留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同加工方式香榧香气物质和油脂品质的比较分析

杨蕾 赵荻 胡渊渊 索金伟 喻卫武 吴家胜 娄和强 宋丽丽

魏继华, 李佳益, 刘宏, 等. 沙棘根瘤内生菌株库构建与微生物多样性分析[J]. 浙江农林大学学报, 2022, 39(2): 356-363. DOI: 10.11833/j.issn.2095-0756.20210246
引用本文: 杨蕾, 赵荻, 胡渊渊, 等. 不同加工方式香榧香气物质和油脂品质的比较分析[J]. 浙江农林大学学报, 2022, 39(1): 22-31. DOI: 10.11833/j.issn.2095-0756.20210304
WEI Jihua, LI Jiayi, LIU Hong, et al. Construction of endophytic strain bank of seabuckthorn nodule and an analysis of microbial diversity[J]. Journal of Zhejiang A&F University, 2022, 39(2): 356-363. DOI: 10.11833/j.issn.2095-0756.20210246
Citation: YANG Lei, ZHAO Di, HU Yuanyuan, et al. Comparative analysis of aroma components and oil quality of Torreya grandis ‘Merrillii’ nuts with different processing techniques[J]. Journal of Zhejiang A&F University, 2022, 39(1): 22-31. DOI: 10.11833/j.issn.2095-0756.20210304

不同加工方式香榧香气物质和油脂品质的比较分析

DOI: 10.11833/j.issn.2095-0756.20210304
基金项目: 浙江省省院合作林业科技项目(2019SY07,2021SY01);浙江省科技计划项目(2020C02019);浙江省自然科学基金资助项目(LQ19C160008);浙江省基础公益研究计划项目(LGN20C160002);省部共建亚热带森林培育国家重点实验室开放基金项目(KF201901)
详细信息
    作者简介: 杨蕾(ORCID: 0000-0002-3829-7351),从事经济林产品加工与利用研究。E-mail: 1570459212@qq.com
    通信作者: 宋丽丽(ORCID: 0000-0002-9599-4591),教授,博士,从事经济林产品加工与利用研究。E-mail: lilisong@zafu.edu.cn
  • 中图分类号: S759.8

Comparative analysis of aroma components and oil quality of Torreya grandis ‘Merrillii’ nuts with different processing techniques

  • 摘要:   目的  研究不同加工工艺(炒制和烘烤)的香榧Torreya grandis ‘Merrillii’种仁香气成分、油脂氧化和抗氧化能力的变化,揭示不同加工方式对香榧香气物质和油脂品质形成的影响,探讨香榧的最优烘烤工艺。  方法  比较炒制香榧(传统的炒制方式加工)、烘烤香榧(烘烤方式加工)和原料香榧(未加工前的原料)香气组分的差异,并测定3种香榧材料的酸价、过氧化值、总酚质量分数和1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除活性,明确适宜的香榧加工方式;并在此基础上,进一步设计以第1次烘烤时间、盐浸时间、第2次烘烤时间作为变量因子的单因素试验,结合种仁感官评价、过氧化值、酸价、总酚和DPPH自由基清除活性的测定,再通过Design-Expert软件对酸价和过氧化值响应面优化分析,明确最优的香榧烘烤加工工艺。  结果  萜烯类化合物为香榧香气主要物质,高达57.7%~70.5%;烘烤香榧的香气物质种类和总量均明显大于炒制香榧,且烘烤香榧种仁的油脂酸败程度明显低于炒制香榧。根据不同烘烤因子对感官评价和色度指标的影响试验,确定第1次烘烤的最佳时间为10~14 min (200 ℃),最佳盐浸时间为10~15 min,第2次烘烤的最佳时间为90~120 min (120 ℃)。  结论  烘烤方式加工的香榧种仁香气成分及油脂品质均明显优于炒制方式加工的香榧;香榧最佳烘烤条件为:先在200 ℃下烘烤12 min,再在20%质量分数盐溶液中浸泡10 min,最后在120 ℃下烘烤95 min。图3表4参29
  • 沙棘Hippophae rhamnoides又名醋柳,是胡颓子科Elaeagnaceae沙棘属Hippophae的落叶性灌木[1]。作为药食同源植物的沙棘不仅在食疗、医药、农林牧渔等领域具有较大的经济价值,在水土保持、恢复生物链及防风固沙中也具有极大的生态价值[2-5]。生长过程中沙棘根部会遭受土壤中放线菌、细菌的侵染形成根瘤。部分菌种会在根瘤中高度富集发挥固氮、促生长、抵御逆境胁迫、防止有害病菌侵染等功能[6-8]。传统的微生物研究方法主要以培养基进行分离纯培养,再进而探究其培养特征、显微结构、生理特性等[9]。而自然界中90%以上的微生物为不可培养微生物,且现有培养基与培养技术不适应未知菌群的生长,或部分菌群生长缓慢、丰度较小等情况都会对菌群的多样性评估产生影响[10]。以二代高通量测序为基础的16S rDNA技术通过对编码原核核糖体小亚基rRNA的DNA序列进行测序,不仅克服了传统方法难以获得不可培养菌株的弊端,还能对样品中的物种相对丰度进行排序,并分析各群组样品中发挥重要作用的优势物种,解析样品中微生物之间的相互作用。该技术对研究沙棘根瘤内生菌微生物多样性与环境关系以及微生物资源的开发利用有重要的理论和现实意义[11-16]

    本研究通过16S rRNA测序技术对沙棘根瘤内生菌进行物种注释、分类学分析、α多样性分析、β多样性分析、组间差异显著性分析,比较高通量测序和纯培养方法的差异与优劣,为发掘具有应用价值的根瘤内生菌资源提供科学依据。

    采样地为内蒙古自治区巴彦淖尔市磴口县中国林业科学研究院沙漠林业实验中心试验林场(40°29′34″N,106°74′06″E)。该研究区海拔为1 054 m,年平均气温为7.4 ℃。2020年7月,选取人为干扰因素较少的沙漠边缘地带采集沙棘根瘤样品。在每个样地10 m×10 m的区域内用网格法定9个点,运用梅花形采样法在边角及中心共5个点分别采集根瘤样品并进行混合,共设计6组重复样,分别命名为M1、M2、M3、M4、M5、M6。

    1.2.1   沙棘根瘤内生菌的分离

    依据文献[17-18]的方法进行修改,使其更加适宜沙棘根瘤内生菌的分离。详细步骤如下:选取新鲜饱满的根瘤,冲洗掉土粒泥沙,将根瘤团用解剖刀分割成带有单柄的瘤瓣,用纱布包裹,先用体积分数为95%的酒精溶液浸泡30 s,再用体积分数为10%的次氯酸钠溶液表面灭菌5 min,取出后用无菌水冲洗数次。在灭菌滤纸上,用无菌解剖刀先切取根瘤头部,再将其均分成2~3份薄片,置于固体培养基中28 ℃恒温暗处静置培养。根据相关研究,本研究选取BAP[19]、S[20]、JA[19]、高氏一号培养基[19]进行分离培养。

    1.2.2   沙棘根瘤内生菌的鉴定

    提取纯培养的沙棘根瘤内生菌DNA后,对16S rDNA全长进行PCR扩增。序列引物采用YU等[21]设计的细菌通用引物(引物序列27F:5′-AGAGTTTGATCMTGGCTCAG-3′,1492R:5′-GGYTACCTTGTTACGACTT-3′),PCR总反应体系为50 μL,包括10×缓冲液(KOD buffer) 5 μL、2 mmol·L−1三磷酸脱氧核糖核苷酸混合液(dNTPs) 5 μL、基因组DNA (genomic DNA) 1 μL、上游引物(forward primer) (10 μm) 1 μL、下游引物(reverse primer) (10 μm) 1 μL、DNA聚合酶(KOD DNA polymerase) 1 μL、超纯水(ddH2O) 36 μL。PCR反应程序:94 ℃预变性 3 min,94 ℃变性 30 s,58 ℃退火 30 s,72 ℃延伸1 min,35个循环,最后72 ℃延伸10 min。用质量分数为1%的琼脂糖凝胶电泳,确定有特异扩增后,进行PCR产物回收和测序注释,并参考文献[22-25]进行比对校验。

    1.3.1   建库测序

    提取沙棘根瘤总DNA后,根据16S rDNA保守区设计引物(引物序列335F:5′-CADACTCCTACGGGAGGC-3′,769R:5′-ATCCTGTTTGMTMCCCVCRC-3′),在引物末端加上测序接头,便于建库时添加能区分样本的碱基序列的条码/索引(barcode/index)。再进行PCR扩增并对其产物进行紫外分光光度计定量及混样、过柱纯化和均一化形成测序文库,建好的文库先进行文库质检,质检合格的文库用Illumina HiSeq 2500进行测序[26]。高通量测序得到的原始图像数据文件,经碱基识别分析转化为原始测序序列,结果以FASTQ (简称为fq)文件格式存储[27]

    1.3.2   测序数据处理

    首先使用 Trimmomatic v.0.33软件[28],对测序得到的原始测序序列进行过滤;其次使用cutadapt 1.9.1软件进行引物序列的识别与去除,得到不包含引物序列的高质量测序序列;然后使用FLASH v1.2.7软件[29],按照最小重叠(overlap)长度为10 bp、重叠区允许的最大错配比率为0.2的要求,对每个样品高质量的一小段短的基因测序片段(reads)进行拼接,得到的拼接序列即原始序列质控后的高质量测序序列(clean reads);最后使用UCHIME v4.2软件[30],鉴定并去除嵌合体序列,得到最终有效数据。使用Usearch软件对reads在97.0%的相似度水平下进行聚类,获得分类操作单元(OTU)[31],以测序所有序列数的0.005%作为阈值过滤OTU[32]。以SILVA (http://www.arb-silva.de/)为参考数据库使用朴素贝叶斯分类器对特征序列进行分类学注释,可得到每个特征对应的物种分类信息,进而在各水平(门、纲、目、科、属、种)统计样品群落组成,利用QIIME软件生成不同分类水平上的物种丰度表,再利用R语言工具绘制样品分类学水平下的群落结构图[33]。使用QIIME软件对样品α多样性进行评估和t检验(显著性水平为0.01)。利用Mothur v1.30软件和R语言工具包绘制稀释曲线。基于独立OTU,采用加权分析方法和Bray-Curtis算法,使用QIIME软件进行非加权组平均法(UPGMA)分析,比较各组样品间的物种差异。

    使用Usearch软件对clean reads在97.0%的相似度水平下进行聚类,共计获得651个OTU。各样品OTU个数分布较为均匀,样品M1~M6分别为551、583、579、518、593、589个。如图1所示:6组样品中共有的OTU数为417个。M3、M5、M6中分别有4、2、9个特有的OTU,为样品特有OTU,非单个样品特有或所有样品间共有的OTU在图1未做展示。从整体来看,不同地点的各样品间的OTU差异性远小于共性,说明采样方法设计合理。

    图 1  沙棘(M1~M6)根瘤样品分类操作单元(OTU)花瓣图
    Figure 1  Petal image of operational taxonomic unit (OTU) of H. rhamnoides root nodule sample (M1-M6)

    对6组样品测序共获得 810 039对reads,双端reads质控、拼接后共产生617 188条clean reads。其中质量≥20的碱基占总碱基数的比例(Q20)为98.7%,质量≥30的碱基占总碱基数的比例(Q30)为95.4%,表明测序质量较好。从图2可见:各样品稀释性曲线趋向平缓,表明在持续抽样下新物种出现的速率逐渐趋于平缓,此环境中物种数量不会随测序数量的增加而显著增多[34],说明取样合理,能较好体现6组样品中根瘤内生菌的多样性,可以进行数据分析。M5的Shannon和Simpson指数最大(表1),说明物种多样性最高。同理,M4的物种多样性最低。物种丰度方面M5与M6差别不大,均有较高水平。M4根瘤样品的物种丰度最低。样点的Shannon指数平均为4.24,Simpson指数平均为0.70,Ace指数平均为585.79,Chao1指数平均为595.47,样本文库平均覆盖率为99.95%。说明采样地的沙棘根瘤内生菌的物种丰富且多样性较大,各物种分配相对均匀,其微生物物种信息得到了充分体现。

    图 2  各样品稀释性曲线
    Figure 2  Dilution curve of each sample
    表 1  各组样品的α多样性指数
    Table 1  Alpha diversity index for each group of samples
    样品Shannon
    指数
    Simpson
    指数
    Ace
    指数
    Chao1
    指数
    覆盖
    率/%
    M12.530.47568.45598.5799.95
    M24.730.79595.09600.6099.95
    M34.280.75600.58607.4599.95
    M42.520.44542.32543.5299.94
    M56.580.95605.66610.7199.94
    M64.820.77602.63611.9799.94
    平均4.240.70585.79595.4799.95
    下载: 导出CSV 
    | 显示表格

    通过传统分离方法从BAP、JA、S、高氏一号培养基中得到纯培养菌株96株。所有菌株均可传代培养,但菌株之间培养周期差异较大,培养周期在1~30 d呈离散型分布。对各菌株进行分子鉴定,共有4门8纲8目13科19属。在门的分类水平分别为变形菌门Proteobacteria、放线菌门Actinobacteria、厚壁菌门Firmicutes和柔膜菌门Tenericutes。在属的分类水平上,96株菌分属于支原体属Mycoptasma 1株、慢生根瘤菌属Bradyrhizobim 6株、土壤杆菌属Agrobacterium 7株、肠杆菌属Enterobacter 6株、小坂菌属Kosakonia 8株、柠檬酸杆菌属Citrobacter 1株、约克氏菌属Yokenella 1株、欧文氏菌属Erwinia 1株、克罗诺杆菌属Cronobacter 2株、泛菌属Pantoea 1株、莫拉菌属Moraxella 1株、贪噬菌属Variovorax 1株、草螺菌属Herbaspirillum 1株、假单胞菌属Pseudomonas 5株、链霉菌属Streptomyces 14株、小单孢菌属Micromonospora 1株、短杆菌属Brevibacterium 6株、葡萄球菌属Straphylococcus 1株和芽孢杆菌属Bacillus 32株。其中,优势门为变形菌门和厚壁菌门,优势属为芽孢杆菌属和链霉菌属。

    高通量测序分析发现:6组样品共有14门34纲89目148科314属。将相对丰度大于0.1%的门与相对丰度前10的属进行汇总(图3表2表3)发现:在门的分类水平上,6组样品中相对丰度较高的主要为放线菌门和变形菌门,两者相对丰度之和为87.5%~97.1%。其次为拟杆菌门Bacteroidetes、杆菌门Patescibacteria、厚壁菌门、酸杆菌门Acidobacteria。在属的分类水平上,弗兰克氏菌属Frankia占绝对优势,相对丰度为20.12%~74.81%,平均相对丰度为51.49%。其次为根瘤菌属Rhizobium、类固醇杆菌属Steroidobacter、糖单孢菌属Saccharimonadales、肠杆菌属、泛菌属、欧文氏菌属、假黄色单胞菌属Pseudoxanthomonas、鞘脂单胞菌属Sphingomonas、假单胞菌属、固氮弓菌属Azoarcus、伯克氏菌属Burkholderia、芽单胞菌属Blastomonas、聚集杆菌属Congregibacter、拉恩氏菌属Rahnella、鞘氨醇菌属Chitinophaga、独岛杆菌属Dokdonella、普雷沃氏菌属Prevotella、链霉菌属、Microtrichales属。

    表 2  沙棘微生物区系门水平的相对分布
    Table 2  Relative abundance of microbiota taxa at the level of phylum
    分类6组样品在门水平的相对丰度/%
    M1M2M3M4M5M6
    放线菌门73.5547.5651.2476.0927.7357.68
    变形菌门22.3841.9141.6321.0160.3529.82
    拟杆菌门0.891.421.300.402.184.42
    杆菌门 0.315.663.890.731.421.72
    厚壁菌门2.182.741.301.212.184.42
    酸杆菌门0.150.260.420.181.160.53
    其他  0.540.450.220.380.750.60
    下载: 导出CSV 
    | 显示表格
    表 3  沙棘微生物区系属水平的相对分布
    Table 3  Relative abundance of microbiota taxa at the level of genus
    分类6组样品在属水平的相对丰度/%
    M1M2M3M4M5M6
    弗兰克氏菌属 72.6244.4549.5074.8120.1247.41
    根瘤菌属   1.171.972.892.043.134.13
    类固醇杆菌属 0.730.831.052.207.192.87
    糖单孢菌属  0.285.613.850.711.411.68
    肠杆菌属   6.932.191.050.080.220.40
    泛菌属    0.635.194.690.010.050.11
    欧文氏菌属  0.604.663.770.100.180.23
    假黄色单胞菌属0.851.981.670.753.560.68
    鞘脂单胞菌属 0.391.062.101.552.101.64
    假单胞菌属  0.511.275.600.030.210.09
    其他     15.2930.7923.8317.7261.8340.76
    下载: 导出CSV 
    | 显示表格
    图 3  6组根瘤样品的非加权组平均法(UPGMA)聚类树与物种分布柱状图
    Figure 3  UPGMA clustering tree and the species distribution histogram of the six groups of nodule samples are combined drawing

    在门、纲、目、科、属的各分类单元中,高通量测序的检测灵敏度(高通量测序/纯培养)依次是纯培养方法的3.50、4.25、11.20、11.38和16.53倍。在门水平上,纯培养菌株中占比较高的厚壁菌门在高通量测序中占比并不高。在属水平上,纯培养菌株中占比较高的芽孢杆菌属和链霉菌属皆在高通量测序中占比很低。该对比结果差异性较大,说明高通量测序在微生物多样性分析中占据优势地位,要优于纯培养方法。同时也说明,沙棘根瘤内共生细菌群落结构更为复杂,群落更为稳定。

    在运用传统方法分离纯培养微生物时,共分离纯培养菌株96株,分属于4门8纲8目13科19属,未获得弗兰克氏菌属的菌株,可能是培养基中弗兰克氏菌属的菌株生长缓慢,易被其他菌群取代,因此仍需探索新的培养基与培养方法以遏制根瘤中其他菌株的繁殖。在微生物多样性分析中,由于环境中的微生物复杂多样,各环境之间组成差异较大,通常采用非加权方法进行分析。该方法简单易操作,主要考虑物种的有无,但未考虑物种的丰度,所以采用非加权的方法难以区别各样品间的差异。

    高通量测序分析共检测到14门34纲89目148科314属。在门、纲、目、科、属的各分类单元中,高通量测序的检测灵敏度(高通量测序/纯培养)依次是纯培养方法的3.50、4.25、11.20、11.38和16.53倍。与纯培养获得的菌株相比,高通量测序分析结果更加完整地揭示了沙棘根瘤内生菌的微生物多样性。高通量测序表明:在门的分类水平上,样品中相对丰度较高的主要为放线菌门和变形菌门,两者相对丰度之和为87.5%~97.1%。在属的分类水平上,弗兰克氏菌属占绝对优势,相对丰度为20.12%~74.81%,平均相对丰度为51.49%。

    张爱梅等[35]和刘志强等[36]分别对甘肃榆中、辽宁通辽、内蒙古赤峰等地沙棘根瘤内生菌微生物多样性做过类似研究,其高通量测序所得的微生物多样性高于本研究结果,说明沙棘根瘤内生菌微生物多样性受地理位置、土壤成分、气候条件、宿主种类及生长环境等多种因素的影响。本研究的沙棘取样于内蒙古乌兰察布沙漠边缘地带,采样地荒漠化土壤与干旱少雨气候对内生菌多样性有特别影响。

    属于非豆科Leguminosae植物的沙棘根瘤共生固氮体系是以弗兰克氏菌属为主导的[37]微生物—微生物—植物互作体系。高通量测序分析显示:弗兰克氏菌属所占比例较高,然而本次传统方法分离却未得到纯培养菌株,这可能是由于培养基中缺乏某种信号物质或与其他菌属竞争存在劣势导致的,建议添加制霉菌素、萘啶酮酸和放线菌酮抑制其他菌群的繁殖[18]。非豆科植物结瘤固氮过程,单一属的菌株难以完成此任务。有研究[38]表明:纯培养分离的贪噬菌属是复杂微生物组中维持根生长的核心菌属,并且具有产生和降解生长素的能力,是细菌—细菌—植物通讯网络的关键角色。小单孢菌是植物益生菌,在促进植物生长的同时还可以分泌细胞壁降解酶促进细胞壁的降解,进而便于弗兰克氏菌的侵染[39-40],但是小单孢菌的快速繁殖也对弗兰克氏菌的生长起到抑制作用。沙棘作为胡颓子科植物,根部结瘤侵染方式为细胞间侵入。研究[41]表明:草螺旋菌属Spirillum、慢生根瘤菌属、肠杆菌属的相关细菌与弗兰克氏菌存在负相关性(即抑制关系),以上3个菌属均在豆科、禾本科Poaceae植物中发挥固氮相关的重要作用,但在胡颓子科中此类细菌与弗兰克氏菌属相互作用的机制尚未明确。

  • 图  1  3种香榧材料香气的主成分分析

    Figure  1  PCA analysis of three different process of T. grandis ‘Merrillii’seeds

    图  2  不同烘烤工艺对香榧种仁感官评价与色度的影响

    Figure  2  Effects of processing technique on sensory analysis and color +b* of T. grandis ‘Merrillii’ seeds

    图  3  烘烤工艺3个因素对过氧化值和酸价交互影响曲面图

    Figure  3  Response surface of baking technology three factors on POV and AV

    表  1  烘烤香榧感官评定标准

    Table  1.   Standard of baking T. grandis ‘Merrillii’ seeds’ sensory analysis

    分值形态香气口感滋味色泽
    90~100 种仁十分饱满,无破损 香气浓郁 酥脆度很优,易于咀嚼 无涩味,无苦味,咸味适合 金黄色
    80~90 种仁较饱满,有轻微破损 香气较浓 酥脆度良好,较好咀嚼 淡涩,淡苦,咸味偏淡 深黄色
    70~80 种仁略饱满,破损 有香气  酥脆度一般,咀嚼度一般 稍涩,稍苦,略带咸味 淡黄色
    70~60 种仁不饱满,破损很大 香气较淡 稍微不酥脆,较难咀嚼 涩,苦,无咸味 微黄色
    <60 种仁干瘪,外观很差 无香气  不酥脆,很难咀嚼 很涩,很苦,咸味很重 焦黄色
    下载: 导出CSV

    表  2  3种香榧材料主要香气成分及其质量分数

    Table  2.   Main aroma composition and content of T. grandis ‘Merrillii’

    大类编号成分香气成分质量分数/(μg·g−1)
    原料香榧烘烤香榧炒制香榧
    萜烯类化合物 1 α-蒎烯à-pinene 12.76±0.09 a 0.51±0.08 c 0.73±0.12 b
    2 月桂烯myrcene 10.93±0.08 a 6.89±0.56 b 3.80±0.19 c
    3 D-柠檬烯D-limonene 118.66±0.03 a 80.81±0.58 b 49.42±0.11 c
    4 2,4-二甲基苯乙烯 2,4-dimethylstyrene  − 1.88±0.07 8.16±0.05
    5 萜品油烯terpinolene 6.29±0.38 a 1.53±0.24 c 2.40±0.81 b
    6 3-蒈烯3-carene 26.51±0.03 a 0.24±0.04 c 0.65±0.22 b
    7 1-十三烯1-tridecene 25.74±0.03 a 0.19±0.02 c 3.82±0.01 b
    8 异丁香烯(-)-isocaryophyllene 0.13±0.05 a 0.04±0.01 c 0.07±0.01 b
    9 反式-β-金合欢烯trans-β-farnesene 0.19±0.01 b 0.28±0.03 a 0.09±0.01 c
    10 衣兰油烯muurolene 0.06±0.01 b 0.07±0.01 b 0.15±0.02 a
    11 δ-杜松烯δ-cadinene 0.17±0.06 0.06±0.01  −
    12 A-二去氢菖蒲烯A-dihydrohomocem 0.18±0.02 a 0.09±0.01 b 0.09±0.01 b
    13 长叶烯longifolene 0.15±0.03 b 0.19±0.05 b 0.30±0.01 a
    14 柏木脑cedrol 0.39±0.03 b 0.17±0.02 c 0.52±0.1 a
    15 左旋β-蒎烯L-β-pinene 62.83±0.07  −  −
    16 二甲基苯乙烯dimethyl styrene 25.84±0.09  −  −
    17 双戊烯dipentene 14.03±0.02 a 0.18±0.07 b 0.12±0.04 b
    18 莰烯comphene 0.35±0.01  −  −
    萜烯类化合物总和 305.21 93.13 70.32
    醇类化合物 1 十一醇undecyl alcohol 0.48±0.04 b 0.86±0.01 a 0.27±0.02 c
    2 二氢香芹醇dihydrocarvyl alcohol 3.51±0.67 a 0.27±0.03 c 1.66±0.12 b
    3 3-癸烯-1-醇3-decen-1-ol 0.46±0.15 b 1.21±0.05 a 0.32±0.07 c
    4 芳樟醇linalool  − 0.23±0.12 b 0.59±0.05 a
    5 4-萜烯醇4-nonenol 11.29±0.18 0.18±0.02  −
    6 α-松油醇alpha-terpineol 12.89±0.19 a 0.46±0.04 c 4.03±0.16 b
    7 紫苏醇perillol 1.25±0.05 0.43±0.01  −
    8 十六烷醇1-hexadecanol 9.24±0.08 a 0.38±0.12 b 0.19±0.08 c
    9 2-茨醇2-propanol 0.86±0.08 a 0.06±0.01 b 0.09±0.01 b
    10 橙花叔醇nerolidol 38.43±0.25 a 0.44±0.04 c 7.33±0.09 b
    11 十七烷醇heptadecyl alcohol 0.29±0.01 c 1.12±0.08 b 1.50±0.12 a
    12 十二烷醇dodecano 1.79±0.09 0.23±0.03  −
    13 雪松醇cedrol 1.29±0.14 a 0.60±0.04 b 0.65±0.04 b
    14 2-甲基十六烷醇 2-methyl cetyl alcohol 0.64±0.01 b 0.76±0.07 a 0.61±0.09 b
    15 2-十四烷醇 2-tetradecanol 1.36±0.09 a 0.44±0.18 b 0.06±0.01 c
    16 1-十四烷醇myristyl alcohol 0.08±0.01 b 0.08±0.01 b 0.28±0.03 a
    17 骨化醇calcitonin 0.15±0.04 a 0.05±0.09 b 0.20±0.07 a
    18 叔十六硫醇tert-hexadecane 0.49±0.08 0.30±0.09   −
    19 2-(十八氧基)乙醇2-(octadecyloxy)ethanol 0.37±0.04 b 0.54±0.08 a 0.06±0.12 c
    20 6-仲辛醇6-octanol 0.99±0.14   −   −
    21 维生素A 0.62±0.06 b 5.92±0.08 a 0.58±0.13 c
    醇类化合物总和  86.48  14.56  18.42
    醛类化合物 1 糠醛2-furaldehyde      − 3.99±0.04 5.59±0.12
    2 2-乙基己烯醛2-ethylhexenal 0.42±0.06 6.48±0.12   −
    3 癸醛camphor 4.99±0.8 a 0.87±0.11 c 1.69±0.30 b
    4 壬醛1-nonanal 5.11±0.16 b 2.71±0.21 c 9.56±0.26 a
    5 十二醛dodec aldehyde 0.74±0.05 0.19±0.02   −
    6 2-十一碳烯醛2-undecenal 1.43±0.11   − 0.37±0.05
    醛类化合物总和   12.69   14.24   17.21
    烷类化合物 1 正十四烷tetradecane 2.49±0.04 a 0.47±0.06 b 0.88±0.05 b
    2 正十七烷heptadecane 0.09±0.01 c 0.16±0.01 b 0.38±0.05 a
    3 正十九烷ninecane 0.44±0.15 a 0.26±0.02 b 0.16±0.02 c
    4 正二十七烷N-hexadecane   − 0.16±0.01 0.18±0.06
    烷类化合物总和   3.02   1.05   1.60
    酯类化合物 1 肉豆蔻酸异丙酯isopropyl myristate 0.07±0.01 b 0.12±0.01 a 0.09±0.01 b
    2 邻苯二甲酸二异丁酯diisobutyl phthalate 0.18±0.02 b 0.15±0.01 b 0.49±0.01 a
    3 棕榈酸甲酯methyl palmitate 0.02±0.01 b 0.02±0.01 b 0.04±0.01 a
    4 邻苯二甲酸正丁异辛酯N-butyl octyl phthalate 0.17±0.01 b 0.16±0.01 b 0.56±0.01 a
    酯类化合物总和   0.44   0.45   1.18
    醚类化合物 1 邻苯二甲醚1,2-dimethoxybenzene 12.03±0.04 a 3.18±0.04 b 0.56±0.04 c
    2 对苯二甲醚1,4-dimethoxybenzene 0.21±0.03 b 0.26±0.01 b 1.01±0.09 a
    3 乙二醇十二烷基醚2-(dodecyloxy)ethanol 1.49±0.01   − 0.09±0.06
    醚类化合物总和  13.73   3.44   1.66
    酮类化合物 1 右旋香芹酮D(+)-carvone  − 0.31±0.01 1.24±0.01
    2 2-莰酮camphor  − 0.44±0.02 0.21±0.01
    3 3-甲基-6-(1-甲基亚乙基)-2-环己酮3-methyl-6-
    (1-methylethylidene)-2-cyclohexene-1-one
    4.5±0.04 a 0.63±0.02 c 2.30±0.01 b
    酮类化合物总和   4.50   1.38   3.75
    酸类化合物 1 棕榈酸palmitic acid 1.68±0.09 2.50±0.04  −
    酸类化合物总和   1.68   2.50  −
    吡嗪类化合物 1 2,6-二甲基吡嗪2,6-dimethyl piperazune  − 3.28±0.07 0.09±0.01
    吡嗪类化合物总和  0   3.28   0.09
    苯类化合物 1 丙基苯propylbenzene 0.25±0.02 c 6.91±0.05 a 6.15±0.11 b
    2 间异丙基甲苯P-isopropyltoluene 0.27±0.03 b 0.30±0.01 a 0.31±0.01 a
    3 1-甲氧基-4-丙烯基苯1-methoxy-4-propenylbenzene 1.13±0.05 b 2.16±0.03 a 0.25±0.01 c
    4 1,2,3-三甲氧基苯1,2,3-trimethoxybenzene 0.29±0.01 b 0.67±0.02 a 0.29±0.07 b
    5 3,4,5-三甲氧基甲苯3,4,5-triMethoxytoluene 2.84±0.04 a 1.63±0.07 c 1.71±0.01 b
    6 3,3′,5,5′-四甲基联苯3,3′,5,5′-tetramethylbiphenyl 0.31±0.01 c 0.89±0.01 b 1.02±0.01 a
    苯类化合物总和   5.09   12.56   9.73
      说明:−表示未检出。不同小写母表示不同处理间差异显著(P<0.05)
    下载: 导出CSV

    表  3  不同加工方式对香榧脂质氧化和抗氧化活性的影响

    Table  3.   Effects of processing techniques on oxidation ability and antioxidant activity of T. grandis‘Merrillii’seeds

      加工方式酸价/(mg·g−1)过氧化值/(mmol·kg−1)总酚/(mg·g−1)DPPH自由基清除活性/%
    原料香榧0.421±0.0222 c1.194±0.032 c4.328±0.132 c79.43±2.42 a
    烘烤香榧0.521±0.0323 b2.329±0.028 b6.984±0.273 a58.93±3.13 b
    炒制香榧0.772±0.0382 a7.382±0.273 a6.214±0.243 b50.43±2.42 c
      说明:不同小写字母表示不同处理之间差异显著(P<0.05)
    下载: 导出CSV

    表  4  香榧烘烤工艺优化实验设计与结果

    Table  4.   Results and design of Box-Behnken RSM experiment of baking T. grandis ‘Merrillii’ seeds

    编号第1次烘烤时间/min盐浸时间/min第2次烘烤时间/min过氧化值/(mmol·kg−1)酸价/(mg·g−1)
    1 10.00 10.00 105.00 2.478±0.06 0.514±0.02
    2 10.00 12.50 90.00 2.562±0.04 0.561±0.03
    3 10.00 12.50 120.00 2.618±0.02 0.654±0.04
    4 10.00 15.00 105.00 2.693±0.03 0.729±0.03
    5 12.00 10.00 90.00 2.581±0.03 0.645±0.03
    6 12.00 10.00 120.00 2.675±0.03 0.710±0.04
    7 12.00 15.00 90.00 2.693±0.08 0.720±0.04
    8 12.00 15.00 120.00 2.852±0.06 0.823±0.02
    9 14.00 10.00 105.00 2.936±0.03 0.879±0.03
    10 14.00 12.50 90.00 2.833±0.03 0.832±0.06
    11 14.00 12.50 120.00 2.973±0.03 0.907±0.06
    12 14.00 15.00 105.00 3.029±0.03 1.019±0.02
    13 12.00 12.50 105.00 2.581±0.03 0.645±0.03
    下载: 导出CSV
  • [1] LOU Heqiang, DING Mingzhu, WU Jiasheng, et al. Full-length transcriptome analysis of the genes involved in tocopherol biosynthesis in Torreya grandis [J]. J Agric Food Chem, 2019, 20(67): 1877 − 1888.
    [2] SUO Jinwei, TONG Ke, WU Jiasheng, et al. Comparative transcriptome analysis reveals key genes in the regulation of squalene and β-sitosterol biosynthesis in Torreya grandis [J]. Ind Crops Prod, 2019, 131: 182 − 193.
    [3] MORINI G. Volatile compounds in roasted and boiled Chinese chestnuts (Castane) mollissima [J]. Lebens-mittel-Wissenschaft und-Technologie, 1995, 28(6): 638 − 640.
    [4] KRIST S, UNTERWEGER H, BANDION F, et al. Volatile compound analysis of SPME headspace andextract samples from roasted Italian chestnuts (Castanea Mill.) using GC-MS [J]. Eur Food Res Technol, 2004, 219(5): 470 − 473.
    [5] CÄMMERER B, KROH L K. Shelf life of linseeds and peanuts in relation to roasting [J]. LWT-Food Sci Technol, 2008, 42(2): 545 − 549.
    [6] CHEN Baoqiong, CUI Xiangyu, ZHAO Xin, et al. Antioxidative and acute antiinflammatory effects of Torreya grandis [J]. Fitoterapia, 2006, 77(4): 262 − 267.
    [7] 葛林梅, 郜海燕, 陈杭君, 等. 加工工艺对香榧油脂氧化和抗氧化活性的影响[J]. 中国粮油学报, 2011, 26(5): 42 − 46.

    GE Linmei, GAO Haiyan, CHEN Hangjun, et al. Effect of processing on lipid oxidation and antioxidant ability of Torreya grandis [J]. J Chin Cereals Oils Assoc, 2011, 26(5): 42 − 46.
    [8] 颜小平. 烘炒葵花籽品质改良及抗氧化研究[D]. 广州: 华南理工大学, 2011.

    YAN Xiaoping. Research on Quality Improvement and Antioxidant of Roasted Sunflower Seeds[D]. Guangzhou: South China University of Technology, 2011.
    [9] AMARAL J S, CASAL S, SEABRA R M, et al. Effects of roasting on hazelnut lipids [J]. J Agric Food Chem, 2006, 54(4): 1315 − 1321.
    [10] MÜLLER A K, SCHÖNE F, GLEI M. Influence of roasting conditions on health-related compounds in different nuts [J]. Food Chem, 2015, 180(1): 77 − 85.
    [11] WALL M M, GENTRY T S. Carbohydrate composition and color development during drying and roasting of macadamia nuts (Macadamia integrifolia) [J]. LWT-Food Sci Technol, 2007, 40(4): 587 − 593.
    [12] THAMMAPAT P, MEESO N, SIRIAMORNPNP S. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice [J]. Food Chem, 2015, 175(15): 218 − 224.
    [13] 汪瑶, 余勇, 郭磊, 等. 利用正交实验和模糊评价改进香榧加工工艺[J]. 食品与发酵工业, 2013, 39(10): 151 − 155.

    WANG Yao, YU Yong, GUO Lei, et al. Application of orthgonal experiment and fuzzy evaluation in development of Torreya grandis processing technology [J]. Food Ferment Ind, 2013, 39(10): 151 − 155.
    [14] 王衍彬, 刘本同, 秦玉川, 等. 不同品种香榧种子油脂肪酸及香味物质组成分析[J]. 中国油脂, 2016, 41(2): 101 − 105.

    WANG Yanbin, LIU Bentong, QING Yuchuan, et al. Analysis of fatty acid and aroma substances in seed oil of different species of Torreya grandis [J]. Chin Oil, 2016, 41(2): 101 − 105.
    [15] KOZIEL J A, NGUYEN LT, GLANVILLE T D, et al. Method for sampling and analysis of volatile biomarker in process gas from aerobic digestion of poultry carcasses using time-weighted average SPME and GC-MS [J]. Food Chem, 2017, 232: 799 − 807.
    [16] ZHANG Zuying, JIN Hangbiao, SUO Jinwei, et al. Effect of temperature and humidity on oil quality of harvested Torreya grandis cv. Merrillii nuts during the after-ripening stage [J]. Front Plant Sci, 2020, 11: 573 − 681.
    [17] 宋丽丽, 郜海燕, 葛林梅, 等. 包装对香榧坚果贮藏中的油脂酸败和抗氧化能力的影响[J]. 林业科学, 2009, 45(3): 49 − 53.

    SONG Lili, GAO Haiyan, GE Linmei, et al. Effects of different packaging on lipid peroxidation and antioxidant ability ofTorreya grandis nuts during storage at room temperature [J]. Sci Silv Sin, 2009, 45(3): 49 − 53.
    [18] 李巨秀, 张小宁, 李伟伟. 不同品种石榴花色苷、总多酚含量及抗氧化活性比较研究[J]. 食品科学, 2011, 32(23): 143 − 146.

    LI Juxiu, ZHANG Xiaoning, LI Weiwei. Comparative studies of total anthocyanins, total polyphenols and antioxidant activities of different pomegra [J]. Food Sci, 2011, 32(23): 143 − 146.
    [19] ZHOU Yan, SUN Shanshan, BEI Weiya, et al. Preparation and antimicrobial activity of oregano essential oil pickering emulsion stabilized by cellulose nanocrystals [J]. Int J Biol Macromolecs, 2018, 112(3/4): 7 − 13.
    [20] 石天磊, 李晓颍, 左波, 等. 8份核桃资源坚果主要香气物质分析[J]. 果树学报, 2020, 37(7): 1016 − 1024.

    SHI Tianlei, LI Xiaoying, ZUO Bo, et al. Analysis of the main aroma substances in eight walnut accessions [J]. J Fruit Sci, 2020, 37(7): 1016 − 1024.
    [21] 静玮, 苏子鹏, 林丽静. 澳洲坚果焙烤过程中挥发性成分的特征分析[J]. 热带作物学报, 2016, 37(6): 1223 − 1231.

    JING Wei, SU Zipeng, LIN Lijing. Volatile profiling of Macadamia nuts during roasting [J]. Chin J Trop Crops, 2016, 37(6): 1223 − 1231.
    [22] LASEKAN O, ALFI K, ABBAS K A. Volatile compounds of roasted and steamed malaysian tropical almond nut (Terminalia catappa L.) [J]. Int J Food Prop, 2012, 15(5): 1120 − 1132.
    [23] CHUN J Y, LEE J S, EITENMILLER R R. Vitamin E and oxidative stability during storage of raw and dry roasted peanuts packaged under air and vacuum [J]. J Food Sci, 2005, 70(4): 292 − 297.
    [24] ASHRAF M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers [J]. Biotechnol Adv, 2009, 27(1): 84 − 93.
    [25] 刘慧琳, 陈晓默, 张瑛, 等. 多酚类化合物对饼干中羧甲基赖氨酸的抑制作用[J]. 中国食品学报, 2018, 18(1): 95 − 103.

    LIU Huilin, CHEN Xiaomo, ZHANG Ying, et al. Inhibitory effects of polyphenolic compounds on Nε-carboxymethyl-lysine in biscuits [J]. J Chin Inst Food Sci Technol, 2018, 18(1): 95 − 103.
    [26] 宫长荣, 王爱华, 王松峰. 烟叶烘烤过程中多酚类物质的变化及与化学成分的相关分析[J]. 中国农业科学, 2005, 38(11): 2316 − 2320.

    GONG Changrong, WANG Aihua, WANG Songfeng. Changes of polyphenols in tobacco leaves during the flue-curing process and relative analysis of some chemical components [J]. Sci Agric Sin, 2005, 38(11): 2316 − 2320.
    [27] DUDONNE S, VITRAC X, COUTIERE P. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays [J]. J Agric Food Chem, 2009, 57(5): 1768 − 1774.
    [28] 常虹, 周家华, 张利燕, 等. 加工处理对板栗雄花序总黄酮抗氧化活性的影响[J]. 食品工业, 2014, 35(10): 120 − 123.

    CHANG Hong, ZHOU Jiahua, ZHANG Liyan, et al. Effects of processing methods on antioxidant activity of flavonoids from Chinese chestnut male inflorescence [J]. Food Ind, 2014, 35(10): 120 − 123.
    [29] VÁZQUEZ-ARAÚJO L, VERDÚ A, NAVARRO P, et al. Changes in volatile compounds and sensory quality during toasting of Spanish almonds [J]. Int J Food Sci Technol, 2009, 44(11): 2225 − 2233.
  • [1] 王蓓, 孙莉, 肖婷, 王洋, 赵光武.  浙江省杂草稻种子逆境萌发能力鉴定 . 浙江农林大学学报, 2024, 41(4): 688-695. doi: 10.11833/j.issn.2095-0756.20230521
    [2] 夏敬青, 刘海荣, 顾依雯, 王子玥, 邢巧月, 张宇翔, 李姗, 白岩.  中波紫外线对三叶青酚类物质质量分数、抗氧化能力及基因表达的影响 . 浙江农林大学学报, 2024, 41(2): 223-233. doi: 10.11833/j.issn.2095-0756.20230385
    [3] 何慈颖, 娄和强, 吴家胜.  香榧油脂及其合成调控机制研究进展 . 浙江农林大学学报, 2023, 40(4): 714-722. doi: 10.11833/j.issn.2095-0756.20230224
    [4] 叶淑媛, 曾燕如, 胡渊渊, 龙伟, 汪舍平, 喻卫武.  香榧初结果母枝性状变化规律与结实能力的关系 . 浙江农林大学学报, 2022, 39(1): 41-49. doi: 10.11833/j.issn.2095-0756.20200622
    [5] 钱宇汀, 薛晓峰, 曾燕如, 陈文充, 叶晓明, 喻卫武, 戴文圣.  香榧瘿螨为害对香榧叶片结构及叶绿素质量分数的影响 . 浙江农林大学学报, 2020, 37(2): 296-302. doi: 10.11833/j.issn.2095-0756.2020.02.014
    [6] 叶晓明, 钱宇汀, 叶雯, 沈黄莹, 曾燕如, 喻卫武, 戴文圣.  香榧绿藻的生物学特性及物种鉴定 . 浙江农林大学学报, 2019, 36(4): 629-637. doi: 10.11833/j.issn.2095-0756.2019.04.001
    [7] 谷红霞, 叶雯, 钱宇汀, 叶晓明, 戴文圣.  香榧不同微型嫁接方法初探 . 浙江农林大学学报, 2018, 35(1): 183-188. doi: 10.11833/j.issn.2095-0756.2018.01.025
    [8] 金侯定, 喻卫武, 曾燕如, 项美云, 戴文圣, 党婉誉.  香榧Torreya grandis ‘Merrillii’的扦插繁殖 . 浙江农林大学学报, 2017, 34(1): 185-191. doi: 10.11833/j.issn.2095-0756.2017.01.025
    [9] 曾松伟, 喻卫武, 姬长英, 叶邦宣, 肖庆来.  香榧去皮机研制与应用 . 浙江农林大学学报, 2015, 32(1): 133-139. doi: 10.11833/j.issn.2095-0756.2015.01.020
    [10] 姚进, 黄坚钦, 胡恒康, 裘林艳, 朱旻华, 张启香.  香榧体细胞胚发生的初步研究 . 浙江农林大学学报, 2013, 30(1): 129-135. doi: 10.11833/j.issn.2095-0756.2013.01.019
    [11] 吴连海, 吴黎明, 倪荣新, 颜福花.  香榧栽培经济效益分析 . 浙江农林大学学报, 2013, 30(2): 299-303. doi: 10.11833/j.issn.2095-0756.2013.02.023
    [12] 王小明, 王珂, 秦遂初, 蒋玉根.  香榧适生环境研究进展 . 浙江农林大学学报, 2008, 25(3): 382-386.
    [13] 戴文圣, 黎章矩, 程晓建, 喻卫武, 符庆功.  香榧林地土壤养分状况的调查分析 . 浙江农林大学学报, 2006, 23(2): 140-144.
    [14] 戴文圣, 黎章矩, 程晓建, 喻卫武, 符庆功.  香榧林地土壤养分、重金属及对香榧子成分的影响 . 浙江农林大学学报, 2006, 23(4): 393-399.
    [15] 戴文圣, 黎章矩, 程晓建, 喻卫武, 符庆功, 陈勤娟.  杭州市香榧生产的发展前景与对策 . 浙江农林大学学报, 2006, 23(3): 334-337.
    [16] 黎章矩, 骆成方, 程晓建, 冯肖军, 喻卫武.  香榧种子成分分析及营养评价 . 浙江农林大学学报, 2005, 22(5): 540-544.
    [17] 黎章矩, 程晓建, 戴文圣, 金保华, 王安国.  浙江香榧生产历史、现状与发展 . 浙江农林大学学报, 2004, 21(4): 471-474.
    [18] 孟鸿飞, 金国龙, 翁仲源.  诸暨市香榧古树资源调查 . 浙江农林大学学报, 2003, 20(2): 134-136.
    [19] 郭维华.  香榧落果机理与保果技术研究 . 浙江农林大学学报, 2002, 19(4): 395-398.
    [20] 倪德良, 徐建平, 欧阳钟, 邹育林, 任钦良.  野生香榧幼树开发利用研究初报 . 浙江农林大学学报, 1994, 11(2): 206-210.
  • 期刊类型引用(5)

    1. 高佩,王彬贤,马亚琼,郭思雨,马玉花. 青海野生中国沙棘根际解磷菌的分离、鉴定及其对蕹菜的促生作用. 江苏农业科学. 2024(11): 247-253 . 百度学术
    2. 方宇,刘彩玲,林陈强,陈济琛,贾宪波. 不同紫云英品种根瘤内生细菌的类群和多样性分析. 福建农业学报. 2024(06): 730-737 . 百度学术
    3. 马福林,马秀芳,刘瑞,马玉花. 西藏沙棘AQP基因的扩增及生物信息学分析. 青海科技. 2023(02): 107-111 . 百度学术
    4. 马福林,王昌玲,仁增卓玛,刘瑞,冶贵生,马玉花. 西藏沙棘根瘤内生菌假单胞菌属的分离与鉴定. 甘肃农业大学学报. 2023(03): 76-81+90 . 百度学术
    5. 翟柯尧,刘娟,董玥,李亚涛,贺义才,孙海红,马玉超. 沙棘通过自主选择塑造根瘤内生微生物组. 微生物学通报. 2023(09): 3881-3898 . 百度学术

    其他类型引用(3)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210304

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/1/22

图(3) / 表(4)
计量
  • 文章访问数:  1137
  • HTML全文浏览量:  168
  • PDF下载量:  58
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-10-26
  • 录用日期:  2021-11-03
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2022-02-20

不同加工方式香榧香气物质和油脂品质的比较分析

doi: 10.11833/j.issn.2095-0756.20210304
    基金项目:  浙江省省院合作林业科技项目(2019SY07,2021SY01);浙江省科技计划项目(2020C02019);浙江省自然科学基金资助项目(LQ19C160008);浙江省基础公益研究计划项目(LGN20C160002);省部共建亚热带森林培育国家重点实验室开放基金项目(KF201901)
    作者简介:

    杨蕾(ORCID: 0000-0002-3829-7351),从事经济林产品加工与利用研究。E-mail: 1570459212@qq.com

    通信作者: 宋丽丽(ORCID: 0000-0002-9599-4591),教授,博士,从事经济林产品加工与利用研究。E-mail: lilisong@zafu.edu.cn
  • 中图分类号: S759.8

摘要:   目的  研究不同加工工艺(炒制和烘烤)的香榧Torreya grandis ‘Merrillii’种仁香气成分、油脂氧化和抗氧化能力的变化,揭示不同加工方式对香榧香气物质和油脂品质形成的影响,探讨香榧的最优烘烤工艺。  方法  比较炒制香榧(传统的炒制方式加工)、烘烤香榧(烘烤方式加工)和原料香榧(未加工前的原料)香气组分的差异,并测定3种香榧材料的酸价、过氧化值、总酚质量分数和1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除活性,明确适宜的香榧加工方式;并在此基础上,进一步设计以第1次烘烤时间、盐浸时间、第2次烘烤时间作为变量因子的单因素试验,结合种仁感官评价、过氧化值、酸价、总酚和DPPH自由基清除活性的测定,再通过Design-Expert软件对酸价和过氧化值响应面优化分析,明确最优的香榧烘烤加工工艺。  结果  萜烯类化合物为香榧香气主要物质,高达57.7%~70.5%;烘烤香榧的香气物质种类和总量均明显大于炒制香榧,且烘烤香榧种仁的油脂酸败程度明显低于炒制香榧。根据不同烘烤因子对感官评价和色度指标的影响试验,确定第1次烘烤的最佳时间为10~14 min (200 ℃),最佳盐浸时间为10~15 min,第2次烘烤的最佳时间为90~120 min (120 ℃)。  结论  烘烤方式加工的香榧种仁香气成分及油脂品质均明显优于炒制方式加工的香榧;香榧最佳烘烤条件为:先在200 ℃下烘烤12 min,再在20%质量分数盐溶液中浸泡10 min,最后在120 ℃下烘烤95 min。图3表4参29

English Abstract

魏继华, 李佳益, 刘宏, 等. 沙棘根瘤内生菌株库构建与微生物多样性分析[J]. 浙江农林大学学报, 2022, 39(2): 356-363. DOI: 10.11833/j.issn.2095-0756.20210246
引用本文: 杨蕾, 赵荻, 胡渊渊, 等. 不同加工方式香榧香气物质和油脂品质的比较分析[J]. 浙江农林大学学报, 2022, 39(1): 22-31. DOI: 10.11833/j.issn.2095-0756.20210304
WEI Jihua, LI Jiayi, LIU Hong, et al. Construction of endophytic strain bank of seabuckthorn nodule and an analysis of microbial diversity[J]. Journal of Zhejiang A&F University, 2022, 39(2): 356-363. DOI: 10.11833/j.issn.2095-0756.20210246
Citation: YANG Lei, ZHAO Di, HU Yuanyuan, et al. Comparative analysis of aroma components and oil quality of Torreya grandis ‘Merrillii’ nuts with different processing techniques[J]. Journal of Zhejiang A&F University, 2022, 39(1): 22-31. DOI: 10.11833/j.issn.2095-0756.20210304
  • 香榧Torreya grandis ‘Merrillii’是红豆杉科Taxaceae榧树属Torreya的大型常绿乔木,为中国南方特有的珍稀坚果,其种仁营养丰富,不仅不饱和脂肪酸含量丰富(占78.9%),还富含生育酚、金松酸、丁香烯、谷甾醇、烟酸等多种生物活性物质,具有一定的药用价值[1-2]。常见的坚果加工方式有炒制和烘烤2种,炒制是香榧的传统加工方式,作为高油坚果,香榧炒制加工过程极易发生油脂氧化酸败,导致品质下降,成品价格下跌,严重影响榧农的经济收入,成为限制香榧产业健康发展的瓶颈。有研究表明:不同的加工方式会影响香气成分,如烹煮的板栗Castanea mollissima清香味消失,而烘烤的板栗具有特有的焦香甜味[3-4];烘烤会破坏脂质细胞结构,导致脂质氧化,从而使得坚果的质量下降、储存期缩短和不良风味的产生[5]。酸价和过氧化值是评价油脂品质的重要指标[6],烘烤后的香榧种仁酸价和过氧化值明显高于烘烤前的[7]。相比炒制型葵花籽,烘烤型葵花籽的储藏时间较长,其主要原因是高温炒制诱导了自由基的产生,加快氧化反应[8]。还有研究表明:烘烤还会产生具有抗氧化活性的产物,如多酚类、维生素E等[9-10]。高温烘烤澳洲坚果Macadamia integrifolia不仅可以改善产品的口感,还能提高香气风味,但如果过度烘烤,则会使果仁发生深度褐变[11]。因此,适宜的烘烤工艺对坚果的加工品质极其重要。除此之外,盐作为添加剂,通过浸泡的方式进入到种子的内部,不仅可以改善食品的风味,还可以延长食品的储藏时间[12]。盐浸是香榧炒制过程的一个重要步骤[13],然而盐浸时间仅凭经验。因此,本研究通过对未加工香榧原料(原料香榧)、传统炒制工艺加工的香榧(炒制香榧)和烘烤工艺加工香榧(烘烤香榧)香气组分的分析及油脂氧化与抗氧化能力之间的差异比较,试图找出烘烤过程中的关键呈香成分;通过对单因素因子(第1次烘烤时间、盐渍时间和第2次烘烤时间)的设定,以果仁的色度和感官评价得分为因变量,优化香榧的烘烤加工工艺,并结合运用Design Expert 8.0软件程序,选取3因素3水平进行响应面分析,以过氧化值和酸价作为响应值,确定香榧的最佳烘烤加工工艺。

    • 于2017年10月在浙江省绍兴市嵊州市谷来镇下郭村采集香榧,香榧脱蒲后,选择形状、颜色相近且无瑕疵的种籽,按照当地传统方法进行堆沤、水洗及晾晒,晾晒完成时种籽水分含量为(10±2)%。晾晒后的种籽储存在4 ℃冰箱中备用。

    • 设置3个处理:①炒制香榧处理,即按当地的传统炒制方式加工;②烘烤香榧处理,即按参考文献[22]烘烤方式加工;③原料香榧处理,即不进行任何加工。每个处理设置3个重复,每个重复30个种籽。香榧的烘烤温度与盐溶液浓度参考文献[13],稍作修改,第1次烘烤温度设定为200 ℃,浸泡液为质量分数为20%的饱和盐溶液,第2次烘烤温度为120 ℃。设计单因素试验:①第1次烘烤时间设为6、8、10、12、14 min,盐浸时间为10 min,第2次烘烤时间为90 min;②盐浸时间设为5、10、15、20、25 min,第1次烘烤时间为10 min,第2次烘烤时间为90 min;③第2次烘烤时间设为30、60、90、120 min,第1次烘烤时间为10 min,盐浸时间为10 min。

    • 参考文献[14],剥去外壳,种仁切片,用研磨机将种仁研磨成粉末,取样品2 g置于15 mL样品萃取瓶中,置于电热恒温水浴锅(80 ℃)预热;然后推出吸附头使其暴露于萃取瓶顶空蒸汽中,在此条件下保持30 min。当样品萃取完成后,缩回纤维头,迅速将针管插入气相色谱仪的进样口,推出纤维头解析3 min,同时启动气相色谱仪采集数据。气相色谱(GC)条件:进样口温度为250 ℃;毛细管柱:HP-5MS (30.0 m×250.00 μm×0.25 μm);质谱(MS)条件:辅助接口温度为280 ℃,离子源温度230 ℃,四极杆离子源温度为150 ℃;程序升温:起始温度60 ℃,保持1 min,以5 ℃·min−1的速度升温至280 ℃,保持2 min。定性分析:根据所得的峰谱图以及给定的香气成分报告,在NIST08质谱库中进行检索比对,最终确定香榧的香气成分物质。定量分析:样品中萜烯类、醇类、醛类、烷烃类、酯类、吡嗪类和苯类化合物释放量分别参考D-柠檬烯、十二烷醇、壬醛、十七烷、肉豆蔻酸异丙酯、2,6-二甲基吡嗪和间异丙基甲苯进行计算,醚类、酮类、酸类化合物均参考邻苯二甲醚。通过其浓度与峰面积计算每克样品中相应物质的释放量,具体计算参考KOZIEL等[15]

    • 使用CR-400型色差仪(日本柯尼卡美能达公司)测定黄度(+b*),每个样品重复测定3次。

    • 请10名经过培训的感官评定员反映烘烤香榧的形态、香气、口感、滋味、色泽等5个因素在风味感官评价中的权重,并打分。每人10分。统计所有分数,所得每个因素得分除以所有指标总分(100分),得到各因素权重因子,依次赋权重12%、18%、36%、21%和13%。按表1标准对各因素打分,重新计算权重总分值。烘烤香榧的权重总分值越大,表明香榧的感官质量越好。

      表 1  烘烤香榧感官评定标准

      Table 1.  Standard of baking T. grandis ‘Merrillii’ seeds’ sensory analysis

      分值形态香气口感滋味色泽
      90~100 种仁十分饱满,无破损 香气浓郁 酥脆度很优,易于咀嚼 无涩味,无苦味,咸味适合 金黄色
      80~90 种仁较饱满,有轻微破损 香气较浓 酥脆度良好,较好咀嚼 淡涩,淡苦,咸味偏淡 深黄色
      70~80 种仁略饱满,破损 有香气  酥脆度一般,咀嚼度一般 稍涩,稍苦,略带咸味 淡黄色
      70~60 种仁不饱满,破损很大 香气较淡 稍微不酥脆,较难咀嚼 涩,苦,无咸味 微黄色
      <60 种仁干瘪,外观很差 无香气  不酥脆,很难咀嚼 很涩,很苦,咸味很重 焦黄色
    • 参照ZHANG等的方法[16]处理样品,将提取好的香榧油参照宋丽丽等[17]方法测定过氧化值和酸价。

    • 总酚的测定采用福林酚法[18],结果以mg·g−1干质量表示。1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除率的测定参考文献[18]。

    • 不同处理各重复3次结果,采用Excel 2010对数据进行整理,数值为平均值±标准误,用SPSS 20.0软件对数据进行方差分析,利用LSD法进行多重比较;使用SigmaPlot 12.5软件进行图表绘制;利用Design Expert 8.0进行数据处理与分析。

    • 表2所示:原料香榧共检测出60种化合物,其中萜烯类17种,醇类20种,醛类5种,苯类6种等;烘烤香榧检测出61种化合物,其中萜烯类15种,醇类20种,醛类5种,苯类化合物6种等;而炒制香榧测定出56种化合物,其中萜烯类15种,醇类16种,醛类4种,苯类6种等。与原料香榧相比,加工处理(炒制和烘烤)后萜烯类物质种类减少,但也会形成新物质(7种)。烘烤香榧比炒制香榧多产生3种醇类、2种醛类和1种醚类香气物质。与原料香榧相比,烘烤香榧和炒制香榧的萜烯类物质分别减少了69.4%和76.9%;醇类物质分别减少了78.7%和83.1%;苯类物质分别增加47.6%和57.4%。3个处理的香气物质中萜烯类化合物含量均最高,为57.7%~70.5%,其次是醇类化合物,约9.9%~19.9%。

      表 2  3种香榧材料主要香气成分及其质量分数

      Table 2.  Main aroma composition and content of T. grandis ‘Merrillii’

      大类编号成分香气成分质量分数/(μg·g−1)
      原料香榧烘烤香榧炒制香榧
      萜烯类化合物 1 α-蒎烯à-pinene 12.76±0.09 a 0.51±0.08 c 0.73±0.12 b
      2 月桂烯myrcene 10.93±0.08 a 6.89±0.56 b 3.80±0.19 c
      3 D-柠檬烯D-limonene 118.66±0.03 a 80.81±0.58 b 49.42±0.11 c
      4 2,4-二甲基苯乙烯 2,4-dimethylstyrene  − 1.88±0.07 8.16±0.05
      5 萜品油烯terpinolene 6.29±0.38 a 1.53±0.24 c 2.40±0.81 b
      6 3-蒈烯3-carene 26.51±0.03 a 0.24±0.04 c 0.65±0.22 b
      7 1-十三烯1-tridecene 25.74±0.03 a 0.19±0.02 c 3.82±0.01 b
      8 异丁香烯(-)-isocaryophyllene 0.13±0.05 a 0.04±0.01 c 0.07±0.01 b
      9 反式-β-金合欢烯trans-β-farnesene 0.19±0.01 b 0.28±0.03 a 0.09±0.01 c
      10 衣兰油烯muurolene 0.06±0.01 b 0.07±0.01 b 0.15±0.02 a
      11 δ-杜松烯δ-cadinene 0.17±0.06 0.06±0.01  −
      12 A-二去氢菖蒲烯A-dihydrohomocem 0.18±0.02 a 0.09±0.01 b 0.09±0.01 b
      13 长叶烯longifolene 0.15±0.03 b 0.19±0.05 b 0.30±0.01 a
      14 柏木脑cedrol 0.39±0.03 b 0.17±0.02 c 0.52±0.1 a
      15 左旋β-蒎烯L-β-pinene 62.83±0.07  −  −
      16 二甲基苯乙烯dimethyl styrene 25.84±0.09  −  −
      17 双戊烯dipentene 14.03±0.02 a 0.18±0.07 b 0.12±0.04 b
      18 莰烯comphene 0.35±0.01  −  −
      萜烯类化合物总和 305.21 93.13 70.32
      醇类化合物 1 十一醇undecyl alcohol 0.48±0.04 b 0.86±0.01 a 0.27±0.02 c
      2 二氢香芹醇dihydrocarvyl alcohol 3.51±0.67 a 0.27±0.03 c 1.66±0.12 b
      3 3-癸烯-1-醇3-decen-1-ol 0.46±0.15 b 1.21±0.05 a 0.32±0.07 c
      4 芳樟醇linalool  − 0.23±0.12 b 0.59±0.05 a
      5 4-萜烯醇4-nonenol 11.29±0.18 0.18±0.02  −
      6 α-松油醇alpha-terpineol 12.89±0.19 a 0.46±0.04 c 4.03±0.16 b
      7 紫苏醇perillol 1.25±0.05 0.43±0.01  −
      8 十六烷醇1-hexadecanol 9.24±0.08 a 0.38±0.12 b 0.19±0.08 c
      9 2-茨醇2-propanol 0.86±0.08 a 0.06±0.01 b 0.09±0.01 b
      10 橙花叔醇nerolidol 38.43±0.25 a 0.44±0.04 c 7.33±0.09 b
      11 十七烷醇heptadecyl alcohol 0.29±0.01 c 1.12±0.08 b 1.50±0.12 a
      12 十二烷醇dodecano 1.79±0.09 0.23±0.03  −
      13 雪松醇cedrol 1.29±0.14 a 0.60±0.04 b 0.65±0.04 b
      14 2-甲基十六烷醇 2-methyl cetyl alcohol 0.64±0.01 b 0.76±0.07 a 0.61±0.09 b
      15 2-十四烷醇 2-tetradecanol 1.36±0.09 a 0.44±0.18 b 0.06±0.01 c
      16 1-十四烷醇myristyl alcohol 0.08±0.01 b 0.08±0.01 b 0.28±0.03 a
      17 骨化醇calcitonin 0.15±0.04 a 0.05±0.09 b 0.20±0.07 a
      18 叔十六硫醇tert-hexadecane 0.49±0.08 0.30±0.09   −
      19 2-(十八氧基)乙醇2-(octadecyloxy)ethanol 0.37±0.04 b 0.54±0.08 a 0.06±0.12 c
      20 6-仲辛醇6-octanol 0.99±0.14   −   −
      21 维生素A 0.62±0.06 b 5.92±0.08 a 0.58±0.13 c
      醇类化合物总和  86.48  14.56  18.42
      醛类化合物 1 糠醛2-furaldehyde      − 3.99±0.04 5.59±0.12
      2 2-乙基己烯醛2-ethylhexenal 0.42±0.06 6.48±0.12   −
      3 癸醛camphor 4.99±0.8 a 0.87±0.11 c 1.69±0.30 b
      4 壬醛1-nonanal 5.11±0.16 b 2.71±0.21 c 9.56±0.26 a
      5 十二醛dodec aldehyde 0.74±0.05 0.19±0.02   −
      6 2-十一碳烯醛2-undecenal 1.43±0.11   − 0.37±0.05
      醛类化合物总和   12.69   14.24   17.21
      烷类化合物 1 正十四烷tetradecane 2.49±0.04 a 0.47±0.06 b 0.88±0.05 b
      2 正十七烷heptadecane 0.09±0.01 c 0.16±0.01 b 0.38±0.05 a
      3 正十九烷ninecane 0.44±0.15 a 0.26±0.02 b 0.16±0.02 c
      4 正二十七烷N-hexadecane   − 0.16±0.01 0.18±0.06
      烷类化合物总和   3.02   1.05   1.60
      酯类化合物 1 肉豆蔻酸异丙酯isopropyl myristate 0.07±0.01 b 0.12±0.01 a 0.09±0.01 b
      2 邻苯二甲酸二异丁酯diisobutyl phthalate 0.18±0.02 b 0.15±0.01 b 0.49±0.01 a
      3 棕榈酸甲酯methyl palmitate 0.02±0.01 b 0.02±0.01 b 0.04±0.01 a
      4 邻苯二甲酸正丁异辛酯N-butyl octyl phthalate 0.17±0.01 b 0.16±0.01 b 0.56±0.01 a
      酯类化合物总和   0.44   0.45   1.18
      醚类化合物 1 邻苯二甲醚1,2-dimethoxybenzene 12.03±0.04 a 3.18±0.04 b 0.56±0.04 c
      2 对苯二甲醚1,4-dimethoxybenzene 0.21±0.03 b 0.26±0.01 b 1.01±0.09 a
      3 乙二醇十二烷基醚2-(dodecyloxy)ethanol 1.49±0.01   − 0.09±0.06
      醚类化合物总和  13.73   3.44   1.66
      酮类化合物 1 右旋香芹酮D(+)-carvone  − 0.31±0.01 1.24±0.01
      2 2-莰酮camphor  − 0.44±0.02 0.21±0.01
      3 3-甲基-6-(1-甲基亚乙基)-2-环己酮3-methyl-6-
      (1-methylethylidene)-2-cyclohexene-1-one
      4.5±0.04 a 0.63±0.02 c 2.30±0.01 b
      酮类化合物总和   4.50   1.38   3.75
      酸类化合物 1 棕榈酸palmitic acid 1.68±0.09 2.50±0.04  −
      酸类化合物总和   1.68   2.50  −
      吡嗪类化合物 1 2,6-二甲基吡嗪2,6-dimethyl piperazune  − 3.28±0.07 0.09±0.01
      吡嗪类化合物总和  0   3.28   0.09
      苯类化合物 1 丙基苯propylbenzene 0.25±0.02 c 6.91±0.05 a 6.15±0.11 b
      2 间异丙基甲苯P-isopropyltoluene 0.27±0.03 b 0.30±0.01 a 0.31±0.01 a
      3 1-甲氧基-4-丙烯基苯1-methoxy-4-propenylbenzene 1.13±0.05 b 2.16±0.03 a 0.25±0.01 c
      4 1,2,3-三甲氧基苯1,2,3-trimethoxybenzene 0.29±0.01 b 0.67±0.02 a 0.29±0.07 b
      5 3,4,5-三甲氧基甲苯3,4,5-triMethoxytoluene 2.84±0.04 a 1.63±0.07 c 1.71±0.01 b
      6 3,3′,5,5′-四甲基联苯3,3′,5,5′-tetramethylbiphenyl 0.31±0.01 c 0.89±0.01 b 1.02±0.01 a
      苯类化合物总和   5.09   12.56   9.73
        说明:−表示未检出。不同小写母表示不同处理间差异显著(P<0.05)

      图1可知:主成分1和主成分2总和达89.9%,解释率很好。未加工香榧(原料香榧)与加工香榧(炒制香榧和烘烤香榧)之间存在明显的分离。其中,主成分1主要贡献的物质为萜烯类、醇类和烷类化合物;成分2主要贡献的物质为酯类化合物。

      图  1  3种香榧材料香气的主成分分析

      Figure 1.  PCA analysis of three different process of T. grandis ‘Merrillii’seeds

    • 表3所示:与原料香榧相比,炒制香榧和烘烤香榧的酸价、过氧化值和总酚质量分数均呈显著上升的趋势,而DPPH则呈显著下降的趋势。烘烤香榧的酸价和过氧化值均小于炒制香榧;而烘烤香榧和炒制香榧总酚质量分数分别为6.984和6.214 mg·g−1,DPPH自由基清除能力分别为58.93%和50.43%。

      表 3  不同加工方式对香榧脂质氧化和抗氧化活性的影响

      Table 3.  Effects of processing techniques on oxidation ability and antioxidant activity of T. grandis‘Merrillii’seeds

        加工方式酸价/(mg·g−1)过氧化值/(mmol·kg−1)总酚/(mg·g−1)DPPH自由基清除活性/%
      原料香榧0.421±0.0222 c1.194±0.032 c4.328±0.132 c79.43±2.42 a
      烘烤香榧0.521±0.0323 b2.329±0.028 b6.984±0.273 a58.93±3.13 b
      炒制香榧0.772±0.0382 a7.382±0.273 a6.214±0.243 b50.43±2.42 c
        说明:不同小写字母表示不同处理之间差异显著(P<0.05)
    • 随着第1烘烤时间的的延长,香榧种仁颜色由浅黄白色到焦黄色,再呈现明显焦黑色,其色度值则在12 min时达到最大;而感官评价呈先增后降的趋势,当第1次烘烤时间为14 min时,感官评价得分骤降(图2A1和A2)。盐浸的香榧种仁均呈现出一定的焦黄色,当浸泡时间少于10 min时,种仁表面的光泽感较佳;其感官评价则呈先升后降的趋势(图2B1和B2)。第2次烘烤时间对色泽外观的影响显著,第2次烘烤时间为30或60 min时,种仁表面呈黄白色,而当烘烤时间达到90 min,则呈现出明显的焦黄色(图2C1);其感官评价呈上升趋势,烘烤时间超过90 min时,感官评价分数略有下降(图2C2)。综上所述,根据感官评价和色度指标,第1次烘烤的最佳时间为10~14 min,最佳盐浸时间为10~15 min,第2次烘烤的最佳时间为90~120 min。

      图  2  不同烘烤工艺对香榧种仁感官评价与色度的影响

      Figure 2.  Effects of processing technique on sensory analysis and color +b* of T. grandis ‘Merrillii’ seeds

    • 表4所示:应用Design-Expert软件对试验的响应值进行回归拟合,得到酸价(AV)与3个因素[第1次烘烤时间(A)、盐浸时间(B)、第2次烘烤时间(C)]之间的拟合方程:AV=0.640+0.150A+0.068B+0.042C−0.019AB−0.005AC+0.009BC+0.082A2+0.068B2+0.021C2;过氧化值(POV)与3个因素之间的拟合方程:POV=2.610+0.180A+0.075B+0.056C−0.030AB+0.021AC+0.016BC+0.110A2+0.061B2+0.024C2。所有模型拟合的P<0.05,模型显著,失拟项P>0.05,不显著,模型的拟合系数分别为0.969 6和0.984 4,变异系数分别为1.96%和1.11%,说明模型拟合度高,结果可信。响应面图能够反映最优取值点及各参数之间的相互作用,其曲线越陡,则该因素影响越大。从图3A~3F可知:对酸价和过氧化值的影响从大到小依次为第1次烘烤时间、盐浸时间、第2次烘烤时间。

      表 4  香榧烘烤工艺优化实验设计与结果

      Table 4.  Results and design of Box-Behnken RSM experiment of baking T. grandis ‘Merrillii’ seeds

      编号第1次烘烤时间/min盐浸时间/min第2次烘烤时间/min过氧化值/(mmol·kg−1)酸价/(mg·g−1)
      1 10.00 10.00 105.00 2.478±0.06 0.514±0.02
      2 10.00 12.50 90.00 2.562±0.04 0.561±0.03
      3 10.00 12.50 120.00 2.618±0.02 0.654±0.04
      4 10.00 15.00 105.00 2.693±0.03 0.729±0.03
      5 12.00 10.00 90.00 2.581±0.03 0.645±0.03
      6 12.00 10.00 120.00 2.675±0.03 0.710±0.04
      7 12.00 15.00 90.00 2.693±0.08 0.720±0.04
      8 12.00 15.00 120.00 2.852±0.06 0.823±0.02
      9 14.00 10.00 105.00 2.936±0.03 0.879±0.03
      10 14.00 12.50 90.00 2.833±0.03 0.832±0.06
      11 14.00 12.50 120.00 2.973±0.03 0.907±0.06
      12 14.00 15.00 105.00 3.029±0.03 1.019±0.02
      13 12.00 12.50 105.00 2.581±0.03 0.645±0.03

      图  3  烘烤工艺3个因素对过氧化值和酸价交互影响曲面图

      Figure 3.  Response surface of baking technology three factors on POV and AV

    • 香气是消费者在购买坚果产品时候非常直观有效评判其品质的依据之一[19]。核桃Juglans regia中共含有29类挥发性化合物,其中醛类物质11种,烷类物质4种,醇类物质3种,酯类物质3种,酚类物质1种,酸类物质4种[20]。澳洲坚果Macadamia spp. 中共鉴定出23种挥发性物质,其中醛类化合物9种,吡嗪类化合物9种,呋喃类化合物2种,其他化合物3种,烘焙后的澳洲坚果共含有33种香气成分,而未进行加工的的原料果仁中仅有4种香气成分,特别是吡嗪类和呋喃类2类物质上升非常显著[21]。LASEKAN等[22]在烤杏仁Terminalia catappa中鉴定出醛、酮、吡嗪和醇类是杏仁烘烤后主要香气组成成分。本研究结果表明:原料香榧、炒制香榧和烘烤香榧的主要香气挥发性风味物质均是萜类化合物,其中D-柠檬烯含量最为丰富(38.87%~86.77%),这与王衍彬等[14]从香榧油中鉴定出的主要香味物质一致。D-柠檬烯呈令人愉悦的新鲜柠檬香气,常被作为天然的食品添加剂。与香榧原料相比,炒制香榧的萜类物质和醇类物质的损失程度明显大于烘烤香榧,这可能是由于高温热物理的影响。烘烤香榧的主要香气物质——萜类物质总量均明显高于炒制香榧,表明烘烤工艺更有利于保留香榧的特征香气。

      除挥发性香气物质外,香榧作为油料作物,其油脂品质也是评价香榧产品品质的重要指标。过氧化值和酸价水平通常被用来评估坚果食品的油脂氧化程度[23]。本研究结果显示:炒制香榧的酸败程度显著高于烘烤香榧的,高达0.767 mg·kg−1,表明烘烤香榧的油脂氧化速率低于炒制香榧。这与颜小平[8]的结果一致,葵花籽炒制过后,虽风味物质增加,但保质期非常短,主要原因为炒制时的高温使得葵花籽油过氧化值升高,发生明显酸败,而烘烤后葵花籽的保存时间则更长。为了防止氧化损伤,植物常利用酶调节或细胞凋亡来清除氧化成分[24],其中酚类化合物是强大的自由基清除剂[25]。宫长荣等[26]在对烟叶的烘烤过程中发现:烟叶内的多酚类物质随着烘烤时间延长而增加。DPPH自由基清除能力是抗氧化活性的重要指标[27]。在对板栗的加工过程中,发现烘烤和蒸煮这2种加工方式均能提高DPPH自由基清除力[28]。本研究结果表明:烘烤香榧的总酚质量分数和DPPH明显高于炒制香榧,表明烘烤香榧的抗氧化活性显著高于炒制香榧。综上所述,烘烤香榧的油脂酸败程度明显低于炒制香榧,这可能与较强的抗氧化活性有关。

      虽然烘烤时间的延长会使得香味物质丰富,但颜色和口感也会发生变化,美拉德反应和焦糖化反应等是导致颜色发生变化的重要原因,颜色的加深通常伴随品质的下降,从而影响感官评分。VÁZQUEZ-ARAÚJO等[29]研究发现:长时间烘烤杏仁,杏仁色泽变黑,风味变得苦涩。本研究结果表明:随着烘烤时间的延长,香榧种仁的颜色逐渐变成焦黑色,口感变差。此外,盐浸广泛应用于果蔬、蜜饯、肉制品等领域。本研究利用Design-Expert软件分析烘烤工艺对香榧种仁油脂氧化和抗氧化能力的回归响应模型,进一步优化烘烤香榧的最佳条件,得出第1次烘烤的最佳时间为12 min (200 ℃),最佳盐浸时间为10 min,第2次烘烤的最佳时间为95 min (120 ℃)。

参考文献 (29)

目录

/

返回文章
返回