemical speciation of cadmium and sulfur K-edge XANES spectroscopy in flooded paddy soils amended with zerovalent iron [J]. Soil Sci Soc Am J, 2013, 77(4): 1189 − 1198. [6] LEIGH J, FITTER A, HODGE A. Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria [J]. FEMS Microbiol Ecol, 2011, 76(3): 428 − 438. [7] GUDE A, KANDELER E, GLEIXNER G. Input related microbial carbon dynamic of soil organic matter in particle size fractions [J]. Soil Biol Biochem, 2012, 47: 209 − 219. [8] ZIMOV S, SCHUUR E, CHAPIN Ⅲ F S. Permafrost and the global carbon budget [J]. Science, 2006, 312(5780): 1612 − 1613. [9] SANTOIEMMA G. Recent methodologies for studying the soil organic matter [J]. Appl Soil Ecol, 2017, 123: 546 − 550. [10] TRUMBORE S, CZIMCZIK C. An uncertain future for soil carbon [J]. Science, 2008, 321(5895): 1455 − 1456. [11] BALESDENT J, BASILE-DOELSCH I, CHADOEUF J, et al. Atmosphere–soil carbon transfer as a function of soil depth [J]. Nature, 2018, 559(7715): 599 − 602. [12] COONAN E, KIRKBY C, KIRKEGAARD J, et al. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics [J]. Nutr Cycling Agroecosystems, 2020, 117: 273 − 298. [13] MARSCHNER B, BRODOWSKI S, DREVES A, et al. How relevant is recalcitrance for the stabilization of organic matter in soils? [J]. J Plant Nutr Soil Sci, 2008, 171: 91 − 110. [14] BOL R, POIRIER N, BALESDENT J, et al. Molecular turnover time of soil organic matter in particle-size fractions of an arable soil [J]. Rapid Commun Mass Spectrom, 2009, 23(16): 2551 − 2558. [15] MASCIANDARO G, CECCANTI B, GALLARDO-LANCHO J F. Organic matter properties in cultivated versus set-aside arable soils [J]. Agric Ecosystems Environ, 1998, 67(2): 267 − 274. [16] DAI X Y, PING C L, MICHAELSON G. Characterizing soil organic matter in Arctic tundra soils by different analytical approaches [J]. Org Geochem, 2002, 33(4): 407 − 419. [17] VERDE R, BUURMAN P, MARTINEZ-CORTIZAS A, et al. NaOH-extractable organic matter of andic soils from Galicia (NW Spain) under different land use regimes: a pyrolysis GC/MS study [J]. Eur J Soil Sci, 2008, 59: 1096 − 1110. [18] SANTANA G S, KNICKER H, GONZÁLEZ-VILA F J, et al. The impact of exotic forest plantations on the chemical composition of soil organic matter in southern Brazil as assessed by Py-GC/MS and lipid extracts study [J]. Geoderma Reg, 2014, 4: 11 − 19. [19] BROCK O, KALBITZ K, ABSALAH S, et al. Effects of development stage on organic matter transformation in Podzols [J]. Geoderma, 2020. doi: 10.1016/j.geoderma.2020.114625. [20] WICKLAND K P, NEFF J C. Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls [J]. Biogeochemistry, 2008, 87(1): 29 − 47. [21] DIJKSTRA E F, BOON J J, van MOURIK J M. Analytical pyrolysis of a soil profile under Scots pine [J]. Eur J Soil Sci, 1998, 49(2): 295 − 304. [22] JIMÉNEZ-GONZÁLEZ M A, ÁLVAREZ A M, CARRAL P, et al. Influence of soil forming factors on the molecular structure of soil organic matter and carbon levels [J]. Catena, 2020, 189: 104501. doi: 10.1016/j.catena.2020.104501. [23] GRANDY A, NEFF J, WEINTRAUB M. Carbon structure and enzyme activities in alpine and forest ecosystems [J]. Soil Biol Biochem, 2007, 39(11): 2701 − 2711. [24] VANCAMPENHOUT K, WOUTERS K, de VOS B, et al. Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions: a pyrolysis-GC/MS study [J]. Soil Biol Biochem, 2009, 41(3): 568 − 579. [25] LEINWEBER P, SCHULTEN H R. Advances in analytical pyrolysis of soil organic matter [J]. J Anal Appl Pyrolysis, 1999, 49(1): 359 − 383. [26] KÖGEL-KNABNER I. Analytical approaches for characterizing soil organic matter [J]. Org Geochem, 2000, 31: 609 − 625. [27] LÜTZOW M V, KÖGEL-KNABNER I, EKSCHMITT K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review [J]. Eur J Soil Sci, 2006, 57: 426 − 445. [28] MEHRABANIAN M. Molecular geochemistry of soil organic matter by pyrolysis gas chromatography/mass spectrometry (GC/MS) technique: a review [J]. J Soil Sci Environ Manage, 2013, 4(2): 11 − 16. [29] DERENNE S, QUÉNÉA K. Analytical pyrolysis as a tool to probe soil organic matter [J]. J Anal Appl Pyrolysis, 2015, 111: 108 − 120. [30] MA Shuqin, CHEN Youchao, LU Xuyang, et al. Soil organic matter chemistry: based on pyrolysis-gas chromatography- mass spectrometry (Py-GC/MS) [J]. Mini-Rev Org Chem, 2018, 15(5): 389 − 403. [31] 武天云, SCHOENAU J J, 李凤民, 等. 土壤有机质概念和分组技术研究进展[J]. 应用生态学报, 2004, 15(4): 717 − 722. WU Tianyun, SCHOENAU J J, LI Fengmin, et al. Concepts and relative analytical techniques of soil organic matter [J]. Chin J Appl Ecol, 2004, 15(4): 717 − 722. [32] de LA ROSA J M, FARIA S R, VARELA M E, et al. Characterization of wildfire effects on soil organic matter using analytical pyrolysis [J]. Geoderma, 2012, 191: 24 − 30. [33] GLEIXNER G. Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies [J]. Ecol Res, 2013, 28(5): 683 − 695. [34] 窦森. 土壤有机质[M]. 北京: 科学出版社, 2010. [35] NARDI S, CONCHERI G, PIZZEGHELLO D, et al. Soil organic matter mobilization by root exudates [J]. Chemosphere, 2000, 41(5): 653 − 658. [36] 张勇, 庞学勇, 包维楷, 等. 土壤有机质及其研究方法综述[J]. 世界科技研究与发展, 2005, 27(5): 78 − 84. ZHANG Yong, PANG Xueyong, BAO Weikai, et al. A review of soil organic matter and its research methods [J]. World Sci-Tech R&D, 2005, 27(5): 78 − 84. [37] 李娜, 盛明, 尤孟阳, 等. 应用13C核磁共振技术研究土壤有机质化学结构进展[J]. 土壤学报, 2019, 56(4): 796 − 812. LI Na, SHENG Ming, YOU Mengyang, et al. Advancement in research on application of 13C NMR techniques to exploration of chemical structure of soil organic matter [J]. Acta Pedol Sin, 2019, 56(4): 796 − 812. [38] 金鑫鑫, 汪景宽, 孙良杰, 等. 稳定13C同位素示踪技术在农田土壤碳循环和团聚体固碳研究中的应用进展[J]. 土壤, 2017, 49(2): 217 − 224. JIN Xinxin, WANG Jingkuan, SUN Liangjie, et al. Progress of carbon cycle in farmland and sequestration in soil aggregates revealed by stable 13C isotope [J]. Soils, 2017, 49(2): 217 − 224. [39] YASSIR I, BUURMAN P. Soil organic matter chemistry changes upon secondary succession in Imperata Grasslands, Indonesia: a pyrolysis - GC/MS study [J]. Geoderma, 2012, 173: 94 − 103. [40] WHITE D, GARLAND D S, PING C L, et al. Characterizing soil organic matter quality in Arctic soil by cover type and depth [J]. Cold Reg Sci Technol, 2004, 38: 63 − 73. [41] KAAL J, MARTÍNEZ-CORTIZAS A, NIEROP K G J, et al. A detailed pyrolysis-GC/MS analysis of a black carbon-rich acidic colluvial soil (Atlantic ranker) from NW Spain [J]. Appl Geochem, 2008, 23(8): 2395 − 2405. [42] LU Xuyang, MA Shuqin, CHEN Youchao, et al. Squalene found in alpine grassland soils under a harsh environment in the Tibetan Plateau, China [J]. Biomolecules, 2018, 8(4): 154. doi: 10.3390/biom8040154. [43] NEFF J, TOWNSEND A, GLEIXNER G, et al. Variable effects of nitrogen additions on the stability and turnover of soil C [J]. Nature, 2002, 419(6910): 915 − 917. [44] SCHULTEN H R, SCHNITZER M. The chemistry of soil organic nitrogen: a review [J]. Biol Fert Soils, 1997, 26(1): 1 − 15. [45] PROKUSHKIN A S, GLEIXNER G, McDOWELL W H, et al. Source and substrate-specific export of dissolved organic matter from permafrost-dominated forested watershed in central Siberia[J]. Global Biogeochem Cycles, 2007, 21(4): GB4003. doi: 10.1029/2007GB002938. [46] HERNÁNDEZ Z, ALMENDROS G. Biogeochemical factors related with organic matter degradation and C storage in agricultural volcanic ash soils [J]. Soil Biol Biochem, 2012, 44(1): 130 − 142. [47] SUÁREZ-ABELENDA M, KAAL J, CAMPS-ARBESTAIN M, et al. Molecular characteristics of permanganate- and dichromate-oxidation-resistant soil organic matter from a black-C-rich colluvial soil [J]. Soil Res, 2013, 52(2): 164 − 179. [48] ARTEMYEVA Z, DANCHENKO N, KOLYAGIN Y, et al. Chemical structure of soil organic matter and its role in aggregate formation in Haplic Chernozem under the contrasting land use variants [J]. Catena, 2021, 204(6): 105403. doi:10.1016/j.catena.2021.105403. [49] CHEN Qiuyu, NIU Bin, HU Yilun, et al. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms [J]. Sci Total Environ, 2020, 714: 136787. doi: 10.1016/j.scitotenv.2020.136787. [50] ANDERSEN S K, WHITE D M. Determining soil organic matter quality under anaerobic conditions in arctic and subarctic soils [J]. Cold Reg Sci Technol, 2006, 44(2): 149 − 158. [51] 马书琴, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤CO2 排放的影响[J]. 草业科学, 2019, 36(4): 960 − 969. MA Shuqin, LU Xuyang. Effects of soil organic matter chemical quantity on carbon dioxide emissions in alpine grassland soils in Northern Tibet [J]. Pratacult Sci, 2019, 36(4): 960 − 969. [52] HEUMANN S, SCHLICHTING A, BÖTTCHER J, et al. Sterols in soil organic matter in relation to nitrogen mineralization in sandy arable soils [J]. J Plant Nutr Soil Sci, 2011, 174(4): 576 − 586. [53] MASCIANDARO G, CECCANTI B. Assessing soil quality in different agro-ecosystems through biochemical and chemico-structural properties of humic substances [J]. Soil Tillage Res, 1999, 51(1): 129 − 137. [54] GIRONA-GARCÍA A, BADÍA-VILLAS D, JIMÉNEZ-MORILLO N T, et al. Changes in soil organic matter composition after Scots pine afforestation in a native European beech forest revealed by analytical pyrolysis (Py-GC/MS) [J]. Sci Total Environ, 2019, 691: 1155 − 1161. [55] SANTANA G, KNICKER H, GONZÁLEZ-VILA F, et al. The impact of exotic forest plantations on the chemical composition of soil organic matter in Southern Brazil as assessed by Py-GC/MS and lipid extracts study [J]. Geoderma Reg, 2015, 4: 11 − 19. [56] MIN K, SUSEELA V. Plant invasion alters the Michaelis-Menten kinetics of microbial extracellular enzymes and soil organic matter chemistry along soil depth [J]. Biogeochemistry, 2020, 150(2): 181 − 196. [57] LI Zhe, ZHANG Zhongsheng, LI Min, et al. Molecular fingerprints of soil organic carbon in wetlands covered by native and non-native plants in the Yellow River Delta [J]. Wetlands, 2020, 40(6): 2189 − 2198. [58] RAHMONOV O, KOWALSKI W, BEDNAREK R. Characterization of the soil organic matter and plant tissues in an initial stage of the plant succession and soil development by means of curie-point pyrolysis coupled with GC-MS [J]. Eurasian Soil Sci, 2010, 43: 1557 − 1568. [59] CONG Weiwei, REN Tusheng, LI Baoguo. Changes in soil organic matter composition after afforestation of arable farmland in northeast China [J]. Chem Ecol, 2016, 32(3): 201 − 220. [60] LIN D S, GREENWOOD P F, GEORGE S G, et al. The development of soil organic matter in restored biodiverse Jarrah forests of south-western Australia as determined by ASE and GCMS [J]. Environ Sci Poll Res Int, 2011, 18: 1070 − 1078. [61] SILES J A, CAJTHAML T, FILIPOVÁ A, et al. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils [J]. Soil Biol Biochem, 2017, 112: 1 − 13. [62] BECKER J N, DIPPOLD M A, HEMP A, et al. Ashes to ashes: characterization of organic matter in Andosols along a 3400 m elevation transect at Mount Kilimanjaro using analytical pyrolysis [J]. Catena, 2019, 180: 271 − 281. [63] CAMPO J, NIEROP K G J, CAMMERAAT E, et al. Application of pyrolysis-gas chromatography/mass spectrometry to study changes in the organic matter of macro-and microaggregates of a Mediterranean soil upon heating [J]. J Chromatogr A, 2011, 1218(30): 4817 − 4827. [64] XU Chunhao, GUO Laodong, PING Chienlu, et al. Chemical and isotopic characterization of size-fractionated organic matter from cryoturbated tundra soils, northern Alaska [J]. J Geophys Res, 2009, 114: G03002. doi: 10.1029/2008JG000846. [65] XIONG Li, LIU Xiaoyu, VINCI G, et al. Molecular changes of soil organic matter induced by root exudates in a rice paddy under CO2 enrichment and warming of canopy air [J]. Soil Biol Biochem, 2019. doi: 10.1016/j.soilbio.2019.107544. [66] GENG Jing, CHENG Shulan, FANG Huajun, et al. Different molecular characterization of soil particulate fractions under N deposition in a subtropical forest [J]. Forests, 2019, 10: 914. doi: 10.3390/f10100914. [67] GRANDY A S, SINSABAUGH R L, NEFF J C, et al. Nitrogen deposition effects on soil organic matter chemistry are linked to variation in enzymes, ecosystems and size fractions [J]. Biogeochemistry, 2008, 91(1): 37 − 49. [68] GENG Jing, FANG Huajun, CHENG Shulan, et al. Effects of N deposition on the quality and quantity of soil organic matter in a boreal forest: contrasting roles of ammonium and nitrate [J]. Catena, 2021, 198: 104996. doi: 10.1016/j.catena. 2020.104996. [69] CHEN Youchao, SUN Jian, XIE Fangting, et al. Litter chemical structure is more important than species richness in affecting soil carbon and nitrogen dynamics including gas emissions from an alpine soil [J]. Biol Fert Soils, 2015, 51(7): 791 − 800. [70] WHITE D, BEYER L. Pyrolysis-gas chromatography/mass spectrometry and pyrolysis-gas chromatography/flame ionization detection analysis of three Antarctic soils [J]. J Anal Appl Pyrolysis, 1999, 50(1): 63 − 76. [71] STEWART C E, NEFF J C, AMATANGELO K L, et al. Vegetation effects on soil organic matter chemistry of aggregate fractions in a Hawaiian forest [J]. Ecosystems, 2011, 14(3): 382 − 397. [72] GALLOIS N, TEMPLIER J, DERENNE S. Pyrolysis-gas chromatography-mass spectrometry of the 20 protein amino acids in the presence of TMAH [J]. J Anal Appl Pyrolysis, 2007, 80(1): 216 − 230. [73] ZAMAN M, CHANG S X. Substrate type, temperature, and moisture content affect gross and net N mineralization and nitrification rates in agroforestry systems [J]. Biol Fertil Soils, 2004, 39(4): 269 − 279. [74] GRANDY A S, NEFF J C. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function [J]. Sci Total Environ, 2008, 404(2): 297 − 307. [75] VANCAMPENHOUT K, de VOS B, WOUTERS K, et al. Organic matter of subsoil horizons under broadleaved forest: highly processed or labile and plant-derived? [J]. Soil Biol Biochem, 2012, 50: 40 − 46. [76] SUÁREZ-ABELENDA S M, BUURMAN P, CAMPS ARBESTAIN M, et al. Comparing NaOH-extractable organic matter of acid forest soils that differ in their pedogenic trends: a pyrolysis-GC/MS study [J]. Eur J Soil Sci, 2011, 62: 834 − 848. [77] HUANG Y S, EGLINTON G, van der HAGE E R E, et al. Dissolved organic matter and its parent organic matter in grass upland soil horizons studied by analytical pyrolysis techniques [J]. Eur J Soil Sci, 1998, 49(1): 1 − 15. [78] STURSOVA M, SINSABAUGH R L. Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation [J]. Soil Biol Biochem, 2008, 40(2): 550 − 553. [79] SCHNITZER M, MCARTHUR D F E, SCHULTEN H R, et al. Long-term cultivation effects on the quantity and quality of organic matter in selected Canadian prairie soils [J]. Geoderma, 2006, 130(1): 141 − 156. [80] DONG Xinliang, LI Mozhi, LIN Qimei, et al. Soil Na+ concentration controls salt-affected soil organic matter components in Hetao region China [J]. J Soils Sediments, 2019, 19(3): 1120 − 1129. [81] SCHULTEN H, MONREAL C, SCHNITZER M. Effect of long-term cultivation on the chemical structure of soil organic matter [J]. Naturwissenschaften, 1995, 82: 42 − 44. [82] CHEN Youchao, SUN Jian, XIE Fangting, et al. Non-additive effects of litter diversity on greenhouse gas emissions from alpine steppe soil in Northern Tibet [J]. Sci Rep, 2015, 5: 17664. doi: 17610.11038/srep17664. [83] ASSIS C, GONZÁLEZ-PÉREZ J, de LA ROSA J, et al. Analytical pyrolysis of humic substances from a Latosol (Typic Hapludox) under different land uses in Minas Gerais, Brazil [J]. J Anal Appl Pyrolysis, 2011, 93: 120 − 128. [84] DIECKOW J, MIELNICZUK J, GONZÁLEZ-VILA F J, et al. No-till cropping systems and N fertilisation influences on organic matter composition of physical fractions of a subtropical Acrisol as assessed by analytical pyrolysis (Py-GC/MS) [J]. Geoderma, 2006, 135: 260 − 268. [85] PARDO-FERNÁNDEZ M T, ALMENDROS-MARTÍN G, ZANCADA-FERNÁNDEZ M C, et al. Cultivation-induced effects on the organic matter in degraded southern African soils [J]. Commun Soil Sci Plant Anal, 2012, 43(3): 541 − 555. [86] OLIVEIRA D M D S, SCHELLEKENS J, CERRI C E P. Molecular characterization of soil organic matter from native vegetation-pasture-sugarcane transitions in Brazil [J]. Sci Total Environ, 2016, 548/549: 450 − 462. [87] KOV R, CAMPS-ARBESTAIN M, CALVELO-PEREIRA R, et al. A farm-scale investigation of the organic matter composition and soil chemistry of Andisols as influenced by land use and management [J]. Biogeochemistry, 2018, 140: 65 − 79. [88] ZHANG Zhongsheng, WANG Jianjim, LYU Xiangguo, et al. Impacts of land use change on soil organic matter chemistry in the Everglades, Florida: a characterization with pyrolysis-gas chromatography-mass spectrometry [J]. Geoderma, 2019, 338: 393 − 400. [89] JIMÉNEZ-MORILLO N T, de LA ROSA J M, WAGGONER D, et al. Fire effects in the molecular structure of soil organic matter fractions under Quercus suber cover [J]. Catena, 2016, 145: 266 − 273. [90] CERTINI G. Effects of fire on properties of forest soils: a review [J]. Oecologia, 2005, 143(1): 1 − 10. [91] KNICKER H, GONZÁLEZ-VILA F J, POLVILLO O, et al. Fire-induced transformation of C- and N- forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster) [J]. Soil Biol Biochem, 2005, 37(4): 701 − 718. [92] DE LA ROSA J M, GONZÁLEZ-PÉREZ J A, GONZÁLEZ-VÁZQUEZ R, et al. Use of pyrolysis/GC-MS combined with thermal analysis to monitor C and N changes in soil organic matter from a Mediterranean fire affected forest [J]. Catena, 2008, 74(3): 296 − 303. [93] KIERSCH K, KRUSE J, ECKHARDT K-U, et al. Impact of grassland burning on soil organic matter as revealed by a synchrotron- and pyrolysis-mass spectrometry-based multi-methodological approach [J]. Org Geochem, 2012, 44: 8 − 20. [94] TINOCO P, ALMENDROS G, SANZ J, et al. Molecular descriptors of the effect of fire on soils under pine forest in two continental Mediterranean soils [J]. Org Geochem, 2006, 37: 1995 − 2018. [95] NEFF J C, HARDEN J W, GLEIXNER G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska [J]. Can J For Res, 2005, 35(9): 2178 − 2187. [96] NOCENTINI C, CERTINI G, KNICKER H, et al. Nature and reactivity of charcoal produced and added to soil during wildfire are particle-size dependent [J]. Org Geochem, 2010, 41(7): 682 − 689. [97] CHEN Huan, RHOADES C C, CHOW A T. Characteristics of soil organic matter 14 years after a wildfire: A pyrolysis-gas-chromatography mass spectrometry (Py-GC-MS) study [J]. J Anal Appl Pyrolysis, 2020, 152: 104922. doi: 10.1016/j.jaap.2020.104922. [98] de LA ROSA J M, GONZÁLEZ-PÉREZ J A, GONZÁLEZ-VILA F J, et al. Medium term effects of fire induced soil organic matter alterations on Andosols under Canarian pine (Pinus canariensis) [J]. J Anal ApplPyrolysis, 2013, 104: 269 − 279. [99] FARIA S R, de LA ROSA J M, KNICKER H, et al. Molecular characterization of wildfire impacts on organic matter in eroded sediments and topsoil in Mediterranean eucalypt stands [J]. Catena, 2015, 135: 29 − 37. [100] LI Jiangye, ZHANG Qichun, LI Yong, et al. Effects of long-term mowing on the fractions and chemical composition of soil organic matter in a semiarid grassland [J]. Biogeosciences, 2017, 14(10): 2685 − 2696. [101] SPACCINI R, SONG X, COZZOLINO V, et al. Molecular evaluation of soil organic matter characteristics in three agricultural soils by improved off-line thermochemolysis: the effect of hydrofluoric acid demineralisation treatment [J]. Anal Chim Acta, 2013, 802: 46 − 55. [102] DORADO J, ALMENDROS G, GONZáLEZ-VILA F J. Response of humic acid structure to soil tillage management as revealed by analytical pyrolysis [J]. J Anal Appl Pyrolysis, 2016, 117: 56 − 63. [103] PISANI O, HADDIX M L, CONANT R T, et al. Molecular composition of soil organic matter with land-use change along a bi-continental mean annual temperature gradient [J]. Sci Total Environ, 2016, 573: 470 − 480. [104] GLEIXNER G, BOL R, BALESDENT J. Molecular insight into soil carbon turnover [J]. Rapid Commun Mass Spectrom, 1999, 13(13): 1278 − 1283. [105] ARANDA V, MACCI C, PERUZZI E, et al. Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost [J]. J Environ Manage, 2015, 147: 278 − 285. [106] ESHETU B, JANDL G, LEINWEBER P. Compost changed soil organic matter molecular composition: a Py-GC/MS and Py-FIMS study [J]. Compost Sci Util, 2013, 20: 230 − 238. [107] NIEROP K G J, PULLEMAN M M, MARINISSEN J C Y. Management induced organic matter differentiation in grassland and arable soil: a study using pyrolysis techniques [J]. Soil Biol Biochem, 2001, 33(6): 755 − 764. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210133