Spatial pattern and its influencing factors of water conservation services in Xijiang River Basin, Guangxi
-
摘要:
目的 水源涵养在众多生态系统服务中占据着重要的地位。揭示水源涵养服务空间格局及其影响因素,识别水源涵养服务重要区,对流域水资源利用、分区管理与综合保护具有重要意义。 方法 以广西西江流域为研究对象,基于InVEST模型、GeoDa与ArcGIS等工具,使用全域和局域空间自相关检验研究区水源涵养服务空间分布模式,构建空间误差模型辨识水源涵养服务关键影响因素,采用分位数分类法进行水源涵养服务重要性分级。 结果 广西西江流域多年平均水源涵养量为185.36 mm,2015年总量为376.10亿m3。全域莫兰指数为0.769,表明研究区水源涵养服务在空间分布上具有空间依赖性。考虑到多重共线性的影响,最终从13项影响因素中筛选出7项进入空间误差模型,得出土壤饱和导水率、多年平均降水量、坡度、植被净初级生产力、经济密度对水源涵养服务产生显著正面影响,而人口密度和不透水率对水源涵养服务产生显著负面影响。识别出黔浔江流域及左郁江流域南部区域是水源涵养服务重要区,在相关政策制定与管理决策中需重点和优先考虑。 结论 广西西江流域水源涵养服务在空间分布上呈现集聚分布,并以低-低聚集和高-高聚集类型为主。土壤饱和导水率、多年平均降水量、坡度以及不透水率是水源涵养服务最主要的影响因素。图5表2参28 Abstract:Objective Water conservation plays an important role in ecosystem services. This study aims to reveal the spatial pattern and its influencing factors of water conservation services and identify the important areas of water conservation services, which is of great significance to utilization, regional management and comprehensive protection of water resources in the basin. Method Taking Xijiang River Basin in Guangxi as the research object, with the support of the InVEST model, GeoDa, ArcGIS and other tools, the spatial pattern of water conservation services in the research area was tested by using global and local spatial autocorrelation, and the spatial error model was constructed to identify the key factors affecting water conservation services. Quantile classification method was used to classify the importance of water conservation services. Result The average annual water conservation capacity of Xijiang River Basin in Guangxi was 185.36 mm, with a total water amount of 37.61 billion m3 in 2015. The global Moran index was 0.769, indicating that the spatial distribution of water conservation services in the study area was spatially dependent. Considering the influence of multicollinearity, 7 of the 13 influencing factors were finally selected into the spatial error model. The results showed that soil saturated hydraulic conductivity, annual average precipitation, slope, net primary productivity of vegetation (NPP) and economic density had significant positive effects on water conservation services, while population density and impervious surface rate had significant negative impacts on water conservation services. Qianxunjiang River Basin and the southern region of Zuoyujiang River Basin were identified as important areas for water conservation services, which should be prioritized in relevant policy making and management decision. Conclusion The spatial distribution of water conservation services in Xijiang River Basin in Guangxi presents a clustering distribution, dominated by low-low aggregation and high-high aggregation types. Soil saturated hydraulic conductivity, annual average precipitation, slope and impervious surface rate are the main factors affecting water conservation services. [Ch, 5 fig. 2 tab. 28 ref.] -
表 1 基于空间计量模型的水源涵养服务影响因素分析
Table 1. Analysis of influencing factors of water retention service based on spatial econometric model
变量 最小二乘法回归(OLS) 空间误差模型(SEM) 回归系数 P 回归系数 P 常数项 −510.200 0.000 −490.920 0.000 土壤饱和导水率 1.772 0.000 1.649 0.000 多年平均降水量 0.270 0.000 0.267 0.000 植被净初级生产力 0.094 0.000 0.086 0.000 坡度 3.401 0.000 3.185 0.000 不透水率 −0.910 0.001 −0.973 0.000 人口密度 −0.101 0.000 −0.033 0.021 经济密度 0.012 0.000 0.004 0.006 空间自相关系数 0.780 0.000 对数似然值 −7 353.870 −6 863.070 赤池信息准则 14 723.700 13 742.100 施瓦兹准则 14 765.900 13 784.300 拟合优度R2 0.853 0.939 表 2 水源涵养服务重要性分级标准
Table 2. Importance classification standard of water retention service
重要性分级 水源涵养服务/mm 一般 33.61~101.35 较重要 101.35~135.21 中度重要 135.21~174.29 高度重要 174.29~252.44 极重要 252.44~697.91 -
[1] WU Jianguo. Landscape sustainability science: ecosystem services and human wellbeing in changing landscape [J]. Landscape Ecol, 2013, 28: 999 − 1023. doi: 10.1007/s10980-013-9894-9 [2] 李双成, 刘金龙, 张才玉, 等. 生态系统服务研究动态及地理学研究范式[J]. 地理学报, 2011, 66(12): 1618 − 1630. doi: 10.11821/xb201112004 LI Shuangcheng, LIU Jinlong, ZHANG Caiyu, et al. The research trends of ecosystem services and the paradigm in geography [J]. Acta Geogr Sin, 2011, 66(12): 1618 − 1630. doi: 10.11821/xb201112004 [3] 柳冬青, 曹二佳, 张金茜, 等. 甘肃白龙江流域水源涵养服务时空格局及其影响因素[J]. 自然资源学报, 2020, 35(7): 1728 − 1743. LIU Dongqing, CAO Ergui, ZHANG Jinxi, et al. Spatiotemporal pattern of water conservation and its influencing factors in BailongjiangWatershed of Gansu [J]. J Nat Resour, 2020, 35(7): 1728 − 1743. [4] 刘菊, 傅斌, 张成虎, 等. 基于InVEST模型的岷江上游生态系统水源涵养量与价值评估[J]. 长江流域资源与环境, 2019, 28(3): 577 − 585. LIU Ju, FU Bin, ZHANG Chenghu, et al. Assessment of ecosystem water retention and its value in the upper reaches of Minjiang River based on InVEST model [J]. Resour Environ Yangtza Basin, 2019, 28(3): 577 − 585. [5] PETUS C, DEVLIN M, da SILVA E T, et al. Defining wet season water quality target concentrations for ecosystem conservation using empirical light attenuation models: a case study in the Great Barrier Reef (Australia) [J]. J Environ Manage, 2018, 213: 451 − 466. doi: 10.1016/j.jenvman.2018.02.028 [6] HOYER R, CHANG H. Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization [J]. Appl Geogr, 2014, 53: 402 − 416. doi: 10.1016/j.apgeog.2014.06.023 [7] PESSACG N, FLAHERTY S, BRANDIZI L, et al. Getting water right: a case study in water yield modelling based on precipitation data [J]. Sci Total Environ, 2015, 537: 225 − 234. doi: 10.1016/j.scitotenv.2015.07.148 [8] MELAKU N D, RENSCHLER C S, HOLZMANN H, et al. Prediction of soil and water conservation structure impacts on runoff and erosion processes using SWAT model in the northern Ethiopian highlands [J]. J Soils Sediments, 2018, 18(4): 1743 − 1755. doi: 10.1007/s11368-017-1901-3 [9] SEKA A M, MOHAMMED A K. Evaluation of impacts of soil and water conservation on watershed hydrology of Kulfo River using hydrologic SWAT models [J]. Int J Sci Eng Res, 2016, 7(8): 2087 − 2092. [10] 龚诗涵, 肖洋, 郑华, 等. 中国生态系统水源涵养空间特征及其影响因素[J]. 生态学报, 2017, 37(7): 2455 − 2462. GONG Shihan, XIAO Yang, ZHENG Hua, et al. Spatial patterns of ecosystem water conservation in China and its impact factors analysis [J]. Acta Ecol Sin, 2017, 37(7): 2455 − 2462. [11] 顾铮鸣, 金晓斌, 沈春竹, 等. 近15 a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453 − 2462. GU Zhengming, JIN Xiaobin, SHEN Chunzhu, et al. Variation and influence factors of water conservation service function in Jiangsu Province from 2000 to 2015 [J]. Resour Environ Yangtza Basin, 2018, 27(11): 2453 − 2462. [12] 陈姗姗, 刘康, 包玉斌, 等. 商洛市水源涵养服务功能空间格局与影响因素[J]. 地理科学, 2016, 36(10): 1546 − 1554. CHEN Shanshan, LIU Kang, BAO Yubin, et al. Spatial pattern and influencing factors of water conservation service function in Shangluo City [J]. Sci Geogr Sin, 2016, 36(10): 1546 − 1554. [13] 宁亚洲, 张福平, 冯起, 等. 秦岭水源涵养功能时空变化及其影响因素[J]. 生态学杂志, 2020, 39(9): 3080 − 3091. NING Yazhou, ZHANG Fuping, FENG Qi, et al. Temporal and spatial variation of water conservation function in Qinling Mountain and its influencing factors [J]. Chin J Ecol, 2020, 39(9): 3080 − 3091. [14] 张佳田, 焦文献, 韩宝龙. 城镇化与生态系统服务的协调演化特征及空间耦合关系[J]. 生态学报, 2020, 40(10): 3271 − 3282. ZHANG Jiatian, JIAO Wenxian, HAN Baolong. Characteristics of coordination changes and spatial coupling relationship between urbanization and ecosystem services [J]. Acta Ecol Sin, 2020, 40(10): 3271 − 3282. [15] 梁晓瑶, 袁丽华, 宁立新, 等. 基于InVEST模型的黑龙江省生境质量空间格局及其影响因素[J]. 北京师范大学学报(自然科学版), 2020, 56(6): 864 − 872. LIANG Xiaoyao, YUAN Lihua, NING Lixin, et al. Spatial pattern of habitat quality and driving factors in Heilongjiang Province [J]. J Beijing Norm Univ Nat Sci, 2020, 56(6): 864 − 872. [16] 赵育恒, 曾晨. 武汉城市圈生态服务价值时空演变分析及影响因素[J]. 生态学报, 2019, 39(4): 1426 − 1440. ZHAO Yuheng, ZENG Chen. Analysis of spatial-temporal evolution and factors that influences ecological service values in Wuhan Urban Agglomeration, China [J]. Acta Ecol Sin, 2019, 39(4): 1426 − 1440. [17] 荣检, 胡宝清, 闫妍. 广西西江流域植被净初级生产力时空分布特征及其影响因素[J]. 生态学杂志, 2017, 36(4): 1020 − 1028. RONG Jian, HU Baoqing, YAN Yan. Spatial-temporal distribution and its influencing factors of vegetation net primary productivity in Guangxi Xijiang River basin [J]. Chin J Ecol, 2017, 36(4): 1020 − 1028. [18] 余新晓, 周彬, 吕锡芝, 等. 基于InVEST模型的北京山区森林水源涵养功能评估[J]. 林业科学, 2012, 48(10): 1 − 5. doi: 10.11707/j.1001-7488.20121001 YU Xinxiao, ZHOU Bin, LÜ Xizhi, et al. Evaluation of water conservation function in mountain forest areas of Beijing based on InVEST model [J]. Sci Silv Sin, 2012, 48(10): 1 − 5. doi: 10.11707/j.1001-7488.20121001 [19] 杨霞, 贾尔恒·阿哈提, 邱秀云, 等. 乌伦古河流域SWAT模型基础数据库构建[J]. 水资源与水工程学报, 2013, 24(6): 74 − 78. doi: 10.11705/j.issn.1672-643X.2013.06.017 YANG Xia, Jiaerheng Ahati, QIU Xiuyun, et al. Construction of basic database for SWAT model in Wulungu River basin [J]. J Water Resour Water Eng, 2013, 24(6): 74 − 78. doi: 10.11705/j.issn.1672-643X.2013.06.017 [20] 李磊, 董晓华, 喻丹, 等. 基于SWAT模型的清江流域径流模拟研究[J]. 人民长江, 2013, 44(22): 25 − 29, 42. doi: 10.3969/j.issn.1001-4179.2013.22.007 LI Lei, DONG Xiaohua, YU Dan, et al. Study on runoff simulations on Qingjiang River Basin by SWAT model [J]. Yangtze River, 2013, 44(22): 25 − 29, 42. doi: 10.3969/j.issn.1001-4179.2013.22.007 [21] 姜磊. 应用空间计量经济学[M]. 北京: 中国人民大学出版社, 2020. JIANG Lei. Applied Spatial Econometrics[M]. Beijing: China Renmin University Press, 2020. [22] 姜广辉, 何新, 马雯秋, 等. 基于空间自相关的农村居民点空间格局演变及其分区[J]. 农业工程学报, 2015, 31(13): 265 − 273. doi: 10.11975/j.issn.1002-6819.2015.13.037 JIANG Guanghui, HE Xin, MA Wenqiu, et al. Rural settlements spatial pattern evolution and zoning district based on spatial autocorrelation [J]. Trans Chin Soc Agric Eng, 2015, 31(13): 265 − 273. doi: 10.11975/j.issn.1002-6819.2015.13.037 [23] 王劲峰, 廖一兰, 刘鑫. 空间数据分析教程[M]. 2版. 北京: 科学出版社, 2019. WANG Jinfeng, LIAO Yilan, LIU Xin. Spatial Data Analysis Tutorial [M]. 2nd ed. Beijing: Science Press, 2019. [24] 高歌, 陈德亮, 任国玉, 等. 1956—2000年中国潜在蒸散量变化趋势[J]. 地理研究, 2006, 25(3): 378 − 387. doi: 10.3321/j.issn:1000-0585.2006.03.002 GAO Ge, CHEN Deliang, REN Guoyu, et al. Trend of potential evapotranspiration over China during 1956 to 2000 [J]. Geogr Res, 2006, 25(3): 378 − 387. doi: 10.3321/j.issn:1000-0585.2006.03.002 [25] CANADELL J, JACKSON R B, EHLERINGER J B, et al. Maximum rooting depth of vegetation types at the global scale [J]. Oecologia, 1996, 108(4): 583 − 595. doi: 10.1007/BF00329030 [26] 傅斌, 徐佩, 王玉宽, 等. 都江堰市水源涵养功能空间格局[J]. 生态学报, 2013, 33(3): 789 − 797. doi: 10.5846/stxb201203260410 FU Bin, XU Pei, WANG Yukuan, et al. Spatial pattern of water retetnion in Dujiangyan County [J]. Acta Ecol Sin, 2013, 33(3): 789 − 797. doi: 10.5846/stxb201203260410 [27] 范亚宁, 刘康, 陈姗姗, 等. 秦岭北麓陆地生态系统水源涵养功能的空间格局[J]. 水土保持通报, 2017, 37(2): 50 − 56. FAN Yaning, LIU Kang, CHEN Shanshan, et al. Spatial pattern analysis on water conservative functionality of land ecosystem in northern slope of Qinling Mountains [J]. Bull Soil Water Conserv, 2017, 37(2): 50 − 56. [28] 包玉斌, 李婷, 柳辉, 等. 基于InVEST模型的陕北黄土高原水源涵养功能时空变化[J]. 地理研究, 2016, 35(4): 664 − 676. BAO Yubin, LI Ting, LIU Hui, et al. Spatial and temporal changes of water conservation of Loess Plateauin northern Shaanxi Province by InVEST model [J]. Geogr Res, 2016, 35(4): 664 − 676. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210616

计量
- 文章访问数: 43
- 被引次数: 0