-
山核桃Carya cathayensis是中国特有的木本粮油树种,主要分布于浙皖交界天目山区的浙江省杭州市临安区和安徽省宁国市,其果实具有良好的营养保健作用和重要的经济价值,在主产区,山核桃产业的收入占林农收入的60%~70%[1-2]。由于在经营过程中长期过度施肥,且为清除林下植被采收方便而大量施用除草剂,山核桃人工林出现土壤酸化、养分供应水平失衡、水土流失严重等环境问题。土壤肥力水平高低对山核桃林分的抗病能力和果实营养价值具有重要影响。山核桃林地土壤肥力衰退使得山核桃树势减弱,干腐病、根腐病病害严重,果实品质下降。本研究总结了山核桃人工林土壤肥力研究现状,并提出今后需改进的经营措施,为山核桃林地管理与山核桃安全生产提供参考。
-
山核桃为落叶乔木,雌雄异花同株,雌花芽于4−5月分化完成,雄花芽分化约需11个月,但二者同时成熟,果实成熟于9月上旬[3-4]。光照充足、雨水充沛、温度适宜时,山核桃春梢抽芽、花芽分化、花器发育、果肉生长良好,空果率低[4-6]。
中国山核桃总面积约9.33万hm2,主要分布在浙、皖交界处的天目山系,该地区气候适宜,土壤主要由石灰岩发育而来,有机质、腐殖质含量较高[7]。山核桃林施肥期以春秋两季为佳,春季施肥可促进花器分化、发育及春梢的生长发育,减少落花落果;秋季采收后施肥有利于延长叶片寿命以积累养分[5]。林农在生产经营中常施用磷肥、尿素或复合肥。山核桃采收方式以竹棒敲打采收为主,此法易对树体造成机械损伤,使得裸芽脱落,影响翌年产量[6]。另外,林农也会顺应地势在果树下张网,待果实自然脱落后进行收集。
干腐病是山核桃栽培生产中的一种主要病害,在主干、枝条、果实上均可发病,导致山核桃树势衰弱甚至死亡,发病果实味苦、品质下降。生产中常用刮除病斑与戊唑醇、腐霉利等化学药物防治山核桃干腐病[8-9]。山核桃花蕾蛆Contarinia sp.是山核桃花期害虫,受害植株因花提前枯萎导致果实产量锐减。生产中可在4月中下旬用400 g·kg−1毒丝本乳油、300 g·kg−1乙酰甲胺磷乳油和300 g·kg−1吡虫啉乳油,采用树冠喷雾的方法进行防治[10]。在4月初用地乐灵1∶500倍液,或在4月中下旬用50%已酰甲胺磷1∶1500倍液进行地面喷药也可有效防治[11]。
-
山核桃人工栽培已有100~200 a的历史,自20世纪70年代末以来,山核桃种植面积不断扩大,经营过度,导致山核桃林地土壤肥力不断恶化。土层深厚、土壤团粒结构良好、质地适宜、容重合适的土壤,其土质疏松、透气透水性能较好、保肥性能较强,利于深根性树种山核桃的生长发育和产量提高[12-14]。微酸性至中性的土壤适宜山核桃生长,过酸土壤会增加山核桃根腐病、干腐病的致病风险,不利于林木健康,还会降低山核桃营养价值[15-17]。长期单一化肥的施入致使土壤养分供应失衡,土壤普遍酸化[18]。山核桃主产区过度经营后,土壤pH、有机碳、碱解氮及速效钾含量呈下降趋势,土壤有效磷含量增加;林地土壤pH及有机碳、碱解氮、有效磷、速效钾含量的变异程度均下降,土壤pH、碱解氮及有效磷含量空间分布连续性减弱,但有机碳及速效钾含量空间自相关性增强[19-20]。林农在经营过程中大量使用草甘膦等除草剂清除林下草、灌植物,导致土壤物质循环及养分转化受到影响,养分空间结构发生变异。
-
海拔通过影响降水、温度使得植被分布具有垂直地带性,使得凋落物、细根周转、根系分泌向土壤归还有机质发生变化,且土壤微生物活动也会受到区域气候影响,故土壤养分水平在垂直空间上具有明显差异[21]。杭州市临安区在海拔400~700 m的山核桃林地土壤肥力较好,该海拔范围土壤有机质和速效养分供应能力较强,但该范围内土壤踩踏频繁,导致土壤容重较大,不利于土壤透气透水[22-23]。
-
母岩是土壤形成的原始物,其性状及分布对土壤结构具有重要影响,由岩浆岩发育而来的山核桃林地土壤石砾含量较高,石灰岩发育土壤物理性砂粒含量可超过30%[24]。母岩类型是林地土壤pH、有机质及养分含量的影响因素之一[24-27]。山核桃主要分布于含钙量高的石灰岩山地,钙能够与腐殖质形成不易分解的稳定态有机质,且易与土壤磷结合形成沉淀物质,造成土壤有效磷含量不高,且由于石灰岩发育而来的土壤pH较高,导致一些微量元素有效性也受到抑制[28-31]。有研究表明:不同母岩发育而来的山核桃林地土壤pH、有机质与多个养分元素显著相关,说明母岩能够通过多因素互作影响山核桃林地土壤肥力[26]。
-
山核桃高经济效益驱动林农不断扩大山核桃纯林面积,现有的山核桃纯林中约50%面积是通过人工砍伐山核桃-阔叶混交林中的非山核桃树种所形成的[32]。人为经营的模式和强度能够显著影响山核桃林地土壤养分供应水平与土壤结构。不同乡镇林农在扩大经营过程中采取的人工劈草、生草栽培、禁用内吸式除草剂等不同经营措施,造成不同乡镇的山核桃林土壤有机碳、pH、速效养分含量及土壤容重、孔隙度存在较大差异[24, 32-33]。
土壤有机碳是影响土壤保肥保水性能、结构稳定性、生物生命活动的主要因子,是代表土壤肥力最重要的因子之一。山核桃林长期清耕导致地表裸露,土壤侵蚀损失大量土壤有机碳,土壤昼夜温差增大又加速了有机碳的分解,加之枯落物归还量大幅降低,导致有机碳含量逐年递减;易分解有机碳的消耗大于输入则致使有机碳分子芳香核数量增多,轻组有机碳比例下降而分解程度更深的重组有机碳比例增加,有机碳结构复杂化,土壤碳库稳定性增强[22, 34-37]。相较同区域天然混交林,集约经营25 a的山核桃纯林土壤芳香碳的含量及芳香度显著下降[36]。土壤腐殖质作为土壤有机碳中的活跃组分,对土壤养分水平、结构形成、水分供应具有重要作用,其组成与特性在一定程度上能够反映土壤肥力水平。山核桃林下灌木、草被的缺失减少了土壤腐殖质物质来源,生产经营活动干扰了土壤微生物活动、破坏了土壤团聚体结构,致使山核桃林土壤腐殖质聚合程度降低,分子结构简单化,土壤腐殖质品质下降[32]。
临安区山核桃多生长于石灰岩母质的土壤,土壤多呈碱性,但由于酸沉降频繁、大量施用氮肥等原因,山核桃产区林地土壤酸化现象严重[38]。山核桃主产区土壤pH平均值仅为5.5,相较1982年(pH 7.3)下降显著[39]。2013年临安山核桃林中75%样点的土壤pH低于5.5,大量施肥削弱了土壤pH的空间相关性[33]。
土壤氮磷钾养分的动态变化能够反映土壤提供养分的状况[40]。岛石镇是临安区山核桃的中心产区,林农在经营过程中过量施入生理酸性肥料,使用草甘膦等除草剂清除林下植被,经过5 a集约经营后,山核桃林地土壤速效氮、磷、钾质量分数分别下降了35.0、1.0、140.0 mg·kg−1[20]。经过26 a强度经营的山核桃林,林地土壤全量氮磷钾质量分数也发生了显著变化,对比相同区域常绿阔叶林分别下降了21.83%、7.58%、13.63%[35]。林农在生产经营过程中大量施入的复合肥加速了土壤酸化过程,促进了土壤矿质元素的溶解。氮素与钾素易发生转化随水流失,而磷素易被土壤固定,土壤酸化造成磷易溶解,故山核桃林地土壤呈现“高磷低氮低钾”现象。
-
土壤微生物广泛参与土壤物质转化与养分循环,对人为管理措施引起的土壤环境变化十分敏感[41]。天然混交林改造为山核桃林后,由于经营过程中受到了强烈的人为干扰,相比天然混交林地表枯落物覆盖层减少,土壤有机质输入下降。单一种类化肥的过度施用造成土壤酸化,林分原有生境改变,导致土壤微生物区系发生改变,土壤微生物对土壤有机碳氮利用减弱,土壤微生物量碳、微生物量氮含量下降,但随着经营年限延长,土壤微生物优势种形成,土壤有机物质向微生物转移增强,因此土壤微生物量碳/氮上升[34, 42-44]。山核桃林地土壤酸化会导致土壤微生物优势种、数量和多样性发生改变,这可能是酸化严重的山核桃林分干腐病指数显著高于生态经营林分的原因[45]。
-
清除林下植被对山核桃林分的水文效应具有显著影响。山核桃林地大都坡度大而地形破碎,土层瘠薄且岩石出露率高,加之为管理、采收方便所有林下植被被清除,导致山核桃林地土壤抗蚀性减弱,土壤养分大量流失[46]。枯落层可减轻土壤溅蚀、增加雨水入渗、拦截地表径流,起到良好的蓄水保土作用。但由于山核桃林地活地被物层缺失,植物凋落物归还量减少,导致山核桃纯林地表枯落物层蓄积量及土壤持水力随经营年限递减[47]。
施肥与山核桃林地土壤养分流失具有密切关系。山核桃林地坡面径流量受降水量影响强烈,在高温多雨的6−9月,降水的稀释作用及施肥后氮素分解转化的复杂过程之下,径流中硝态氮的浓度呈先上升后下降至相对稳定的趋势[48]。石灰岩发育而来的山核桃林地土壤含钙量高,磷素易与钙素结合为难溶磷酸钙类沉淀物被固定,径流水中总磷质量浓度仅为0.01~0.09 mg·L−1。但在过度施肥条件下,土壤磷淋失风险增大[48-49]。下渗是土壤可溶性养分流失的另一途径。6−11月,山核桃种植区降水频繁,硝态氮是氮流失的主要形式,施肥后渗漏水中总氮、可溶性氮、硝态氮、亚硝态氮浓度在短期内达到峰值后下降至小幅波动[50]。
-
林下草灌、藤本植物是森林生态系统的重要成员,对土壤结构、土壤养分水平、土壤生物及凋落物回归分解等具有重要作用,因此,林下植被的管理对于森林生态系统稳定性具有重要意义[51]。果园生草是利用行间或全园种植豆科Leguminosae或禾本科Gramineae植物,或者以自然生草为覆盖,定期刈割后覆盖地表的果园管理措施,能够增强土壤肥力、改善园间小气候[52]。生草能减小山核桃林地表裸露面积,减缓土壤水分蒸散、土温波动、植物根系延展及生理活动,降低土壤容重,提高土壤透气性[53-54]。生草栽培还有助于减少土壤侵蚀,提高土壤腐殖质、水溶性有机质及土壤养分含量[30, 53-54]。此外,刈割的生草提供了有机质来源,为土壤微生物创造了适宜的生存繁殖条件,提高了土壤脲酶、蔗糖酶、过氧化氢酶的活性,从而增强微生物群落转化土壤养分和储存养分的作用[30, 53-55]。山核桃林下套种黑麦草Lolium perenne和白三叶Trifolium repens有利于山核桃害虫天敌的繁殖,从而提高山核桃的产量和品质[56]。生草栽培对土壤养分流失也具有一定的控制效果。生草根系能够固结土壤以减少土壤侵蚀并促进径流下渗,地上部分具有削弱雨水击溅的作用,形成的枯枝落叶层则有利于提高土壤孔隙率、抗剪强度,增强土壤水土保持能力,从而减轻水土流失,提高土壤有机质、速效养分含量[57-58]。
-
土壤中的元素组成及含量对植物的生长发育具有调控作用,能够影响山核桃的叶片营养、花粉活力等,制约山核桃长势、产量、养分组成[59-60]。针对山核桃林地土壤特征和林木需求,施用肥料能够在满足林木生长发育的同时提高土壤肥力。施用有机物料,如沼渣、肥得力、黄腐酸钾、竹炭,能提高山核桃林地土壤pH和速效氮磷钾含量,降低土壤交换性酸铝离子浓度,且改良效果随有机物料施用量增加而提高,部分有机物料还能够显著提高土壤微量元素含量[61-63]。有机物料、有机无机复合肥、结合适量磷肥、钾肥的施用,还能促使树势衰弱的山核桃树的根系、枝条、叶片增多与叶色增绿,提高山核桃抗逆性和平均单株产量[62, 64]。微生物肥料,如芽孢杆菌Bacillus液、微生物复合肥,能够缓解土壤酸化,提高土壤有机质及速效氮磷钾含量,维持良性土壤微生物群落[65]。与常规施肥相比,山核桃专用肥的施用还可以降低土壤氮、磷流失负荷[66]。
另外,山核桃在不同生长阶段养分库源关系和养分的需求有异,且山核桃对氮磷钾的吸收利用受这3种元素的耦合效应影响[67-69]。因此,在生产实践中应当根据山核桃养分的需求及其吸收特征调整肥料配方及施用技术,从而提高肥料利用效率,减小面源污染风险[14, 38]。
-
通过免耕改善土壤结构并减小地表裸露面积以提高坡耕地经济林经济、生态效益[70]。采取封禁,结合补植、补播修复等相关工程,禁用化学除草剂并采用人工劈草和就地覆盖,可以促进雨水下渗、蓄集,提高林地养分固持能力[46, 71]。
-
山核桃多生长于坡度陡峭、土层浅薄、岩石出露率高的山体,原生生态环境较为脆弱,加之经营强度大,长期过量投入化肥农药,导致山核桃林地林下植被层缺失,土壤普遍酸化,土壤养分供应失衡,水土流失问题不断加剧,山核桃林地土壤衰退严重。生草栽培与有机物料改良是当前山核桃林地土壤改良的有效措施,前者能够减少土壤裸露、增加枯落物,起到固持土壤养分的作用;后者能够有效改良土壤酸度和养分水平。山核桃人工林土壤肥力改良是山核桃林可持续经营的重点难点,建议针对山核桃林地土壤肥力改良采取以下措施:①测土配方施肥。依据山核桃需肥规律和土壤样品检测结果,由专家把控肥料配方及推荐施用量,结合实际考虑肥料品种、配比、施肥量、施肥时间和施肥方法,改善土壤养分供应能力和酸碱度。②禁用化学除草剂,补植林下植被。在山核桃林经营过程中禁用化学除草剂,补植林下植被如紫云英Astragalus sinicus、油菜Brassica campestris、白三叶等,以增加活地被物,为土壤生物提供能源物质,缓解水土流失问题。③推广自然落果张网采收。依照山势在离地50~100 cm的高度架铺山核桃收集网,收集成熟后自然脱落的山核桃果实,这可避免在采收前清除林下植被,增加植物细根周转和凋落物回归,并能避免敲打损伤树体影响第2年产量。
现有水土流失研究主要关注径流和泥沙流失量及采用植物篱、植被缓冲带对其流失的影响。为有效控制山核桃人工林水土流失,今后还需根据山核桃林分的特珠性,深入研究水土流失的形成机制及控制技术。
Soil fertility in Carya cathayensis plantation: a review
-
摘要: 山核桃Carya cathayensis作为中国特有的木本粮油树种,是主产区农民收入的主要来源。土壤肥力是林木生长的基础,山核桃土壤肥力已成为该领域研究的热点之一。山核桃林地土壤肥力主要受海拔、母岩及人为经营的影响,其中高强度人为经营对土壤肥力影响尤为显著。集约经营后山核桃林地土壤肥力衰退严重:土壤普遍酸化,有机碳、速效养分含量大幅下降;清除林下植被造成水土流失严重,致使养分大量流失;林地土壤微生物群落结构发生改变、多样性下降;林地土壤质量的恶化导致果实质量与品质明显下降。采用生草栽培、施加有机物料等措施后,林地土壤酸化缓解,有机碳及速效养分含量上升,土壤肥力水平得到有效改善。当前研究重点主要集中在土壤肥力的时空变化,未来可聚焦于测土配方施肥、自然落果张网采收等经营措施对林地土壤肥力的影响,深入研究林地水土流失的形成机制及控制技术,为山核桃林地可持续发展提供基础和技术支撑。参71Abstract: Chinese hickory (Carya cathayensis) is a unique woody nut and oil tree species in China. Chinese hickory industry brings high income for local farmers in its main production region. Soil fertility such as nitrogen, phosphorus and potassium in soils determines the healthy growth of Chinese hickory. Therefore, research related to soil fertility are attracting more attention in China. The soil fertility of Chinese hickory plantation was mainly influenced by elevation, parent materials and antropogenic management, among which the intensive management plays an important role in soil fertility variation. Intensive management could lead to the heavy decrease of soil fertility such as soil acidification, the decrease of soil organic carbon and available nutrient contents. The removement of understory resulted in the severe soil erosion as well as obvious nutrient loss. The composition of soil microbial community changed and its diversity declined. What’s more, due to the deterioration of soil quality, the yield and quality of hickory nut dropped. The application of organic materials and sod cultivation increased soil pH, as well as the contents of soil organic carbon and available nutrients, and further effectively improved soil fertility. Current researches mainly focus on the spatio-temporal changes of soil fertility. Reasonable fertilizer application and the effect of net harvesting of hickory nut on soil fertility need further study. The formation mechanism along with the control techniques of soil erosion in Chinese hickory plantation also need deeply explored, which can provide basic information and technique support. [Ch, 71 ref.]
-
Key words:
- Chinese hickory /
- plantation /
- soil fertility /
- intensive management /
- review
-
榧树Torreya grandis四季常绿,是红豆杉科Taxaceae植物中少有的集果用、油用、药用、材用、观赏于一体的植物,雌雄异株,生命周期可达上千年。榧树种子含油量高,主要含油酸和亚油酸,不饱和脂肪酸含量远超饱和脂肪酸[1]。饱和脂肪酸中主要是山俞酸和棕榈酸[2]。榧树自然分布于浙江、安徽南部、福建北部、江西东北部,零星分布于贵州松桃、江苏南部、湖南西南部等地,其中以浙江最多,近年来人类活动的干扰加剧了榧树资源的破坏,威胁到部分种群的生存[3−4]。
遗传多样性是生物多样性的重要组成部分。一个物种的稳定性和进化潜力依赖其遗传多样性,物种的经济和生态价值依赖其特有的基因组成。因此,保护生物多样性的最终目标就是保护遗传多样性[5−7]。DNA分子标记的数量极多,多态性高,受限制少,检测方法简单易掌握,结果稳定可靠,已被广泛应用于植物多样性研究[8−9]。简单重复序列标记(SSR)技术是以特异引物PCR为基础的分子标记技术,其特点是标记在整个基因组DNA中随机分布,多态性较高,操作简单,可通过PCR直接扩增来检测,重复性好,成本低[10]。
香榧T. grandis‘Merrillii’是榧树优良的变异类型,具有较高的经济价值[11]。自然环境中榧树结种迟,一般作为香榧嫁接的砧木,雄株因不结种被大量砍伐,使榧树遗传多样性受到影响,但榧树具有丰富的遗传多样性,产生了丰富的变异类型,形成了物种生存与进化的基础,也为资源的开发利用提供了可供选择的物质基础[12]。因此,本研究利用多重比较、方差分析等对不同种群雌性榧树叶片、种实表型、种实营养成分及遗传多样性指标的变异进行分析,以期为榧树的利用提供理论依据。
1. 材料与方法
1.1 材料
基于天然榧树的分布情况以及前人的研究成果[13],于2019年10—11月榧树种实成熟期,从浙江省杭州市富阳区洞桥村(富阳)、杭州市临安区洪岭村(临安)、杭州市建德市大库村(建德)、绍兴市嵊州市榆树村(嵊州)及安徽省黄山市呈坎村(黄山)5个海拔在250~600 m的雌性榧树种群中,分别采集叶片和种实用于表型及种实营养成分的探究。基于詹利云等[14]的研究,选择富阳、临安、嵊州、黄山以及杭州市淳安县半夏村(淳安)的雌性榧树种群,分别采集叶片对榧树种群遗传多样性进行研究。样株间距大于50 m,生长状况良好。每株采集相同位置的新鲜叶片,采集至少100颗自然脱落的成熟种实,样品装入带有硅胶的塑封袋中,并利用全球卫星定位系统(GPS)定位采样点。叶片测量表型后置于−40 ℃冰箱保存,种实测完表型后置于阴凉通风处,等待假种皮自然开裂,用于后续研究。
1.2 表型测定
从各单株选取2个小枝相同部位的叶片共20片,用卡尺测量叶长、叶宽,并计算叶形指数(叶宽/叶长),用天平称取单片叶的质量。从各单株随机选取30颗种实,用卡尺测量单颗种实和种核的横径、纵径、假种皮厚、种壳厚,并计算种形指数(种实横径/种实纵径)、核形指数(种核横径/种核纵径),用天平称取单颗种实质量和种核质量。
1.3 营养成分测定
脂肪相对含量参照GB/T 14772—2008《食品中粗脂肪的测定》索氏抽提法测定。脂肪酸组成参照GB/T 17376—2008《食品脂肪酸含量的测定》测定。可溶性糖质量分数参照蒽酮比色法[15]测定。
1.4 DNA提取及SSR标记分析
采用改良的十六烷基三甲基溴化铵(CTAB)法[16]提取雌性榧树叶片的DNA。参照郑刘辉等[17]的SSR反应体系,合成引物序列,进行PCR扩增。
1.5 数据分析
采用SPSS 23.0进行数据统计、方差分析、多重比较、主成分分析;用Genemaker软件准确读取SSR位点信息。用Popgene 1.32计算平均等位基因数、观察杂合度、多态信息含量等遗传多样性指标。使用Structure 2.3.4分析种群的遗传结构,并绘制遗传结构图,用Q值表示一种遗传组成的比率,即同一颜色所占比率最大的种群聚类为同一亚群。通过NTSYS2.10e计算Nei’s遗传相似矩阵,使用非加权组平均聚类分析法(UPGMA)分析样品的亲缘关系,并进行聚类分析。
2. 结果与分析
2.1 叶与种实性状的变异研究
从表1可见:在叶质量和叶形指数上,临安种群的变异系数最大。在种实质量上,嵊州种群的变异系数最大。种形指数和种核质量富阳种群的变异系数最大。核形指数的变异系数在富阳种群中最大,但仅为10.2%。种壳厚和假种皮厚的变异系数在嵊州种群中最大。方差分析(表2)表明:叶质量、叶形指数、种实质量、种形指数、种核质量、核形指数、假种皮厚、种壳厚8个指标在种群间和种群内个体间差异极显著(P<0.01)。
表 1 雌性榧树种群叶片与种实表型Table 1 Leaf and seed phenotypes of female quince populations in T. grandis种群 叶质量 叶形指数 种实质量 种形指数 假种皮厚 种核质量 核形指数 种壳厚 数值/g CV/% 数值 CV/% 数值/g CV/% 数值 CV/% 数值/mm CV/% 数值/g CV/% 数值 CV/% 数值/mm CV/% 富阳 0.02±0.01 31.1 0.15±0.02 10.8 10.70±2.42 22.6 0.78±0.07 9.0 3.53±0.36 10.2 4.77±1.27 26.5 0.66±0.07 10.2 0.54±0.11 19.7 嵊州 0.02±0.01 29.9 0.16±0.02 11.2 11.85±3.36 28.3 0.79±0.05 6.5 3.67±0.78 21.3 4.92±1.18 23.9 0.68±0.06 8.9 0.72±0.25 34.6 黄山 0.02±0.01 19.2 0.16±0.02 11.6 9.50±2.27 22.9 0.81±0.07 5.5 2.94±0.53 17.8 4.51±0.93 19.0 0.71±0.07 5.8 0.91±0.17 21.1 临安 0.02±0.01 33.9 0.16±0.02 15.3 9.50±2.27 23.9 0.81±0.07 8.2 2.94±0.53 18.1 4.51±0.93 20.6 0.71±0.07 9.5 0.91±0.17 19.1 建德 0.02±0.01 33.8 0.17±0.02 9.5 11.19±2.41 21.5 0.83±0.05 6.1 3.63±0.46 12.8 4.58±0.97 21.1 0.70±0.05 7.8 0.85±0.13 14.7 说明:数值为均值±标准差;CV为变异系数。 表 2 榧树叶片与种实表型的方差分析Table 2 Variance analysis of phenotypic parameters of the leaf and seeds in T. grandis指标 变异来源 平方和 自由度 均方 F 指标 变异来源 平方和 自由度 均方 F 叶质量 种群间 0.220 4 0.005 121.000 种核质量 种群间 358.014 4 89.503 112.981 个体间 0.028 29 0.001 21.158 个体间 355.326 29 12.253 15.467 叶形指数 种群间 0.181 4 0.045 50.937 核形指数 种群间 0.600 4 0.150 64.909 个体间 0.252 29 0.009 9.779 个体间 1.256 29 0.043 18.755 种实质量 种群间 2 530.950 4 632.737 191.245 假种皮厚 种群间 796.646 4 199.162 91.175 个体间 1 612.471 29 55.602 16.806 个体间 484.026 29 16.691 7.641 种形指数 种群间 0.408 4 0.102 46.454 种壳厚 种群间 16.018 4 4.005 116.324 个体间 1.194 29 0.041 18.764 个体间 10.813 29 0.373 10.831 说明:所有指标P=0.000。 2.2 种仁营养成分分析
2.2.1 脂肪相对含量和组成
由表3可见:5个种群的脂肪相对含量从大到小依次为嵊州、黄山、临安、建德、富阳,变异系数为7.7%~21.6%。多重分析发现各种群间脂肪相对含量差异显著(P<0.05)。
表 3 5个榧树种群种仁的脂肪相对含量Table 3 Lipid content of the kernel among 5 T. grandis populations种群 脂肪相对含量/% CV/% 最大值 最小值 平均值±标准差 富阳 47.79 18.25 29.36±6.34 d 21.6 嵊州 48.14 30.62 42.35±3.77 a 8.9 黄山 46.81 33.61 40.93±3.19 ab 7.8 临安 44.90 32.19 39.82±3.07 b 7.7 建德 40.52 16.19 33.96±4.66 c 13.7 说明:不同字母表示不同种群间差异显著(P<0.05)。CV为变异系数。 榧树种子脂肪酸组成(表4)分析发现:不饱和脂肪酸的相对含量远远高于饱和脂肪酸,且前者是后者的2倍多;脂肪酸中亚油酸的相对含量最高,其次是油酸、金松酸、棕榈酸,亚麻酸相对含量最低。可见,榧树种子中主要的不饱和脂肪酸是亚油酸和油酸。5个种群间的脂肪酸组成存在不同程度的变异,其中多不饱和脂肪酸相对含量最高的是临安种群,随后依次是嵊州、建德、黄山、富阳种群;单不饱和脂肪酸相对平均含量富阳种群最高,为(29.20±6.34)%,建德种群最低,为(24.14±2.59)%;变异系数不饱和脂肪酸远小于饱和脂肪酸。从脂肪酸种类上看,变异系数最大的为花生一烯酸(13.0%~40.0%),其次是硬脂酸(18.0%~38.0%)、花生二烯酸(15.0%~27.0%)。
表 4 5个榧树种群脂肪酸组成的变异Table 4 Variation in fatty acid composition among 5 T. grandis populations种群 棕榈酸/% 硬脂酸/% 油酸/% 亚油酸/% 亚麻酸/% 花生一烯酸/% 相对含量 CV 相对含量 CV 相对含量 CV 相对含量 CV 相对含量 CV 相对含量 CV 富阳 10.70±2.59 24.0 2.97±1.14 38.0 28.29±6.06 21.0 41.82±8.01 19.0 0.52±0.17 32.0 0.91±0.37 40.0 嵊州 8.52±1.22 14.0 2.18±0.47 21.0 23.78±4.26 18.0 47.85±2.88 6.0 0.50±0.06 12.0 0.67±0.09 14.0 黄山 8.06±0.98 12.0 2.97±0.54 18.0 26.21±2.87 11.0 46.81±2.35 5.0 0.47±0.05 11.0 0.65±0.08 13.0 临安 8.47±0.88 10.0 2.15±0.46 22.0 23.63±2.40 11.0 49.00±2.45 5.0 0.57±0.00 14.0 0.59±0.09 16.0 建德 9.58±1.83 19.0 2.80±0.92 33.0 23.47±2.63 11.0 46.49±3.67 8.0 0.48±0.07 14.0 0.67±0.10 15.0 种群 花生二烯酸/% 金松酸/% 饱和脂肪酸/% 不饱和脂肪酸/% 单不饱和脂肪酸/% 多不饱和脂肪酸/% 相对含量 CV 相对含量 CV 相对含量 CV 相对含量 CV 相对含量 CV 相对含量 CV 富阳 2.42±0.63 26.0 10.76±2.14 20.0 13.68±3.45 25.0 84.71±4.39 5.0 29.20±6.34 22.0 55.52±10.16 18.0 嵊州 2.80±0.75 27.0 12.61±2.02 16.0 10.70±1.32 12.0 88.22±2.04 2.0 24.45±4.30 18.0 63.77±4.36 7.0 黄山 2.64±0.41 15.0 11.11±1.25 11.0 11.03±0.88 8.0 87.89±0.97 1.0 26.86±2.89 11.0 61.03±2.97 5.0 临安 2.60±0.53 20.0 12.00±0.98 8.0 10.63±1.06 10.0 88.39±1.14 1.0 24.22±2.52 10.0 64.18±2.92 5.0 建德 2.49±0.40 16.0 11.98±1.56 13.0 12.38±2.16 17.0 85.58±2.95 3.0 24.14±2.59 11.0 61.44±4.63 8.0 说明:数值为平均值±标准差。CV为变异系数。 2.2.2 可溶性糖
从表5可见:平均可溶性糖质量分数建德种群最高,为(50.49±9.26) mg·g−1,随后依次是黄山、嵊州、临安种群,富阳种群最低,为(40.23±4.80) mg·g−1。不同种群的变异系数为8.8%~19.3%。多重比较发现:嵊州、黄山种群间无显著差异,但与其他种群间差异显著(P<0.05)。
表 5 5个榧树种群种仁的可溶性糖质量分数Table 5 Soluble sugar content of the kernel among 5 T. grandis populations种群 可溶性糖质量分数/(mg·g−1) 最大值 最小值 平均值±标准差 CV/% 富阳 47.91 32.10 40.23±4.80 c 11.9 嵊州 65.56 29.35 45.35±8.77 b 19.3 黄山 60.02 31.80 44.38±7.56 b 17.0 临安 54.34 37.24 47.75±4.18 ab 8.8 建德 68.68 34.36 50.49±9.26 a 18.3 说明:不同字母表示不同种群间差异显示(P<0.05)。CV为变异系数。 2.2.3 主成分分析
20个指标通过主成分分析提取出6个指标,发现特征值均大于1.000的前6个主成分累计贡献率为75.38%,可以全面反映各个指标的信息(表6)。第1主成分贡献率为30.76%,特征值较高的为亚油酸、饱和脂肪酸、不饱和脂肪酸;第2主成分贡献率为13.09%,特征值较高的为种实质量、种核质量;第3主成分贡献率为10.92%,其大小主要由核形指数、种形指数决定;第4主成分贡献率为7.98%,特征值较高的为叶形指数、叶片质量、种皮厚度;第5主成分贡献率为6.93%,特征值较高的为叶片质量、种形指数、叶形指数;第6主成分贡献率为5.70%,其大小主要由含油率、金松酸、叶形指数决定。
表 6 5个榧树种群叶片和种实表型、品质的主成分分析Table 6 Principal components of leaf and plant phenotypes among 5 T. grandis populations指标 主成分 指标 主成分 1 2 3 4 5 6 1 2 3 4 5 6 种实质量 0.074 0.856 −0.082 0.387 −0.007 0.263 硬脂酸 0.724 −0.236 −0.217 0.248 0.062 −0.061 种核质量 0.116 0.819 0.091 0.132 −0.187 0.305 油酸 0.731 −0.431 −0.251 0.157 0.132 0.269 种形指数 0.010 −0.131 0.741 0.370 0.466 −0.085 亚油酸 −0.946 0.142 0.046 −0.106 −0.011 0.009 核形指数 −0.099 −0.097 0.834 0.194 0.370 0.003 亚麻酸 0.239 −0.047 0.295 −0.204 −0.314 0.120 种皮厚度 0.105 0.498 −0.321 0.529 0.259 0.054 花生一烯酸 0.804 −0.046 0.027 −0.047 0.076 −0.017 种壳厚度 −0.367 −0.243 0.340 0.082 −0.333 0.327 花生二烯酸 −0.372 0.114 −0.178 0.152 0.369 −0.310 叶片质量 0.202 0.289 0.049 −0.533 0.496 0.190 金松酸 −0.649 0.424 0.186 −0.152 −0.176 −0.397 叶形指数 −0.116 −0.179 0.056 0.614 −0.416 −0.391 饱和脂肪酸 0.943 0.093 0.160 0.000 −0.124 −0.106 含油率 −0.459 −0.485 −0.195 0.319 0.018 0.426 不饱和脂肪酸 −0.927 −0.113 −0.194 −0.025 0.131 0.114 可溶性糖 −0.199 0.010 0.497 0.044 −0.207 0.330 特征值 6.153 2.618 2.184 1.595 1.387 1.138 棕榈酸 0.843 0.221 0.296 −0.111 −0.181 −0.105 累计贡献率/% 30.76 43.85 54.77 62.75 69.68 75.38 2.3 雌性榧树SSR标记分析
2.3.1 SSR位点分析
13对引物在146个雌性榧树中共获得37个等位基因,每对引物可扩增2~5个等位基因,平均每对引物扩增出2.85个等位基因,TG55平均等位基因数最多,ZAFU-3和TG19最少;每对引物的平均有效等位基因数为1.899个;平均观测杂合度(0.429)略高于平均期望杂合度(0.404);Nei’s遗传多样性指数平均为0.400,其中GR98 (0.688)最高,TG19 (0.015)最低;Shannon’s指数为0.039~1.252,有11对引物的Shannon’s信息指数高于0.500,其中GR98 (1.252)最高,TG19 (0.039)最低,平均为0.650,说明榧树遗传多样性丰富(表7)。
表 7 榧树13个SSR位点的遗传参数Table 7 Genetic parameters of 13 SSR loci in T. grandis引物
编号平均等位
基因数/个有效等位
基因数/个观测
杂合度期望
杂合度Nei’s遗传
多样性指数Shannon’s
指数引物
编号平均等位
基因数/个有效等位
基因数/个观测
杂合度期望
杂合度Nei’s遗传
多样性指数Shannon’s
指数ZAFU-1 3.750 1.604 0.225 0.366 0.362 0.661 GR98 4.375 3.230 0.697 0.695 0.688 1.252 ZAFU-3 1.625 1.120 0.030 0.091 0.090 0.164 TG19 1.625 1.016 0.000 0.015 0.015 0.039 ZAFU-5 2.500 2.004 0.550 0.506 0.501 0.709 TG55 5.375 2.706 0.584 0.622 0.616 1.112 ZAFU-6 2.000 1.495 0.289 0.329 0.325 0.504 TG70 2.500 1.986 0.912 0.502 0.496 0.698 ZAFU-8 2.000 2.000 0.997 0.505 0.500 0.693 TG81 2.000 1.014 0.000 0.014 0.014 0.041 ZAFU-11 2.625 1.961 0.462 0.491 0.486 0.713 TG88 3.750 2.453 0.492 0.593 0.587 1.022 GR12 3.000 2.095 0.341 0.525 0.519 0.839 平均 2.856 1.899 0.429 0.404 0.400 0.650 2.3.2 种群遗传多样性分析
在种群水平上,Nei’s遗传多样性指数(H)与Shannon’s指数(I)在5个雌性种群间的变化趋势相似。Nei’s遗传多样性指数平均为0.390,从大到小依次为淳安、临安、黄山、富阳、嵊州;Shannon’s指数平均为0.621,从大到小依次为淳安、临安、富阳、黄山、嵊州;多态位点百分比平均为81.54%,其中富阳、黄山、嵊州3个种群的多态位点百分比相等,临安和淳安种群相等。淳安(H=0.410,I=0.658)的遗传多样性最高,嵊州(H=0.369,I=0.565)的遗传多样性最低(表8)。
表 8 5个榧树亲本种群的遗传多样性Table 8 Genetic diversity among 5 T. grandis populations种群 平均等位基因数/个 有效等位基因数/个 观测杂合度 期望杂合度 Nei’s遗传多样性指数 Shannon’s指数 多态位点百分比/% 富阳 2.692 1.848 0.431 0.387 0.381 0.625 84.62 嵊州 2.154 1.791 0.377 0.376 0.369 0.565 84.62 黄山 2.231 1.811 0.451 0.399 0.392 0.611 84.62 临安 2.462 1.917 0.464 0.406 0.399 0.648 76.92 淳安 2.462 1.954 0.423 0.418 0.410 0.658 76.92 种群水平 2.400 1.864 0.429 0.397 0.390 0.621 81.54 物种水平 3.231 1.925 0.429 0.406 0.405 0.671 92.31 说明:种群水平指5个种群平均值;物种水平指5个种群中所有物种平均值。 在物种水平上,5个种群榧树的平均等位基因数为3.231个,平均有效等位基因数为1.925个,期望杂合度(0.406)略小于观测杂合度(0.429),Nei’s遗传多样性指数为0.405,Shannon’s指数为0.671,多态位点百分比为92.31%(表8)。各种群在种群水平上的多态位点百分比及Shannon’s指数均低于物种水平,仅淳安种群在种群水平上的Nei’s遗传多样性指数高于物种水平。
2.3.3 遗传分化与遗传结构
5个雌性榧树种群间的总遗传多样性平均为0.497;群体内近交系数均为负值,说明群体内杂合子过剩,纯合子缺失[18],这与榧树雌雄异株的特性相吻合,且这些供试雌株都是杂交后代;种群间近交系数变幅为0.054~0.207,平均为0.129;遗传分化指数变幅为0.153~0.218,平均为0.199,表明5个雌性榧树种群间存在的遗传分化程度不大,这与榧树风媒、花粉流动性大的特性相吻合;基因流的变幅为0.898~1.381,平均为1.029,表明种群间存在基因交流,每代交流约1个基因,基因流动相对来说不是很频繁(表9)。
表 9 5个榧树种群的遗传分化Table 9 Genetic differentiation among 5 T. grandis populations种群 总遗传
多样性种群内
近交系数种群间
近交系数遗传分
化指数基因流 富阳 0.457 −0.113 0.058 0.153 1.381 嵊州 0.475 −0.003 0.206 0.209 0.946 黄山 0.491 −0.132 0.054 0.188 1.082 临安 0.527 −0.143 0.120 0.230 0.838 淳安 0.534 −0.013 0.207 0.218 0.898 平均值 0.497 −0.081 0.129 0.199 1.029 方差分析结果(表10)表明:榧树的遗传变异集中在种群内,种群内(92%)的遗传变异远大于种群间(8%)。
表 10 5个榧树种群的分子方差分析Table 10 Molecular variance among 5 T. grandis populations来源 自由度 平方和 均方 方差分量 变异百
分比/%P 种群间 4 67.427 16.857 0.416 8 0.081 种群内 141 664.251 4.711 4.711 92 总数 145 731.678 5.127 100 对亚群归属分析发现:每个种群的样本基本上都有3个亚群的痕迹,只是比例不同而已(图1)。这说明榧树天然异交导致高度杂合的特性。
2.3.4 种群间的遗传距离和遗传相似度
5个榧树种群的遗传相似系数平均为0.969,说明各种群间的遗传相似度很高,亲缘关系较近,存在一定程度的遗传变异(表11)。遗传距离平均为0.032,黄山与淳安种群的遗传距离最大(0.055),遗传相似度最小(0.946),富阳与黄山、临安种群的遗传距离最小(0.022),遗传相似度最大(0.977)。表明雌性榧树群体遗传相似度高,但因雌雄异株天然杂交的特性,使物种内又存在一定的变异。
表 11 5个榧树种群的遗传距离和遗传相似度Table 11 Genetic distance and genetic identity among 5 T. grandis populations种群 富阳 嵊州 黄山 临安 淳安 富阳 0.976 0.977 0.977 0.962 嵊州 0.024 0.970 0.971 0.957 黄山 0.023 0.031 0.973 0.946 临安 0.023 0.030 0.027 0.977 淳安 0.038 0.045 0.055 0.024 说明:对角线下方为遗传距离,对角线上方为遗传相似度。 UPGMA聚类分析发现:富阳与黄山种群相聚之后再与嵊州种群聚在一起,随后上述3个种群与临安种群聚在一起,富阳、黄山、嵊州、临安4个种群与淳安种群之间存在差异 (图2)。
3. 讨论
本研究表明:5个雌性榧树种群叶与种实指标在种群间及个体间均存在显著差异,这与其本身雌雄异株风媒花天然杂交的特性相符。詹利云等[14]对富阳、嵊州、黄山、临安种群雄性榧树的叶片、种实表型指标进行了研究,而本研究则对上述相同种群雌株的叶片、种实表型指标进行探究。比较发现:在种群间,雄株仅叶长这一指标存在显著差异,雌株则各指标均有差异,但种群内雌雄榧树间各指标都有显著差异;黄山种群雌株叶质量的均值要小于雄株,且变异系数雌株种群比雄株种群大;叶形指数雌雄榧树均值接近,变异系数仅嵊州(13.97%)和临安(18.27%)种群的雄株比雌株(分别为11.20%、15.30%)大。
与沈登锋等[19]的研究结果相比,本研究的种实和种核质量与其接近,但变异系数较低,而种实相对脂肪含量两者相近。究其原因,沈登锋等[19]的研究是从种子可食性的角度收集种质,而本研究在各种群的取样则是随机的,数据更能反映自然条件下榧树种群的状况。董雷鸣等[20]对榧树黄山种群的种实进行了分析,发现与本研究在种实质量、种核质量、种形指数、核形指数上接近,而脂肪相对含量本研究的结果要高近7%。尽管研究材料取自同一种群,但榧树雌雄异株天然风媒杂交的特性决定了雄株花粉在其中所起的作用,加之研究的年份不同,气候气象条件也不同,因此研究结果有出入。本研究表明:榧树种实与种核的表型指标中,变异系数大于10%的包括种实质量、假种皮厚、种核质量及种壳厚,这些指标与种实产量有关,而各种群间相差10%以上的指标包括假种皮厚、种壳厚。
本研究的榧树种实可食性较差,其脂肪相对含量不及香榧。金松酸作为一种特殊的不饱和脂肪酸,目前已知来源较少,得率低[21]。本研究各种群金松酸的平均相对含量为10.76%~12.61%,接近或高于香榧及日本榧Torreya nucifera的平均值,且有的单株相对含量更高,进一步说明榧树种子的利用价值。本研究发现:榧树种实脂肪相对含量的变异系数为7.70%~21.80%,而不饱和脂肪酸的变异系数较小,低于5%,脂肪中各脂肪酸组分种群间差异显著,金松酸的变异系数为8.00%~20.00%,因此不仅具有优株选择的潜力,且基于脂肪、金松酸相对含量的高低来进行优株选择理论上是可行的。
本研究表明:天然雌性榧树的遗传变异集中在种群内,种群内(92%)的遗传变异远大于种群间(8%),这与异交风媒植物90%以上的遗传变异存在于种群内的结果相符[22],且说明榧树单株间的遗传变异更丰富,选育要基于单株性状表现来进行。以遗传多样性指标来看,仅淳安种群(H=0.410,I=0.658)的遗传多样性大于雌性榧树物种水平(H=0.405,I=0.671),而雌性物种水平的多态位点百分比(92.31%)均大于5个天然雌性榧树种群。这与刘浩凯[12]用相关系列扩增多态性(SRAP)分析天然雌性榧树种群的结果相似。
天然榧树种群内近交系数均为负值,杂合子过剩而纯合子缺失,这也与该物种风媒传粉天然杂交的特性相吻合,说明天然雌性榧树种群没有近交衰退的现象[10]。WRIGHT[23]研究表明:遗传分化指数(Fst)可反映群体间遗传分化程度,当0<Fst≤0.05、0.05<Fst≤0.15、0.15<Fst≤0.25、Fst>0.25时,遗传分化程度分别为很弱、中等、较大分化、极大。基因流越大,遗传分化越小[24]。当基因流大于1时,说明种群间存在一定的基因交流,种群间的遗传分化不会太大[25]。在本研究中,5个雌性榧树种群的遗传分化指数为0.199,但基因流为1.029,说明种群间的遗传分化较大。
从榧树染色体水平参考基因组,可获得更加详细和精确的基因组信息[26]。这些信息不仅包括基因的序列,还包括基因的结构、功能和调控网络等。通过深入分析这些信息,可以更准确地识别和定位SSR标记,从而提高其全面性和多态性。
4. 结论
不同雌性榧树种群叶与种实表型指标在种群间及个体间存在显著差异。脂肪相对含量、脂肪酸相对含量及可溶性糖质量分数在种群间差异极显著,榧树种实表型和种仁品质变异丰富。基于遗传多样性指标,发现雌性榧树种群表现出一定程度的变异,淳安种群的遗传多样性最大,且雌性榧树的遗传变异种群内远大于种群间。
-
[1] 沈月琴, 朱臻, 吴伟光, 等. 农户对非木质林产品经营模式的选择意愿及其影响因素分析[J]. 自然资源学报, 2010, 25(2): 192 − 199. SHEN Yueqin, ZHU Zhen, WU Weiguang, et al. Farmer’s willingness to management way of non-wood forest products and its influencing factors [J]. J Nat Resour, 2010, 25(2): 192 − 199. [2] 王冀平, 李亚南, 马建伟. 山核桃仁中主要营养成分的研究[J]. 食品科学, 1998, 19(4): 44 − 46. WANG Jiping, LI Ya’nan, MA Jianwei. Study on the primary nutrient components of Carya cathayensis [J]. Food Sci, 1998, 19(4): 44 − 46. [3] 谷澍芳. 山核桃雌花芽的分化与雌花发育的观察[J]. 浙江林学院学报, 1984, 1(1): 23 − 129. GU Shufang. Differentiation and development of female flowers in Carya cathayensis [J]. J Zhejiang For Coll, 1984, 1(1): 23 − 129. [4] 黎章矩. 山核桃生长发育年周期的研究[J]. 浙江林学院科技通讯, 1982(1): 54 − 62. LI Zhangju. Study on the annual cycle of Carya cathayensis [J]. J Zhejiang For Coll, 1982(1): 54 − 62. [5] 黎章矩. 山核桃芽、梢发育状况与结果关系的研究[J]. 浙江林学院学报, 1985, 2(2): 31 − 35. LI Zhangju. Study on the relationship between the develpment of buds, rudder and fruits [J]. J Zhejiang For Coll, 1985, 2(2): 31 − 35. [6] 黎章矩, 钱莲芳. 山核桃科研成就和增产措施[J]. 浙江林业科技, 1992, 12(6): 49 − 53, 29. LI Zhangju, QIAN Lianfang. Achievements and measures of increase production of Carya cathayensis Sarg. [J]. J Zhejiang For Sci Technol, 1992, 12(6): 49 − 53, 29. [7] 吕惠进. 浙江临安山核桃立地环境研究[J]. 森林工程, 2005, 21(1): 1 − 3, 6. LÜ Huijin. The natural stands conditions of Carya cathayensis Sarg. in Lin’an County of Zhejiang Province [J]. For Eng, 2005, 21(1): 1 − 3, 6. [8] 杨淑贞, 丁立忠, 楼君芳, 等. 山核桃干腐病发生发展规律及防治技术[J]. 浙江林学院学报, 2009, 26(2): 228 − 232. YANG Shuzhen, DING Lizhong, LOU Junfang, et al. Occurence regularity of Carya cathayensis canker disease and its control [J]. J Zhejiang For Coll, 2009, 26(2): 228 − 232. [9] 张传清, 章祖平, 孙品雷, 等. 山核桃干腐病菌对7种杀菌剂的敏感性比较及其对苯醚甲环唑敏感基线的建立[J]. 农药学学报, 2011, 13(1): 84 − 86. ZHANG Chuanqing, ZHANG Zuping, SUN Pinlei, et al. Comparison of sensitivity of Botryosphaeria dothidea to 7 fungicides and its baseline sensitivity to difenoconazole [J]. Chin J Pestic Sci, 2011, 13(1): 84 − 86. [10] 胡国良, 程益鹏, 楼君芳, 等. 山核桃花蕾蛆生物学特性及防治技术[J]. 浙江林学院学报, 2007, 24(4): 463 − 467. HU Guoliang, CHENG Yipeng, LOU Junfang, et al. Biological characteristics of blossom midge (Contarinia sp.) in Carya cathayensis and its control techniques [J]. J Zhejiang For Coll, 2007, 24(4): 463 − 467. [11] 邵亚荣. 山核桃常见害虫及其防治[J]. 现代农业科技, 2008(14): 126, 137. SHAO Yarong. Common pests of Carya cathayensis and control techniques [J]. Mod Agric Sci Technol, 2008(14): 126, 137. [12] 洪游游, 唐小华, 王慧. 山核桃林土壤肥力的研究[J]. 浙江林业科技, 1997, 17(6): 1 − 8. HONG Youyou, TANG Xiaohua, WANG Hui. Study on soil fertility of Carya cathayensis forests [J]. J Zhejiang For Sci Technol, 1997, 17(6): 1 − 8. [13] 马俞高, 吴竹明. 浙江省果品特产地质背景初探[J]. 中国地质, 2004, 31(增刊 ): 104 − 111. MA Yugao, WU Zhuming. A preliminary study on the geological background of special fruit products in Zhejiang Province [J]. Geol China, 2004, 31(suppl ): 104 − 111. [14] 马闪闪, 程礼泽, 丁立忠, 等. 硼锌铜微肥配施对山核桃生长和产量的影响[J]. 浙江林业科技, 2016, 36(2): 31 − 36. MA Shanshan, CHENG Lize, DING Lizhong, et al. Application of B, Zn and Cu fertilizer on growth and yield of Carya cathayensis [J]. J Zhejiang For Sci Technol, 2016, 36(2): 31 − 36. [15] 章旭东, 章基应. 山核桃溃疡病发生相关因子的初步探讨[J]. 中国森林病虫, 1994(1): 10 − 13. ZHANG Xudong, ZHANG Jiying. Preliminary study on related factors on Dothiorella gregaria of Carya cathayensis [J]. For Pest Dis, 1994(1): 10 − 13. [16] 潘志强. 立地条件对山核桃溃疡病发生影响的探讨[J]. 林业实用技术, 2008(8): 31 − 32. PAN Zhiqiang. Influences of site conditions on the occurrence of Dothiorella gregaria of Carya cathayensis [J]. For Sci Technol, 2008(8): 31 − 32. [17] 李皓, 董建华, 袁紫倩, 等. 山核桃林地土壤真菌群落结构研究[J]. 浙江林业科技, 2018, 38(5): 67 − 72. LI Hao, DONG Jianhua, YUAN Ziqian, et al. Soil fungi community structure in Carya cathayensis forest [J]. J Zhejiang For Sci Technol, 2018, 38(5): 67 − 72. [18] 宋素灵. 山核桃林地土壤退化现状和施肥改良研究[D]. 杭州: 浙江农林大学, 2014. SONG Suling. Carya cathayensis Sarg. Forest Soil Degradation and Its Improvement through Fertilization[D]. Hangzhou: Zhejiang A&F University, 2014. [19] 张红桔, 马闪闪, 赵科理, 等. 山核桃林地土壤肥力状况及其空间分布特征[J]. 浙江农林大学学报, 2018, 35(4): 664 − 673. ZHANG Hongju, MA Shanshan, ZHAO Keli, et al. Soil fertility and its spatial distribution for Carva cathayensis stands in Lin’an, Zhejiang Province [J]. J Zhejiang A&F Univ, 2018, 35(4): 664 − 673. [20] 沈一凡, 钱进芳, 郑小平, 等. 山核桃中心产区林地土壤肥力的时空变化特征[J]. 林业科学, 2016, 52(7): 1 − 12. SHEN Yifan, QIAN Jinfang, ZHENG Xiaoping, et al. Spatial-temporal variation of soil fertility in Chinese walnut (Carya cathayensis) plantation [J]. Sci Silv Sin, 2016, 52(7): 1 − 12. [21] 王艳艳, 赵伟明, 赵科理, 等. 海拔高度对山核桃林地土壤pH值和有效养分的影响[J]. 现代农业科技, 2012(17): 24 − 225, 231. WANG Yanyan, ZHAO Weiming, ZHAO Keli, et al. Effects of altitude on pH value and available nutrients in Chinese hickory orchards [J]. Mod Agric Sci Technol, 2012(17): 24 − 225, 231. [22] 吴家森, 张金池, 黄坚钦, 等. 浙江省临安市山核桃产区林地土壤有机碳分布特征[J]. 浙江大学学报(农业与生命科学版), 2013, 39(4): 413 − 420. WU Jiasen, ZHANG Jinchi, HUANG Jianqin, et al. Distribution characteristics of soil organic carbon in Carya cathayensis producing regions of Lin’an City, Zhejiang Province [J]. J Zhejiang Univ Agric Life Sci, 2013, 39(4): 413 − 420. [23] 黄兴召, 黄坚钦, 陈丁红, 等. 不同垂直地带山核桃林地土壤理化性质比较[J]. 浙江林业科技, 2010, 30(6): 23 − 27. HUANG Xingzhao, HUANG Jianqin, CHEN Dinghong, et al. Comparison on soil physical and chemical properties at different vertical zones of Carya cathayensis stands [J]. J Zhejiang For Sci Technol, 2010, 30(6): 23 − 27. [24] 钱孝炎, 黄坚钦, 帅小白, 等. 临安市不同乡镇山核桃林地土壤理化性质比较[J]. 浙江林业科技, 2013, 33(1): 7 − 11. QIAN Xiaoyan, HUANG Jianqin, SHUAI Xiaobai, et al. Comparison of soil physiochemical properties at Carya cathayensis stands in Lin’an [J]. J Zhejiang For Sci Technol, 2013, 33(1): 7 − 11. [25] 董建华, 赵伟明, 赵科理, 等. 基于地质背景的山核桃林地土壤肥力因子分析[J]. 经济林研究, 2018, 36(4): 52 − 58. DONG Jianhua, ZHAO Weiming, ZHAO Keli, et al. Factor analysis of soil fertility under different geological background conditions in Carya cathayensis plantation [J]. Non-wood For Res, 2018, 36(4): 52 − 58. [26] 陈世权, 黄坚钦, 黄兴召, 等. 不同母岩发育山核桃林地土壤性质及叶片营养元素分析[J]. 浙江林学院学报, 2010, 27(4): 572 − 578. CHEN Shiquan, HUANG Jianqin, HUANG Xingzhao, et al. Nutrient elements in soil and Carya cathayensis leaves from four parent rock materials [J]. J Zhejiang For Coll, 2010, 27(4): 572 − 578. [27] 宋明义, 陈文光, 斯小君, 等. 安吉县山核桃立地环境条件分析[J]. 浙江林业科技, 2008, 28(6): 11 − 15. SONG Mingyi, CHEN Wenguang, SI Xiaojun, et al. Study on site conditions of Carya cathayensis stand in Anji County [J]. J Zhejiang For Sci Technol, 2008, 28(6): 11 − 15. [28] 钱新标, 徐温新, 张圆圆, 等. 山核桃果仁微量元素分析初报[J]. 浙江林学院学报, 2009, 26(4): 511 − 515. QIAN Xinbiao, XU Wenxin, ZHANG Yuanyuan, et al. Trace elements in kernels of Chinese hickory (Carya cathayensis) grown in limestone and non-limestone soils [J]. J Zhejiang For Coll, 2009, 26(4): 511 − 515. [29] 杨惠思, 赵科理, 叶正钱, 等. 山核桃品质对产地土壤养分的空间响应[J]. 植物营养与肥料学报, 2019, 25(10): 1752 − 1762. YANG Huisi, ZHAO Keli, YE Zhengqian, et al. Spatial response of Carya cathayensis quality to soil nutrients [J]. J Plant Nutr Fert, 2019, 25(10): 1752 − 1762. [30] 钱进芳, 吴家森, 黄坚钦. 生草栽培对山核桃林地土壤养分及微生物多样性的影响[J]. 生态学报, 2014, 34(15): 4324 − 4332. QIAN Jinfang, WU Jiasen, HUANG Jianqin. Effects of sod-cultural practices on soil nutrients and microbial diversity in the Carya cathayensis forest [J]. Acta Ecol Sin, 2014, 34(15): 4324 − 4332. [31] 何子平, 蒋忠诚, 吕维莉, 等. 岩溶动力系统对典型石灰岩土肥力特征的影响[J]. 中国岩溶, 2001(3): 65 − 69. HE Ziping, JIANG Zhongcheng, LÜ Weili, et al. Effect of karst dynamic systems on fertility of typical calcareous soils [J]. Carsologica Sin, 2001(3): 65 − 69. [32] 周秀峰, 张金林, 冯秀智, 等. 集约经营对山核桃林地土壤腐殖质组分碳含量的影响[J]. 水土保持通报, 2017, 37(1): 67 − 71. ZHOU Xiufeng, ZHANG Jinlin, FENG Xiuzhi, et al. Effects of intensive management on carbon content of soil humus composition in Carya cathayensis forest [J]. Bull Soil Water Conserv, 2017, 37(1): 67 − 71. [33] 马闪闪, 赵科理, 丁立忠, 等. 临安市不同山核桃产区土壤肥力状况的差异性研究[J]. 浙江农林大学学报, 2016, 33(6): 953 − 960. MA Shanshan, ZHAO Keli, DING Lizhong, et al. Soil fertility in Carya cathayensis orchards for major towns of Lin’an City, China [J]. J Zhejiang A&F Univ, 2016, 33(6): 953 − 960. [34] WU Weifeng, LIN Haiping, FU Weijun, et al. Soil organic carbon content and microbial functional diversity were lower in monospecific Chinese hickory stands than in natural Chinese hickory-broad-leaved mixed forests [J]. Forests, 2019, 10(4): 357 − 369. [35] WU Jiasen, HUANG Jianqin, LIU Dan, et al. Effect of 26 years of intensively managed Carya cathayensis stands on soil organic carbon and fertility[J]. Sci World J, 2014(6): 857641. doi: 10.1155/2014/857641. [36] FANG Xianghua, ZHANG Jinchi, MENG Miaojing, et al. Forest-type shift and subsequent intensive management affected soil organic carbon and microbial community in southeastern China [J]. Eur J For Res, 2017, 136(4): 689 − 697. [37] 盛卫星, 吴家森, 徐建春, 等. 不同经营年限对山核桃林地土壤轻重组有机碳的影响[J]. 浙江农林大学学报, 2015, 32(5): 803 − 808. SHENG Weixing, WU Jiasen, XU Jianchun, et al. Years of cultivation along with light and high fractions of soil organic carbon in a Carya cathayensis forest [J]. J Zhejiang A&F Univ, 2015, 32(5): 803 − 808. [38] 邬奇峰, 章秀梅, 阮弋飞, 等. 临安市山核桃林地土壤肥力特征及其施肥对策[J]. 浙江农业科学, 2017, 58(7): 1132 − 1135. WU Qifeng, ZHANG Xiumei, RUAN Yifei, et al. Soil fertility characteristics and fertilization strategies of Carya cathayensis stands in Lin’an City, China [J]. J Zhejiang Agric Sci, 2017, 58(7): 1132 − 1135. [39] 陈卫新, 邬奇峰, 黄仨仨, 等. 临安市山核桃林地土壤肥力状况及存在问题[J]. 中国农技推广, 2013, 29(6): 45 − 46. CHEN Weixin, WU Qifeng, HUANG Sansan, et al. Soil fertility status and existing problems of Carya cathayensis stands in Lin’an City, China [J]. China Agric Technol Ext, 2013, 29(6): 45 − 46. [40] 张春苗, 张有珍, 姚芳, 等. 临安山核桃主产区土壤pH值和有效养分的时空变化[J]. 浙江农林大学学报, 2011, 28(6): 845 − 849. ZHANG Chunmiao, ZHANG Youzhen, YAO Fang, et al. Temporal and spatial variation of soil pH and nutrient availability for Carya cathayensis orchards in Lin’an [J]. J Zhejiang A&F Univ, 2011, 28(6): 845 − 849. [41] PAZ-FERREIRO J, FU Shenglei. Biological indices for soil quality evaluation: perspectives and limitations [J]. Land Degradation Dev, 2016, 27(1): 14 − 25. [42] 邵香君, 徐建春, 吴家森, 等. 山核桃集约经营过程中土壤微生物量碳氮的变化[J]. 水土保持通报, 2016, 36(2): 72 − 75, 81. SHAO Xiangjun, XU Jianchun, WU Jiasen, et al. Changes in soil microbial biomass carbon and nitrogen of Carya Cathayensis plantations under intensive managements [J]. Bull Soil Water Conserv, 2016, 36(2): 72 − 75, 81. [43] 李皓, 董建华, 董建明, 等. 退化与正常山核桃林土壤细菌多样性比较研究[J]. 浙江林业科技, 2017, 37(5): 42 − 47. LI Hao, DONG Jianhua, DONG Jianming, et al. Comparison on soil bacteria diversity between degrated and healthy Carya cathayensis forests [J]. J Zhejiang For Sci Technol, 2017, 37(5): 42 − 47. [44] 张媚, 林马水, 曹秀秀, 等. 不同经营模式山核桃林地土壤 pH 值、养分与细菌多样性的差异[J]. 生物多样性, 2018, 26(6): 611 − 619. ZHANG Mei, LIN Mashui, CAO Xiuxiu, et al. Difference in pH value and nutrient and bacterial diversity in the Carya cathayensis forest soil under different management models [J]. Biodiv Sci, 2018, 26(6): 611 − 619. [45] 张媚. 不同经营模式山核桃林土壤微生物多样性差异[D]. 杭州: 浙江农林大学, 2018. ZHANG Mei. The Microbial Diversity Difference in the Carya cathayensis Forest Soil under Different Management Models[D]. Hangzhou: Zhejiang A&F University, 2018. [46] 高智, 刘志强, 李援农. 浙江临安市水土流失现状及生态修复对策[J]. 水土保持研究, 2014, 21(5): 327 − 331. GAO Zhi, LIU Zhiqiang, LI Yuannong. Soil and water loss status and ecological restoration countermeasures in Lin’an City, Zhejiang Province [J]. Res Soil Water Conserv, 2014, 21(5): 327 − 331. [47] 叶晶, 吴家森, 张金池, 等. 不同经营年限山核桃林地枯落物和土壤的水文效应[J]. 水土保持通报, 2014, 34(3): 87 − 91. YE Jing, WU Jiasen, ZHANG Jinchi, et al. Hydrological effects of litters and soils in Carya Cathayensis forest with different managing time [J]. Bull Soil Water Conserv, 2014, 34(3): 87 − 91. [48] 王莺, 陆荣杰, 吴家森, 等. 山核桃林坡地氮磷流失年动态规律初步研究[J]. 浙江林业科技, 2017, 37(4): 77 − 81. WANG Ying, LU Rongjie, WU Jiasen, et al. Preliminary study on annual dynamics of nitrogen and phosphorus losses at Carya cathayensis stand on slope [J]. J Zhejiang For Sci Technol, 2017, 37(4): 77 − 81. [49] 赵伟明, 王艳艳, 马嘉伟, 等. 临安山核桃林地土壤磷素状况及其淋失风险分析[J]. 浙江农业学报, 2014, 26(1): 154 − 158. ZHAO Weiming, WANG Yanyan, MA Jiawei, et al. Phosphorus status and its leaching loss risks in the soils of Chinese hickory orchards in Lin’an City, Zhejiang Province [J]. Acta Agric Zhejiang, 2014, 26(1): 154 − 158. [50] 蒋雯, 黄程鹏, 姚宇清, 等. 山核桃林土壤养分渗漏动态变化规律研究[J]. 浙江林业科技, 2012, 32(2): 18 − 22. JIANG Wen, HUANG Chengpeng, YAO Yuqing, et al. Dynamic changes of soil nutrients leaching in different hickory stands [J]. J Zhejiang For Sci Technol, 2012, 32(2): 18 − 22. [51] WU Jianping, LIU Zhanfeng, CHEN Dima, et al. Understory plants can make substantial contributions to soil respiration: evidence from two subtropical plantations [J]. Soil Biol Biochem, 2011, 43(11): 2355 − 2357. [52] 寇建村, 杨文权, 韩明玉, 等. 我国果园生草研究进展[J]. 草业科学, 2010, 27(7): 154 − 159. KOU Jiancun, YANG Wenquan, HAN Mingyu, et al. Research progress on interplanting grass in orchard in China [J]. Pratacult Sci, 2010, 27(7): 154 − 159. [53] 颜晓捷. 生草栽培对山核桃林地土壤性质的影响[D]. 杭州: 浙江农林大学, 2012. YAN Xiaojie. Soil Properties with Grass Cover in Carya cathayensis[D]. Hangzhou: Zhejiang A&F University, 2012. [54] WU Jiasen, LIN Haiping, MENG Cifu, et al. Effects of intercropping grasses on soil organic carbon and microbial community functional diversity under Chinese hickory (Carya cathayensis Sarg.) stands [J]. Soil Res, 2014, 52(6): 575 − 583. [55] 叶协锋, 杨超, 李正, 等. 绿肥对植烟土壤酶活性及土壤肥力的影响[J]. 植物营养与肥料学报, 2013, 19(2): 445 − 454. YE Xiefeng, YANG Chao, LI Zheng, et al. Effects of green manure in corporation on soil enzyme activities and fertility in tobacco-planting soils [J]. J Plant Nutr Fert, 2013, 19(2): 445 − 454. [56] 余琳, 陈军, 陈丽娟, 等. 山核桃投产林林下套种绿肥效应[J]. 林业科技开发, 2011, 25(3): 92 − 95. YU Lin, CHEN Jun, CHEN Lijuan, et al. Effect of interplantation of green manure varieties on yield of hickory forests [J]. J For Eng, 2011, 25(3): 92 − 95. [57] 夏为, 严江明, 朱爱国. 山核桃林地水土流失防治措施及效果[J]. 浙江农业科学, 2008, 49(3): 287 − 289. XIA Wei, YAN Jiangming, ZHU Aiguo. Controling measures and effects of soil and water loss in Carya cathayensis stand [J]. J Zhejiang Agric Sci, 2008, 49(3): 287 − 289. [58] 郑友苗, 王云南, 岳春雷, 等. 山核桃林下不同植物配置模式水土保持功能的比较研究[J]. 浙江林业科技, 2014, 34(4): 72 − 75. ZHENG Youmiao, WANG Yun’nan, YUE Chunlei, et al. Effect of different plant compositions on water and soil conservation under Carya cathayensis forest [J]. J Zhejiang For Sci Technol, 2014, 34(4): 72 − 75. [59] 路玉林, 戴圣潜, 李运怀, 等. 安徽宁国市山核桃农业地质环境的因子分析研究[J]. 土壤通报, 2006, 37(6): 1203 − 1206. LU Yulin, DAI Shengqian, LI Yunhuai, et al. Factor analysis of agro-geological environment of Carya Cathayensis plantation in Ningguo City, Anhui Province [J]. Chin J Soil Sci, 2006, 37(6): 1203 − 1206. [60] 袁紫倩, 叶正钱, 李皓, 等. 影响山核桃林地土壤生产性能的主要肥力因子及其临界区间[J]. 植物营养与肥料学报, 2020, 26(1): 163 − 171. YUAN Ziqian, YE Zhengqian, LI Hao, et al. Main soil fertility factors and their critical ranges for Chinese walnut (Carya cathayensis Sarg.) production [J]. J Plant Nutr Fert, 2020, 26(1): 163 − 171. [61] 曾诗媛, 丁立忠, 马闪闪, 等. 施用沼渣、黄腐酸钾、钙镁磷肥对退化山核桃林的改土和增产效果[J]. 江苏农业学报, 2019, 35(3): 618 − 623. ZENG Shiyuan, DING Lizhong, MA Shanshan, et al. Effect of biogas residue, potassium humate and calcium-magnesium phosphate application on improving soil in degraded Carya cathayensis forest and its nut yield [J]. Jiangsu J Agric Sci, 2019, 35(3): 618 − 623. [62] 石红静, 马闪闪, 赵科理, 等. 有机物料对酸化山核桃林地土壤的改良作用[J]. 浙江农林大学学报, 2017, 34(4): 670 − 678. SHI Hongjing, MA Shanshan, ZHAO Keli, et al. Effect of organic materials on improvement of Carya cathayensis forest acidic soil [J]. J Zhejiang A&F Univ, 2017, 34(4): 670 − 678. [63] 倪幸, 窦春英, 丁立忠, 等. 有机物料对山核桃林地土壤的培肥改良效果[J]. 植物营养与肥料学报, 2018, 24(5): 1266 − 1275. NI Xing, DOU Chunying, DING Lizhong, et al. Organic materials improved the soil fertility in Carya cathayensis forest lands [J]. J Plant Nutr Fert, 2018, 24(5): 1266 − 1275. [64] 丁立忠, 潘伟华, 马闪闪, 等. 测土配方施肥对临安山核桃生长和产量的影响[J]. 经济林研究, 2018, 36(4): 33 − 39. DING Lizhong, PAN Weihua, MA Shanshan, et al. Effects of testing soil for formulated fertilization on growth and yield in Carya cathayensis [J]. Non-wood For Res, 2018, 36(4): 33 − 39. [65] 方伟, 余晓, 王晶, 等. 施加石灰石粉和微生物肥料对发病山核桃林土壤化学性质和微生物群落的影响[J]. 浙江农林大学学报, 2020, 37(2): 273 − 283. FANG Wei, YU Xiao, WANG Jing, et al. Effects of applying limestone powder and microbial fertilizer on soil chemical properties and microbial community in the diseased Carya cathayensis woodland [J]. J Zhejiang A&F Univ, 2020, 37(2): 273 − 283. [66] 黄程鹏, 吴家森, 许开平, 等. 不同施肥山核桃林氮磷径流流失特征[J]. 水土保持学报, 2012, 26(1): 43 − 46, 52. HUANG Chengpeng, WU Jiasen, XU Kaiping, et al. Runoff losses of nitrogen and phosphorus under Carya cathayensis Sarg. stand with different fertilization [J]. J Soil Water Conserv, 2012, 26(1): 43 − 46, 52. [67] 童根平, 王卫国, 张圆圆, 等. 大田条件下山核桃林地土壤和叶片养分变化规律[J]. 浙江林学院学报, 2009, 26(4): 516 − 521. TONG Genping, WANG Weiguo, ZHANG Yuanyuan, et al. Seasonal changes of soil and leaf nutrient levels in a Carya cathayensis orchard [J]. J Zhejiang For Coll, 2009, 26(4): 516 − 521. [68] 闫道良, 黄有军, 金水虎, 等. 山核桃功能器官细根、叶和林地土壤C、N、P化学计量时间变异特征[J]. 水土保持学报, 2013, 27(5): 255 − 259. YAN Daoliang, HUANG Youjun, JIN Shuihu, et al. Temporal variation of C, N, P stoichiometric in functional organs rootlets, leaves of Carya cathayensis and forest soil [J]. J Soil Water Conserv, 2013, 27(5): 255 − 259. [69] 闫道良, 梅丽, 夏国华, 等. 山核桃林地土壤和叶养分生态化学计量变异及重吸收特征[J]. 东北林业大学学报, 2013, 41(6): 41 − 45. YAN Daoliang, MEI Li, XIA Guohua, et al. Leaves nutrient resorption characteristics and stoichiometry of C, N, P and K in Carya cathayensis and soil [J]. J Northeast For Univ, 2013, 41(6): 41 − 45. [70] 陈强, KRAVCHENKO Y S, 陈渊, 等. 少免耕土壤结构与导水能力的季节变化及其水保效果[J]. 土壤学报, 2014, 51(1): 11 − 21. CHEN Qiang, KRAVCHENKO Y S, CHEN Yuan, et al. Seasonal variations of soil structures and hydraulic conductivities and their effects on soil and water conservation under no-tillage and reduced tollage [J]. Acta Pedol Sin, 2014, 51(1): 11 − 21. [71] 颜勇, 王惠丽, 刘强, 等. 山核桃林地水土流失控制措施配置模式研究[J]. 水土保持应用技术, 2018(5): 35 − 37. YAN Yong, WANG Huili, LIU Qiang, et al. Research on allocation mode of controling measures for soil and water loss in Carya cathayensis forest [J]. Technol Soil Water Conserv, 2018(5): 35 − 37. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210501

计量
- 文章访问数: 988
- HTML全文浏览量: 220
- PDF下载量: 48
- 被引次数: 0