Individual tree detection in high canopy density Larix principis-rupprechtii plantation based on airborne LiDAR
-
摘要:
目的 高郁闭度华北落叶松林Larix principis-rupprechtii林木树冠交叉重叠,传统的基于高分辨影像的单木识别方法识别精度不高。利用机载LiDAR三维点云数据可提高高郁闭度华北落叶松林的单木识别精度。 方法 在点云数据预处理基础上,提出基于点云空间特征的高斯核函数改进的均值漂移单木位置识别方法(MSP),比较并分析MSP法与基于点云空间特征的区域生长点云分割方法(RGP)、基于冠层高度模型的局部最大值单木位置识别方法(LMC)和基于冠层模型的多尺度分割单木位置识别方法(MSC)的单木识别效果。 结果 4种方法单木位置识别精度从大到小依次为MSP (89.30%)、LMC (85.60%)、RGP (77.50%)和MSC (70.00%),MSP的漏分误差和错分误差最小,分别为8.7%和8.0%,平均单木冠幅提取精度为90.18%。 结论 提出的MSP法对高郁闭度华北落叶松林单木位置识别具有较好的适用性,利用机载LiDAR可为提取华北落叶松林森林结构参数提供新的途径。图3表3参28 Abstract:Objective With low identification accuracy of individual trees in Larix principis-rupprechtii forest with high canopy density employing high resolution images, this paper is aimed to confirm the strengths of airborne Laser Detection and Ranging (LiDAR) 3D point cloud data as an alternative with a workable method proposed. Method Based on the preprocessing of point cloud data, an improved Mean Shift with Gaussian kernel function (MSP) position recognition method on the basis of the spatial characteristics of airborne LiDAR point cloud was proposed. The comparison is made with other three commonly used methods: regional growing segmentation algorithm based on point cloud (RGP), local maximum method based on canopy height model (LMC) and multi-scale segmentation method based on CHM (MSC). Result Identification accuracy of the four methods is: MSP (89.30%)>LMC (85.60%)>RGP (77.50%)>MSC (70.00%) and MSC, the proposed method, displayed high average individual tree crown extraction accuracy (90.18%) and relatively low omission error and commission error rate: 8.7% and 8.0% respectively. Conclusion The proposed MSP has good applicability in high crown density L. principis-rupprechtii forest and provides a new way of extracting L. principis-rupprechtii forest structure parameters accurately on the basis of airborne LiDAR point clouds. [Ch, 3 fig. 3 tab. 28 ref.] -
表 1 样地林分基本特征
Table 1. Investigation results of basic characteristics of forest stand in sample plot
样地 密度/(株·hm−2) 平均树高/m 平均胸径/cm 平均冠幅/m 样地 密度/(株·hm−2) 平均树高/m 平均胸径/cm 平均冠幅/m 1 2 075 13.11 13.22 3.19 5 2 100 11.72 13.82 3.82 2 2 925 12.66 12.44 2.86 6 2 475 12.00 12.98 3.43 3 2 500 14.04 15.35 2.99 7 2 275 13.45 14.63 2.92 4 1 875 13.60 13.41 3.97 8 2 125 13.52 13.90 3.34 表 2 4种单木位置识别方法的精度统计
Table 2. Accuracy statistics of four methods on individual tree detection
类别 方法 AO/% AD/% EO/% EC/% ER/% 点云 MSP 91.3±3.7 a 89.3±2.5 a 8.7±3.7 b 8.0±2.5 c 5.8±1.5 b RGP 81.5±2.6 b 77.5±2.2 b 18.5±2.6 a 16.7±5.5 b 9.8±1.4 a CHM LMC 91.0±2.0 a 85.6±2.0 c 9.0±2.0 b 9.3±1.7 c 4.3±1.7 b MSC 80.8±2.1 b 70.0±1.5 d 19.2±2.1 a 30.1±5.0 a 5.0±1.4 b 说明:同列不同字母表示差异显著(P<0.05) 表 3 MSP法提取单株冠幅精度
Table 3. Precision distribution of extracting individual canopy diameter by MSP
单株冠幅提取
精度范围/%精度范围
占比/%冠幅偏
小/%冠幅偏
大/%平均单株
提取精度/%<60 0 62.07 37.93 90.18 60~70 1.05 70~80 9.15 80~90 32.68 90~100 57.12 -
[1] 赵匡记, 王利东, 王立军, 等. 华北落叶松蓄积量及生产力研究[J]. 北京林业大学学报, 2015, 37(2): 24 − 31. ZHAO Kuangji, WANG Lidong, WANG Lijun, et al. Stock volume and productivity of Larix principis-rupprechtii in northern and northwestern China [J]. J Beijing For Univ, 2015, 37(2): 24 − 31. [2] HILL S, LATIFI H, HEURICH M, et al. Individual-tree and stand-based development following natural disturbance in a heterogeneously structured forest: a LiDAR-based approach [J]. Ecol Inf, 2017, 38: 12 − 25. doi: 10.1016/j.ecoinf.2016.12.004 [3] 李增元, 刘清旺, 庞勇. 激光雷达森林参数反演研究进展[J]. 遥感学报, 2016, 20(5): 1138 − 1150. LI Zengyuan, LIU Qingwang, PANG Yong. Review on forest parameters inversion using LiDAR [J]. J Remote Sensing, 2016, 20(5): 1138 − 1150. [4] 申家朋, 陈东升, 孙晓梅, 等. 基于似乎不相关回归和哑变量的日本落叶松单木生物量模型构建[J]. 浙江农林大学学报, 2019, 36(5): 877 − 885. SHEN Jiapeng, CHEN Dongsheng, SUN Xiaomei, et al. Modeling a single-tree biomass equation by seemingly unrelated regression and dummy variables with Larix kaempferi [J]. J Zhejiang A&F Univ, 2019, 36(5): 877 − 885. [5] 甄贞, 李响, 修思玉, 等. 基于标记控制区域生长法的单木树冠提取[J]. 东北林业大学学报, 2016, 44(10): 22 − 29. doi: 10.3969/j.issn.1000-5382.2016.10.005 ZHEN Zhen, LI Xiang, XIU Siyu, et al. Individual tree crown delineation using maker-controlled region growing method [J]. J Northeast For Univ, 2016, 44(10): 22 − 29. doi: 10.3969/j.issn.1000-5382.2016.10.005 [6] 陶江玥, 刘丽娟, 庞勇, 等. 基于机载激光雷达和高光谱数据的树种识别方法[J]. 浙江农林大学学报, 2018, 35(2): 314 − 323. doi: 10.11833/j.issn.2095-0756.2018.02.016 TAO Jiangyue, LIU Lijuan, PANG Yong, et al. Automatic identification of tree species based on airborne LiDAR and hyperspectral data [J]. J Zhejiang A&F Univ, 2018, 35(2): 314 − 323. doi: 10.11833/j.issn.2095-0756.2018.02.016 [7] HOLMGREN J, NILSSON M, OLSSON H. Estimation of tree height and stem volume on plots using airborne laser scanning [J]. For Sci, 2003, 49(3): 419 − 428. [8] 霍达, 邢艳秋, 田昕, 等. 基于机载LiDAR的四次多项式拟合法估测单木冠幅[J]. 西北林学院学报, 2015, 30(3): 164 − 169. doi: 10.3969/j.issn.1001-7461.2015.03.28 HUO Da, XING Yanqiu, TIAN Xin, et al. Estimating individual tree crown diameter using fourth fegree polynomial fitting method based on airborne LiDAR [J]. J Northwest For Univ, 2015, 30(3): 164 − 169. doi: 10.3969/j.issn.1001-7461.2015.03.28 [9] CHEN Wei, XIANG Haibing, MORIYA K. Individual tree position extraction and structural parameter retrieval based on airborne LiDAR data: performance evaluation and comparison of four algorithms [J/OL]. Remote Sensing, 2019, 12: 571[2021- 05-30]. doi: 10.3390/rs12030571. [10] 王濮, 邢艳秋, 王成, 等. 一种基于图割的机载LiDAR单木位置识别方法[J]. 中国科学院大学学报, 2019, 36(3): 385 − 391. doi: 10.7523/j.issn.2095-6134.2019.03.012 WANG Pu, XING Yanqiu, WANG Cheng, et al. A graph cut-based approach for individual tree detection using airborne LiDAR data [J]. J Univ Chin Acad Sci, 2019, 36(3): 385 − 391. doi: 10.7523/j.issn.2095-6134.2019.03.012 [11] 李响, 甄贞, 赵颖慧. 基于局域最大值法单木位置探测的适宜模型研究[J]. 北京林业大学学报, 2015, 37(3): 27 − 33. LI Xiang, ZHEN Zhen, ZHAO Yinghui. Suitable model of detecting the position of individual treetop based on local maximum method [J]. J Beijing For Univ, 2015, 37(3): 27 − 33. [12] CHEN Shiyue, LIANG Dan, YING Binbin, et al. Assessment of an improved individual tree detection method based on local-maximum algorithm from unmanned aerial vehicle RGB imagery in overlapping canopy mountain forests [J]. Int J Remote Sensing, 2021, 42(1): 106 − 125. doi: 10.1080/01431161.2020.1809024 [13] CHO M A, MATHIEU R, ASNER G P, et al. Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system [J]. Remote Sensing Environ, 2012, 125: 214 − 226. doi: 10.1016/j.rse.2012.07.010 [14] 刘晓双, 黄建文, 鞠洪波. 高空间分辨率遥感的单木树冠自动提取方法与应用[J]. 浙江林学院学报, 2010, 27(1): 126 − 133. LIU Xiaoshuang, HUANG Jianwen, JU Hongbo. Research progress in the methods and application of individual tree crown’s automatic extracting by high spatial resolution remote sensing [J]. J Zhejiang For Coll, 2010, 27(1): 126 − 133. [15] LI Wenkai, GUO Qinghua, JAKUBOWSKI M K, et al. A new method for segmenting individual trees from the lidar point cloud [J]. Photogrammetric Eng Remote Sensing, 2012, 78(1): 75 − 84. doi: 10.14358/PERS.78.1.75 [16] 李森磊, 李健平, 蒋腾平, 等. 一种基于UAV-LiDAR点云的多尺度单木分割[J]. 测绘科学技术, 2021, 9(1): 14 − 25. doi: 10.12677/GST.2021.91003 LI Senlei, LI Jianping, JIANG Tengping, et al. A multi-scale method for 3D individual tree extraction using UAV-LiDAR [J]. Geomatics Sci Technol, 2021, 9(1): 14 − 25. doi: 10.12677/GST.2021.91003 [17] NAVEED F, HU Baoxin, WANG Jianguo, et al. Individual tree crown delineation using multispectral LiDAR data [J/OL]. Sensors, 2019, 19: 5421[2021-05-30]. doi: 10.3390/s19245421. [18] 李仁忠, 刘阳阳, 杨曼, 等. 基于改进的区域生长三维点云分割[J/OL]. 激光与光电子学进展, 2018, 55: 051502[2021-05-30]. doi: 10.3788/LOP55.051502. LI Renzhong, LIU Yangyang, YANG Man, et al. Three-dimensional point cloud segmentation algorithm based on improved region growth [J/OL]. Laser Optoelectronics Prog, 2018, 55: 051502[2021-05-30]. doi: 10.3788/LOP55.051502. [19] KWONG I H Y, FUNG T. Tree height mapping and crown delineation using LiDAR, large format aerial photographs, and unmanned aerial vehicle photogrammetry in subtropical urban forest [J]. Int J Remote Sensing, 2020, 41(14): 5228 − 5256. doi: 10.1080/01431161.2020.1731002 [20] MA Zhengyu, PANG Yong, WANG Di, et al. Individual tree crown segmentation of a larch plantation using airborne laser scanning data based on region growing and canopy morphology features [J/OL]. Remote Sensing, 2020, 12(7): 1078[2021-05-30]. doi: 10.3389/rs12071078. [21] HU Xingbo, CHEN Wei, XU Weiyang. Adaptive mean shift-based identification of individual trees using airborne LiDAR data [J/OL]. Remote Sensing, 2017, 9(2): 148[2021-05-30]. doi: 10.3389/rs9020148. [22] CHEN Wei, HU Xingbo, CHEN Wen, et al. Airborne LiDAR remote sensing for individual tree forest inventory using trunk detection-aided mean shift clustering techniques [J/OL]. Remote Sensing, 2018, 10: 1078[2021-05-30]. doi: 10.3389/rs10071078. [23] YAN Wanqian, GUAN Haiyan, CAO Lin, et al. A self-adaptive mean shift tree-segmentation method using UAV LiDAR data [J/OL]. Remote Sensing, 2020, 12: 515[2021-05-30]. doi: 10.3389/rs12030515. [24] COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis [J]. IEEE Trans Pattern Anal Mach Intel, 2002, 24(5): 603 − 619. doi: 10.1109/34.1000236 [25] 张怡卓, 吕阿康, 蒋大鹏, 等. 应用高斯聚类的单木分割及树高和冠幅的提取[J]. 东北林业大学学报, 2021, 49(2): 54 − 59. ZHANG Yizhuo, LÜ Akang, JIANG Dapeng, et al. Single tree segmentation and extraction of tree height and crown width using gaussian clustering [J]. J Northeast For Univ, 2021, 49(2): 54 − 59. [26] 张学良, 肖鹏峰, 冯学智. 基于改进区域邻接图的遥感图像多尺度快速分割方法[J]. 遥感信息, 2011(5): 3 − 8, 46. doi: 10.3969/j.issn.1000-3177.2011.05.001 ZHANG Xueliang, XIAO Pengfeng, FENG Xuezhi. Multi-scale fast segmentation of remotely sensed image based on improved region adjacency graph [J]. Remote Sensing Inf, 2011(5): 3 − 8, 46. doi: 10.3969/j.issn.1000-3177.2011.05.001 [27] JING Linhai, HU Baoxin, LI Jili, et al. Automated delineation of individual tree crowns from LiDAR data by multi-scale analysis and segmentation [J]. Photogram Eng Remote Sensing, 2012, 78(12): 1275 − 1284. doi: 10.14358/PERS.78.11.1275 [28] 何祺胜, 陈尔学, 曹春香, 等. 基于LiDAR数据的森林参数反演方法研究[J]. 地球科学进展, 2009, 24(7): 748 − 755. doi: 10.3321/j.issn:1001-8166.2009.07.008 HE Qisheng, CHEN Erxue, CAO Chunxiang, et al. A study of forest parameters mapping technique using airborme LiDAR data [J]. Adv Earth Sci, 2009, 24(7): 748 − 755. doi: 10.3321/j.issn:1001-8166.2009.07.008 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210399

计量
- 文章访问数: 55
- 被引次数: 0