留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机载LiDAR的高郁闭度华北落叶松林单木识别

陈思宇 刘宪钊 王懿祥 梁丹

陈思宇, 刘宪钊, 王懿祥, 梁丹. 基于机载LiDAR的高郁闭度华北落叶松林单木识别[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210399
引用本文: 陈思宇, 刘宪钊, 王懿祥, 梁丹. 基于机载LiDAR的高郁闭度华北落叶松林单木识别[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210399
CHEN Siyu, LIU Xianzhao, WANG Yixiang, LIANG Dan. Individual tree detection in high canopy density Larix principis-rupprechtii plantation based on airborne LiDAR[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210399
Citation: CHEN Siyu, LIU Xianzhao, WANG Yixiang, LIANG Dan. Individual tree detection in high canopy density Larix principis-rupprechtii plantation based on airborne LiDAR[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210399

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

基于机载LiDAR的高郁闭度华北落叶松林单木识别

doi: 10.11833/j.issn.2095-0756.20210399
基金项目: 国家重点研发计划项目(2017YFD060040302)
详细信息
    作者简介: 陈思宇(ORCID: 0000-0002-7243-695X),从事森林资源遥感与信息技术研究。E-mail: 1299377811@qq.com
    通信作者: 梁丹(ORCID: 0000-0002-6713-122X),博士,从事GIS多源空间数据融合的不确定性处理研究。E-mail: liangdan812345@163.com
  • 中图分类号: S758.1

Individual tree detection in high canopy density Larix principis-rupprechtii plantation based on airborne LiDAR

  • 摘要:   目的  高郁闭度华北落叶松林Larix principis-rupprechtii林木树冠交叉重叠,传统的基于高分辨影像的单木识别方法识别精度不高。利用机载LiDAR三维点云数据可提高高郁闭度华北落叶松林的单木识别精度。  方法  在点云数据预处理基础上,提出基于点云空间特征的高斯核函数改进的均值漂移单木位置识别方法(MSP),比较并分析MSP法与基于点云空间特征的区域生长点云分割方法(RGP)、基于冠层高度模型的局部最大值单木位置识别方法(LMC)和基于冠层模型的多尺度分割单木位置识别方法(MSC)的单木识别效果。  结果  4种方法单木位置识别精度从大到小依次为MSP (89.30%)、LMC (85.60%)、RGP (77.50%)和MSC (70.00%),MSP的漏分误差和错分误差最小,分别为8.7%和8.0%,平均单木冠幅提取精度为90.18%。  结论  提出的MSP法对高郁闭度华北落叶松林单木位置识别具有较好的适用性,利用机载LiDAR可为提取华北落叶松林森林结构参数提供新的途径。图3表3参28
  • 图  1  研究数据

    Figure  1  Study data

    图  2  4种单木位置识别的空间分布

    Figure  2  Spatial distribution of the result of individual tree position detection based on four methods

    图  3  改进均值漂移法树冠提取结果(局部)

    Figure  3  Crown extraction results of improved mean shift method (local)

    表  1  样地林分基本特征

    Table  1.   Investigation results of basic characteristics of forest stand in sample plot

    样地密度/(株·hm−2)平均树高/m平均胸径/cm平均冠幅/m样地密度/(株·hm−2)平均树高/m平均胸径/cm平均冠幅/m
    12 07513.1113.223.1952 10011.7213.823.82
    22 92512.6612.442.8662 47512.0012.983.43
    32 50014.0415.352.9972 27513.4514.632.92
    41 87513.6013.413.9782 12513.5213.903.34
    下载: 导出CSV

    表  2  4种单木位置识别方法的精度统计

    Table  2.   Accuracy statistics of four methods on individual tree detection

    类别方法AO/%AD/%EO/%EC/%ER/%
    点云MSP91.3±3.7 a89.3±2.5 a8.7±3.7 b8.0±2.5 c5.8±1.5 b
    RGP81.5±2.6 b77.5±2.2 b18.5±2.6 a16.7±5.5 b9.8±1.4 a
    CHMLMC91.0±2.0 a85.6±2.0 c9.0±2.0 b9.3±1.7 c4.3±1.7 b
    MSC80.8±2.1 b70.0±1.5 d19.2±2.1 a30.1±5.0 a5.0±1.4 b
      说明:同列不同字母表示差异显著(P<0.05)
    下载: 导出CSV

    表  3  MSP法提取单株冠幅精度

    Table  3.   Precision distribution of extracting individual canopy diameter by MSP

    单株冠幅提取
    精度范围/%
    精度范围
    占比/%
    冠幅偏
    小/%
    冠幅偏
    大/%
    平均单株
    提取精度/%
    <60062.0737.9390.18
    60~701.05
    70~809.15
    80~9032.68
    90~10057.12
    下载: 导出CSV
  • [1] 赵匡记, 王利东, 王立军, 等. 华北落叶松蓄积量及生产力研究[J]. 北京林业大学学报, 2015, 37(2): 24 − 31.

    ZHAO Kuangji, WANG Lidong, WANG Lijun, et al. Stock volume and productivity of Larix principis-rupprechtii in northern and northwestern China [J]. J Beijing For Univ, 2015, 37(2): 24 − 31.
    [2] HILL S, LATIFI H, HEURICH M, et al. Individual-tree and stand-based development following natural disturbance in a heterogeneously structured forest: a LiDAR-based approach [J]. Ecol Inf, 2017, 38: 12 − 25. doi:  10.1016/j.ecoinf.2016.12.004
    [3] 李增元, 刘清旺, 庞勇. 激光雷达森林参数反演研究进展[J]. 遥感学报, 2016, 20(5): 1138 − 1150.

    LI Zengyuan, LIU Qingwang, PANG Yong. Review on forest parameters inversion using LiDAR [J]. J Remote Sensing, 2016, 20(5): 1138 − 1150.
    [4] 申家朋, 陈东升, 孙晓梅, 等. 基于似乎不相关回归和哑变量的日本落叶松单木生物量模型构建[J]. 浙江农林大学学报, 2019, 36(5): 877 − 885.

    SHEN Jiapeng, CHEN Dongsheng, SUN Xiaomei, et al. Modeling a single-tree biomass equation by seemingly unrelated regression and dummy variables with Larix kaempferi [J]. J Zhejiang A&F Univ, 2019, 36(5): 877 − 885.
    [5] 甄贞, 李响, 修思玉, 等. 基于标记控制区域生长法的单木树冠提取[J]. 东北林业大学学报, 2016, 44(10): 22 − 29. doi:  10.3969/j.issn.1000-5382.2016.10.005

    ZHEN Zhen, LI Xiang, XIU Siyu, et al. Individual tree crown delineation using maker-controlled region growing method [J]. J Northeast For Univ, 2016, 44(10): 22 − 29. doi:  10.3969/j.issn.1000-5382.2016.10.005
    [6] 陶江玥, 刘丽娟, 庞勇, 等. 基于机载激光雷达和高光谱数据的树种识别方法[J]. 浙江农林大学学报, 2018, 35(2): 314 − 323. doi:  10.11833/j.issn.2095-0756.2018.02.016

    TAO Jiangyue, LIU Lijuan, PANG Yong, et al. Automatic identification of tree species based on airborne LiDAR and hyperspectral data [J]. J Zhejiang A&F Univ, 2018, 35(2): 314 − 323. doi:  10.11833/j.issn.2095-0756.2018.02.016
    [7] HOLMGREN J, NILSSON M, OLSSON H. Estimation of tree height and stem volume on plots using airborne laser scanning [J]. For Sci, 2003, 49(3): 419 − 428.
    [8] 霍达, 邢艳秋, 田昕, 等. 基于机载LiDAR的四次多项式拟合法估测单木冠幅[J]. 西北林学院学报, 2015, 30(3): 164 − 169. doi:  10.3969/j.issn.1001-7461.2015.03.28

    HUO Da, XING Yanqiu, TIAN Xin, et al. Estimating individual tree crown diameter using fourth fegree polynomial fitting method based on airborne LiDAR [J]. J Northwest For Univ, 2015, 30(3): 164 − 169. doi:  10.3969/j.issn.1001-7461.2015.03.28
    [9] CHEN Wei, XIANG Haibing, MORIYA K. Individual tree position extraction and structural parameter retrieval based on airborne LiDAR data: performance evaluation and comparison of four algorithms [J/OL]. Remote Sensing, 2019, 12: 571[2021- 05-30]. doi:  10.3390/rs12030571.
    [10] 王濮, 邢艳秋, 王成, 等. 一种基于图割的机载LiDAR单木位置识别方法[J]. 中国科学院大学学报, 2019, 36(3): 385 − 391. doi:  10.7523/j.issn.2095-6134.2019.03.012

    WANG Pu, XING Yanqiu, WANG Cheng, et al. A graph cut-based approach for individual tree detection using airborne LiDAR data [J]. J Univ Chin Acad Sci, 2019, 36(3): 385 − 391. doi:  10.7523/j.issn.2095-6134.2019.03.012
    [11] 李响, 甄贞, 赵颖慧. 基于局域最大值法单木位置探测的适宜模型研究[J]. 北京林业大学学报, 2015, 37(3): 27 − 33.

    LI Xiang, ZHEN Zhen, ZHAO Yinghui. Suitable model of detecting the position of individual treetop based on local maximum method [J]. J Beijing For Univ, 2015, 37(3): 27 − 33.
    [12] CHEN Shiyue, LIANG Dan, YING Binbin, et al. Assessment of an improved individual tree detection method based on local-maximum algorithm from unmanned aerial vehicle RGB imagery in overlapping canopy mountain forests [J]. Int J Remote Sensing, 2021, 42(1): 106 − 125. doi:  10.1080/01431161.2020.1809024
    [13] CHO M A, MATHIEU R, ASNER G P, et al. Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system [J]. Remote Sensing Environ, 2012, 125: 214 − 226. doi:  10.1016/j.rse.2012.07.010
    [14] 刘晓双, 黄建文, 鞠洪波. 高空间分辨率遥感的单木树冠自动提取方法与应用[J]. 浙江林学院学报, 2010, 27(1): 126 − 133.

    LIU Xiaoshuang, HUANG Jianwen, JU Hongbo. Research progress in the methods and application of individual tree crown’s automatic extracting by high spatial resolution remote sensing [J]. J Zhejiang For Coll, 2010, 27(1): 126 − 133.
    [15] LI Wenkai, GUO Qinghua, JAKUBOWSKI M K, et al. A new method for segmenting individual trees from the lidar point cloud [J]. Photogrammetric Eng Remote Sensing, 2012, 78(1): 75 − 84. doi:  10.14358/PERS.78.1.75
    [16] 李森磊, 李健平, 蒋腾平, 等. 一种基于UAV-LiDAR点云的多尺度单木分割[J]. 测绘科学技术, 2021, 9(1): 14 − 25. doi:  10.12677/GST.2021.91003

    LI Senlei, LI Jianping, JIANG Tengping, et al. A multi-scale method for 3D individual tree extraction using UAV-LiDAR [J]. Geomatics Sci Technol, 2021, 9(1): 14 − 25. doi:  10.12677/GST.2021.91003
    [17] NAVEED F, HU Baoxin, WANG Jianguo, et al. Individual tree crown delineation using multispectral LiDAR data [J/OL]. Sensors, 2019, 19: 5421[2021-05-30]. doi:  10.3390/s19245421.
    [18] 李仁忠, 刘阳阳, 杨曼, 等. 基于改进的区域生长三维点云分割[J/OL]. 激光与光电子学进展, 2018, 55: 051502[2021-05-30]. doi:  10.3788/LOP55.051502.

    LI Renzhong, LIU Yangyang, YANG Man, et al. Three-dimensional point cloud segmentation algorithm based on improved region growth [J/OL]. Laser Optoelectronics Prog, 2018, 55: 051502[2021-05-30]. doi:  10.3788/LOP55.051502.
    [19] KWONG I H Y, FUNG T. Tree height mapping and crown delineation using LiDAR, large format aerial photographs, and unmanned aerial vehicle photogrammetry in subtropical urban forest [J]. Int J Remote Sensing, 2020, 41(14): 5228 − 5256. doi:  10.1080/01431161.2020.1731002
    [20] MA Zhengyu, PANG Yong, WANG Di, et al. Individual tree crown segmentation of a larch plantation using airborne laser scanning data based on region growing and canopy morphology features [J/OL]. Remote Sensing, 2020, 12(7): 1078[2021-05-30]. doi:  10.3389/rs12071078.
    [21] HU Xingbo, CHEN Wei, XU Weiyang. Adaptive mean shift-based identification of individual trees using airborne LiDAR data [J/OL]. Remote Sensing, 2017, 9(2): 148[2021-05-30]. doi:  10.3389/rs9020148.
    [22] CHEN Wei, HU Xingbo, CHEN Wen, et al. Airborne LiDAR remote sensing for individual tree forest inventory using trunk detection-aided mean shift clustering techniques [J/OL]. Remote Sensing, 2018, 10: 1078[2021-05-30]. doi:  10.3389/rs10071078.
    [23] YAN Wanqian, GUAN Haiyan, CAO Lin, et al. A self-adaptive mean shift tree-segmentation method using UAV LiDAR data [J/OL]. Remote Sensing, 2020, 12: 515[2021-05-30]. doi:  10.3389/rs12030515.
    [24] COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis [J]. IEEE Trans Pattern Anal Mach Intel, 2002, 24(5): 603 − 619. doi:  10.1109/34.1000236
    [25] 张怡卓, 吕阿康, 蒋大鹏, 等. 应用高斯聚类的单木分割及树高和冠幅的提取[J]. 东北林业大学学报, 2021, 49(2): 54 − 59.

    ZHANG Yizhuo, LÜ Akang, JIANG Dapeng, et al. Single tree segmentation and extraction of tree height and crown width using gaussian clustering [J]. J Northeast For Univ, 2021, 49(2): 54 − 59.
    [26] 张学良, 肖鹏峰, 冯学智. 基于改进区域邻接图的遥感图像多尺度快速分割方法[J]. 遥感信息, 2011(5): 3 − 8, 46. doi:  10.3969/j.issn.1000-3177.2011.05.001

    ZHANG Xueliang, XIAO Pengfeng, FENG Xuezhi. Multi-scale fast segmentation of remotely sensed image based on improved region adjacency graph [J]. Remote Sensing Inf, 2011(5): 3 − 8, 46. doi:  10.3969/j.issn.1000-3177.2011.05.001
    [27] JING Linhai, HU Baoxin, LI Jili, et al. Automated delineation of individual tree crowns from LiDAR data by multi-scale analysis and segmentation [J]. Photogram Eng Remote Sensing, 2012, 78(12): 1275 − 1284. doi:  10.14358/PERS.78.11.1275
    [28] 何祺胜, 陈尔学, 曹春香, 等. 基于LiDAR数据的森林参数反演方法研究[J]. 地球科学进展, 2009, 24(7): 748 − 755. doi:  10.3321/j.issn:1001-8166.2009.07.008

    HE Qisheng, CHEN Erxue, CAO Chunxiang, et al. A study of forest parameters mapping technique using airborme LiDAR data [J]. Adv Earth Sci, 2009, 24(7): 748 − 755. doi:  10.3321/j.issn:1001-8166.2009.07.008
  • [1] 武秀娟, 奥小平, 赵育鹏, 崔雪晴.  芦芽山阴坡华北落叶松-云杉天然次生林林分空间结构特征 . 浙江农林大学学报, 2021, 38(1): 58-64. doi: 10.11833/j.issn.2095-0756.20200261
    [2] 郭瑞霞, 李崇贵, 刘思涵, 马婷, 全青青.  利用多时相特征的落叶松人工林分类 . 浙江农林大学学报, 2020, 37(2): 235-242. doi: 10.11833/j.issn.2095-0756.2020.02.006
    [3] 玉宝.  兴安落叶松中幼龄天然林空间利用特征及影响因子 . 浙江农林大学学报, 2020, 37(3): 407-415. doi: 10.11833/j.issn.2095-0756.20190382
    [4] 申家朋, 陈东升, 孙晓梅, 张守攻.  基于似乎不相关回归和哑变量的日本落叶松单木生物量模型构建 . 浙江农林大学学报, 2019, 36(5): 877-885. doi: 10.11833/j.issn.2095-0756.2019.05.005
    [5] 陶江玥, 刘丽娟, 庞勇, 李登秋, 冯云云, 王雪, 丁友丽, 彭琼, 肖文惠.  基于机载激光雷达和高光谱数据的树种识别方法 . 浙江农林大学学报, 2018, 35(2): 314-323. doi: 10.11833/j.issn.2095-0756.2018.02.016
    [6] 于红卫, 刘志坤, 吕荣金, 罗从军, 吕泽军, 李光耀.  高含水率木竹集成材刨切薄木(竹)表面粗糙度的测定与分析 . 浙江农林大学学报, 2017, 34(4): 711-720. doi: 10.11833/j.issn.2095-0756.2017.04.018
    [7] 玉宝.  兴安落叶松过伐林林木分类管理技术 . 浙江农林大学学报, 2017, 34(2): 349-354. doi: 10.11833/j.issn.2095-0756.2017.02.020
    [8] 冯云云, 刘丽娟, 陆灯盛, 庞勇.  机载高光谱影像降维方法比较 . 浙江农林大学学报, 2017, 34(5): 765-774. doi: 10.11833/j.issn.2095-0756.2017.05.001
    [9] 赵匡记, 纪福利, 刘延文, 刘晓兰, 贾忠奎, 马履一.  华北落叶松林分生长对间伐和修枝的响应 . 浙江农林大学学报, 2016, 33(4): 581-588. doi: 10.11833/j.issn.2095-0756.2016.04.005
    [10] 孙鹏跃, 徐福利, 王渭玲, 王玲玲, 牛瑞龙, 高星, 白小芳.  华北落叶松人工林地土壤养分与土壤酶的季节变化及关系 . 浙江农林大学学报, 2016, 33(6): 944-952. doi: 10.11833/j.issn.2095-0756.2016.06.004
    [11] 玉宝, 张秋良, 王立明, 萨如拉.  兴安落叶松中幼龄过伐林林木空间格局对更新格局的影响 . 浙江农林大学学报, 2015, 32(3): 346-352. doi: 10.11833/j.issn.2095-0756.2015.03.003
    [12] 姚智, 张晓丽.  基于WebGIS平台的森林郁闭度遥感反演信息系统研建 . 浙江农林大学学报, 2015, 32(3): 392-398. doi: 10.11833/j.issn.2095-0756.2015.03.009
    [13] 赵晓, 吕玉龙, 王聪, 李亚丹, 杜华强.  毛竹林叶面积指数和郁闭度空间分布协同克里格估算 . 浙江农林大学学报, 2014, 31(4): 560-569. doi: 10.11833/j.issn.2095-0756.2014.04.011
    [14] 许彦平, 姚晓红, 袁佰顺, 姚延峰, 姚晓琳.  气候对甘肃小陇山林区落叶松早落病发生发展的影响 . 浙江农林大学学报, 2013, 30(2): 269-273. doi: 10.11833/j.issn.2095-0756.2013.02.018
    [15] 张振, 张含国, 张磊, 朱航勇, 李雪峰.  兴安落叶松基本群体与育种群体RAPD多样性分析 . 浙江农林大学学报, 2012, 29(1): 130-136. doi: 10.11833/j.issn.2095-0756.2012.01.022
    [16] 孙宇, 李国雷, 刘勇, 马履一, 祝燕, 姜长吉, 刘福森, 李学莲.  水施磷肥对长白落叶松苗木生长和磷吸收的影响 . 浙江农林大学学报, 2011, 28(2): 219-226. doi: 10.11833/j.issn.2095-0756.2011.02.008
    [17] 玉宝, 张秋良, 王立明, 乌吉斯古楞.  不同结构落叶松天然林生物量及生产力特征 . 浙江农林大学学报, 2011, 28(1): 52-58. doi: 10.11833/j.issn.2095-0756.2011.01.009
    [18] 张磊, 张含国, 邓继峰, 贯春雨.  杂种落叶松苗高生长稳定性分析 . 浙江农林大学学报, 2010, 27(5): 706-712. doi: 10.11833/j.issn.2095-0756.2010.05.011
    [19] 张会儒, 武纪成, 杨洪波, 陈新美.  长白落叶松-云杉-冷杉混交林林分空间结构分析 . 浙江农林大学学报, 2009, 26(3): 319-325.
    [20] 何福基, 吴明安, 倪荣新, 谢正成, 张建忠.  杉木种子园郁闭度对种子产量的影晌 . 浙江农林大学学报, 1995, 12(3): 311-315.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210399

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/4/1

计量
  • 文章访问数:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 录用日期:  2022-03-25
  • 修回日期:  2022-03-25

基于机载LiDAR的高郁闭度华北落叶松林单木识别

doi: 10.11833/j.issn.2095-0756.20210399
    基金项目:  国家重点研发计划项目(2017YFD060040302)
    作者简介:

    陈思宇(ORCID: 0000-0002-7243-695X),从事森林资源遥感与信息技术研究。E-mail: 1299377811@qq.com

    通信作者: 梁丹(ORCID: 0000-0002-6713-122X),博士,从事GIS多源空间数据融合的不确定性处理研究。E-mail: liangdan812345@163.com
  • 中图分类号: S758.1

摘要:   目的  高郁闭度华北落叶松林Larix principis-rupprechtii林木树冠交叉重叠,传统的基于高分辨影像的单木识别方法识别精度不高。利用机载LiDAR三维点云数据可提高高郁闭度华北落叶松林的单木识别精度。  方法  在点云数据预处理基础上,提出基于点云空间特征的高斯核函数改进的均值漂移单木位置识别方法(MSP),比较并分析MSP法与基于点云空间特征的区域生长点云分割方法(RGP)、基于冠层高度模型的局部最大值单木位置识别方法(LMC)和基于冠层模型的多尺度分割单木位置识别方法(MSC)的单木识别效果。  结果  4种方法单木位置识别精度从大到小依次为MSP (89.30%)、LMC (85.60%)、RGP (77.50%)和MSC (70.00%),MSP的漏分误差和错分误差最小,分别为8.7%和8.0%,平均单木冠幅提取精度为90.18%。  结论  提出的MSP法对高郁闭度华北落叶松林单木位置识别具有较好的适用性,利用机载LiDAR可为提取华北落叶松林森林结构参数提供新的途径。图3表3参28

English Abstract

陈思宇, 刘宪钊, 王懿祥, 梁丹. 基于机载LiDAR的高郁闭度华北落叶松林单木识别[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210399
引用本文: 陈思宇, 刘宪钊, 王懿祥, 梁丹. 基于机载LiDAR的高郁闭度华北落叶松林单木识别[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210399
CHEN Siyu, LIU Xianzhao, WANG Yixiang, LIANG Dan. Individual tree detection in high canopy density Larix principis-rupprechtii plantation based on airborne LiDAR[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210399
Citation: CHEN Siyu, LIU Xianzhao, WANG Yixiang, LIANG Dan. Individual tree detection in high canopy density Larix principis-rupprechtii plantation based on airborne LiDAR[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210399

返回顶部

目录

    /

    返回文章
    返回