留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广西西江流域水源涵养服务空间格局及其影响因素

张成虎 刘菊 胡宝清 陈秀芬

张成虎, 刘菊, 胡宝清, 等. 广西西江流域水源涵养服务空间格局及其影响因素[J]. 浙江农林大学学报, 2022, 39(5): 1104-1113. DOI: 10.11833/j.issn.2095-0756.20210616
引用本文: 张成虎, 刘菊, 胡宝清, 等. 广西西江流域水源涵养服务空间格局及其影响因素[J]. 浙江农林大学学报, 2022, 39(5): 1104-1113. DOI: 10.11833/j.issn.2095-0756.20210616
PANShi-xiu, MEN Xiu-xiang, FENG Jin-chao, et al. A review of studies on habitat selection by small and solitary forest ruminants[J]. Journal of Zhejiang A&F University, 2007, 24(3): 357-362.
Citation: ZHANG Chenghu, LIU Ju, HU Baoqing, et al. Spatial pattern and its influencing factors of water conservation services in Xijiang River Basin, Guangxi[J]. Journal of Zhejiang A&F University, 2022, 39(5): 1104-1113. DOI: 10.11833/j.issn.2095-0756.20210616

广西西江流域水源涵养服务空间格局及其影响因素

DOI: 10.11833/j.issn.2095-0756.20210616
基金项目: 广西自然科学基金资助项目(2018GXNSFBA138026);广西科技基地和人才专项(桂科AD20238046);国家自然科学基金资助项目(42071135)
详细信息
    作者简介: 张成虎(ORCID: 0000-0001-8462-3755),从事生态学方面的研究。E-mail: chenghuzhang@nnnu.edu.cn
    通信作者: 刘菊(ORCID: 0000-0003-4390-4643),助理研究员,博士,从事生态系统服务方面的研究。E-mail: liuju0607@163.com
  • 中图分类号: S718.5

Spatial pattern and its influencing factors of water conservation services in Xijiang River Basin, Guangxi

  • 摘要:   目的  水源涵养在众多生态系统服务中占据着重要的地位。揭示水源涵养服务空间格局及其影响因素,识别水源涵养服务重要区,对流域水资源利用、分区管理与综合保护具有重要意义。  方法  以广西西江流域为研究对象,基于InVEST模型、GeoDa与ArcGIS等工具,使用全域和局域空间自相关检验研究区水源涵养服务空间分布模式,构建空间误差模型辨识水源涵养服务关键影响因素,采用分位数分类法进行水源涵养服务重要性分级。  结果  广西西江流域多年平均水源涵养量为185.36 mm,2015年总量为376.10亿 m3。全域莫兰指数为0.769,表明研究区水源涵养服务在空间分布上具有空间依赖性。考虑到多重共线性的影响,最终从13项影响因素中筛选出7项进入空间误差模型,得出土壤饱和导水率、多年平均降水量、坡度、植被净初级生产力、经济密度对水源涵养服务产生显著正面影响,而人口密度和不透水率对水源涵养服务产生显著负面影响。识别出黔浔江流域及左郁江流域南部区域是水源涵养服务重要区,在相关政策制定与管理决策中需重点和优先考虑。  结论  广西西江流域水源涵养服务在空间分布上呈现集聚分布,并以低-低聚集和高-高聚集类型为主。土壤饱和导水率、多年平均降水量、坡度以及不透水率是水源涵养服务最主要的影响因素。图5表2参28
  • 铁路、公路等基础设施建设会破坏和占压地表植被,形成大量的裸露坡面,遇到降雨极易发生水土流失,甚至出现滑坡、泥石流等次生地质灾害。裸露坡面常常具有坡度陡、坡体稳定性低、水分条件差和土壤瘠薄等特征,是不利于植被生长的困难立地。客土喷播绿化是裸露坡面恢复植被最快速最有效的方式之一,喷播后灌溉养护对植被生长至关重要[1]。大量调查发现:客土喷播后普遍存在过度灌溉,产生坡面径流,造成水土流失和水资源浪费;同时喷播基质通气不畅也会影响植被生长。可见,确定适合植被生长且能保证灌溉时坡面不产流的客土喷播基质含水量已成为当前亟需解决的问题。目前,关于适宜含水量研究大多集中在林地土壤与林木之间,如夏江宝等[2]对贝壳堤岛旱柳Salix matsudana光合效率的土壤水分临界效应及其阈值进行了分级研究,景雄等[3]对毛竹Phyllostachys edulis实生苗土壤水分有效性及生产力进行了分级研究,张淑勇等[4]对黄刺玫Rosa xanthina叶片光合生理参数的土壤水分阈值响应及其生产力进行了分级研究等,客土喷播基质适宜含水量与植被生长的关系研究则较少。以往的研究大都只关注了植物某一个生长阶段的土壤水分适宜含水量阈值[2, 5-6],缺乏对不同季节植被生长与基质水分关系的研究。鉴于此,本研究以北方地区常用的喷播修复植物黑麦草Lolium perenne作为研究对象,利用种植盆模拟客土喷播绿化,通过控制不同客土喷播基质水分梯度,分析夏、秋季黑麦草光合特性日变化对不同喷播基质水分的响应规律,以叶片净光合速率(Pn)和水分利用效率(EWU)作为“产”“效”来评价黑麦草生产力和水分利用能力的依据,并进行季节间比较,建立夏、秋季黑麦草喷播基质适宜含水量阈值分级,以期为北京至张家口的公路、铁路等冬季奥林匹克运动会交通廊道以及自然条件相近地区的工程创面客土喷播恢复植被灌溉养护提供参考。

    研究区河北省张家口市涿鹿县为北京冬季奥林匹克运动会延庆赛区和张家口崇礼赛区廊道沿线,高速公路G6和G7之间,地理坐标为40°26′20″N,115°17′03″E。涿鹿县属温带半干旱大陆性季风气候,年均气温为9.1 ℃,极端最高气温为39.2 ℃,极端最低气温为−23.9 ℃,年均降水量为367 mm,年均蒸发量为1 600 mm,无霜期为169 d,年平均积温为2 100~3 400 ℃,风向以西北为主,平均风速2~3 m·s−1,土壤为沙壤质褐土。

    喷播基质材料为客土(取自河北省涿鹿县苗圃)、木纤维[长1~3 cm,中矿复地生态环境技术研究院(北京)有限公司]、保水剂(3005KCE,美国艾森公司)、黏合剂(A30,美国艾森公司)、稻壳和黑麦草种子(北京布莱特草业有限公司)。喷播基质层和种子层的材料配比见表1。黑麦草播种量为4 g·m−2

    表 1  基质层和种子层的材料配比
    Table 1  Material ratio of matrix layer and seed layer
    喷播层次客土/
    %
    木纤
    维/%
    稻壳/
    %
    复合肥/
    (g·m−3)
    保水剂/
    (g·m−3)
    黏合剂/
    (g·m−3)
    基质层(10 cm)701020300200150
    种子层(3 cm)6733
      说明:客土、木纤维和稻壳为体积比
    下载: 导出CSV 
    | 显示表格

    利用种植盆试验模拟客土喷播绿化,种植盆上口直径50 cm、盆底直径40 cm、高15 cm,底部打孔便于排水。使用恒睿牌HKP125型客土喷播机。2021年4月26日,根据表1的材料配比将基质层和种子层分上、下2层先后喷播到种植盆内,采用微喷灌雾化喷头对喷播基质灌溉养护,保持喷播基质充分湿润(每次灌溉以喷播基质表面不积水为准),保证种子出苗有充足的水分。

    2021年5月26日开始控制喷播基质含水量(为质量含水量,下同),用环刀法测得喷播基质的田间持水量为30.36%,容重为1.12 g·cm−3。喷播基质含水量设置5个水分梯度,分别为30.36%、25.81%、21.25%、16.70%和12.14%,即喷播基质相对含水量(CRW)为100%、85%、70%、55%和40%,每个水分梯度设置3个重复。每天16:00用TDR350土壤水分速测仪(美国Spectrum公司)测定CRW(通过容重换算为质量含水量),每盆测定重复3次取平均值,并根据公式计算耗水量:ww=m/m。其中:w为设计质量含水量(%);w为实测质量含水量(%),根据TDR350实测值和容重换算;m为每盆黑麦草耗水量(g);m为每盆喷播基质干质量(g),可由基质体积和容重计算得出。使用微喷灌雾化喷头对喷播基质补充水分,为避免降水影响,试验在透明通风遮雨大棚内进行。

    于夏季(2021年8月5日,即控水2个月后)、秋季(2021年10月11日,即控水4个月后)选择连续3 d晴朗无云的天气,使用Li-6400XT便携式光合作用测定仪(标准叶室,Li-COR)测定黑麦草叶片Pn (μmol·m−2·s−1)、蒸腾速率Tr (mmol·m−2·s−1)、气孔导度Gs (mol·m−2·s−1)、胞间二氧化碳(CO2)摩尔浓度Ci (μmol·mol−1)等生理参数以及大气CO2摩尔浓度Ca (μmol·mol−1)、光合有效辐射PAR (μmol·m−2·s−1)、气温Ta (℃)和相对湿度Rh (%)等环境因子,并根据公式EWU=Pn/Tr计算水分利用效率、Ls=1−Ci/Ca计算气孔限制值。测定时间为8:00—16:00,隔2 h测1次,每个种植盆选取3株生长健康、长势一致的黑麦草,每株选取3片叶,每片叶记录3次读数,取平均值。

    运用Excel 2016整理光合参数与基质相对含水量数据;SPSS 22.0进行差异显著性检验LSD;Origin 2018进行作图和多项式拟合建立回归模型,使用F检验对回归模型进行显著性检验。

    图1可知:夏、秋季PAR的日变化为单峰曲线,均为先升高后下降,峰值均出现在12:00,夏季峰值为(1 393.71±110.04) μmol·m−2·s−1,秋季为(786.73±88.74) μmol·m−2·s−1。夏季PAR日均值(999.75±459.61) μmol·m−2·s−1大于秋季(504.07±274.09) μmol·m−2·s−1。夏、秋季Ca日变化为“V”型曲线,8:00—12:00下降,之后上升。秋季Ca日均值(421.15±17.65) μmol·mol−1大于夏季(411.54 ±10.76) μmol·mol−1,两者相差较小,仅为2.30%。

    图 1  夏、秋季光合有效辐射(PAR)和大气CO2摩尔浓度(Ca)的日变化
    Figure 1  Diurnal variation of photosynthetically active radiation (PAR) and atmospheric CO2 concentration (Ca) in summer and autumn

    图2可知:夏、秋季Ta的日变化与PAR相似,也为单峰曲线,在12:00达最大值。夏季Ta最大为(42.88±1.46) ℃,秋季为(28.41±1.06) ℃。夏季日均值(37.87±3.23) ℃大于秋季(26.21±2.03) ℃。夏、秋季Rh的日变化与Ta相反,12:00前下降,之后上升,夏、秋季Rh最低值分别为20.98%±1.65%和17.05%±1.47%。夏季Rh日均值(26.72%±5.56%)大于秋季(19.98%±2.70%)。

    图 2  夏、秋季气温(Ta)和相对湿度(Rh)的日变化的日变化     
    Figure 2  Diurnal variation of temperature (Ta) and relative humidity (Rh) in summer and autumn
    2.2.1   不同喷播基质含水量下黑麦草叶片净光合速率(Pn)的日变化

    夏、秋季黑麦草叶片Pn日变化对CRW有明显的阈值响应(图3)。当CRW为70%~85%时,Pn的变化呈双峰曲线,均出现光合“午休”现象,上午和下午各出现1个峰值,此水分范围内,Pn在全天各时段均最高。当CRW增加至100%时,Pn呈单峰曲线,峰值出现在12:00。当CRW降低到55%和40%时,Pn为单峰曲线,峰值均出现在8:00(但秋季CRW为55%时Pn峰值出现在10:00),Pn在全天各时段均处于较低水平,表明CRW低于55%会严重抑制植物的光合作用。由表2可知:Pn日均值对CRW也有明显的阈值响应。当CRW为85%时,夏季Pn日均值最大,达(11.17±3.08) μmol·m−2·s−1,与其他水分梯度有显著差异(P<0.05)。秋季的Pn日均值在CRW为70%时达最大,为(7.02±1.97) μmol·m−2·s−1,与其他水分梯度也有显著差异(P<0.05)。夏季Pn日均值均大于秋季,CRW为55%~100%时两季差异达到显著(P<0.05)。CRW为40%时,两季Pn日均值均较低,可见当CRW较低时植物光合作用将受到严重影响。综上所述,夏、秋两季维持黑麦草较高PnCRW为70%~85%,高于或低于此范围,Pn明显受到抑制。

    图 3  夏、秋季不同喷播基质含水量下黑麦草净光合速率(Pn)的日变化
    Figure 3  Diurnal variation of net photosynthetic rate (Pn) of L. perenne under different spraying substrate water content in summer and autumn
    表 2  夏、秋季不同喷播基质含水量下黑麦草光合生理参数的日均值变化
    Table 2  Change of daily mean of photosynthetic physiological parameters of L. perenne under different spraying substrate water content in summer and autumn
    CRW/%Pn/(μmol·m−2·s−1)Tr/(mmol·m−2·s−1)EWU/(mol·mol−1)
    夏季秋季夏季秋季夏季秋季
    1006.79±2.01 Abc4.30±0.95 Bb5.59±1.17 Aab2.75±0.16 Bab1.32±0.20 Bbc1.56±0.26 Acd
    8511.17±3.08 Aa6.07±1.24 Ba6.83±1.12 Aa3.13±0.40 Ba1.61±0.22 Ba1.92±0.22 Ab
    709.26±2.79 Aab7.02±1.97 Ba6.76±0.63 Aa2.92±0.59 Ba1.43±0.15 Bab2.37±0.25 Aa
    555.77±2.09 Ac3.77±1.03 Bb4.91±0.93 Ab2.35±0.30 Bbc1.20±0.12 Bbc1.63±0.20 Ac
    402.80±1.66 Ae2.74±0.78 Ab3.03±0.87 Ac2.16±0.28 Ac1.01±0.28 Ac1.28±0.16 Ad
      说明:同列不同小写字母、同行不同大写字母均表示差异显著(P<0.05)
    下载: 导出CSV 
    | 显示表格
    2.2.2   不同喷播基质含水量下黑麦草叶片蒸腾速率(Tr)的日变化

    夏、秋季黑麦草叶片Tr日变化规律与Pn基本相似(图4),当CRW为70%~85%时,黑麦草Tr的日变化呈双峰曲线。当CRW增加至100%时,Tr呈现单峰曲线,夏、秋季峰值均出现在14:00,但日均值却低于CRW为70%~85%时。表明基质水分充足可有效延缓Tr“午休”,但会降低Tr。当CRW≤55%时,Tr呈单峰曲线,峰值出现在8:00或10:00,全天各时段均处于较低的水平。结合表2可知:当CRW≥55%时,夏季Tr日均值显著高于秋季(P<0.05)),可见不同季节气候环境对植物Tr影响较大。当CRW为40%时,Tr日均值显著低于其他水分梯度(P<0.05),表明水分胁迫严重限制Tr。综上所述,CRW过高或过低均会降低黑麦草Tr,当CRW为70%~85%时,黑麦草会保持较高的Tr,保障植物正常生理活动。

    图 4  夏、秋季不同喷播基质含水量下黑麦草蒸腾速率(Tr)的日变化
    Figure 4  Diurnal variation of transpiration rate (Tr) of L. perenne under different spraying substrate water content in summer and autumn
    2.2.3   不同喷播基质含水量下黑麦草叶片水分利用效率(EWU)的日变化

    EWU日变化对基质含水量有明显的阈值响应(图5)。CRW为70%~85%时,EWU为双峰曲线(但秋季CRW=85%时为单峰曲线),全天各时段EWU均高于其他水分梯度。当CRW增加至100%时,EWU表现为单峰曲线,峰值出现在12:00。CRW为40%~55%时,EWU峰值出现在8:00或10:00,之后不断降低。结合表2可知:当CRW≥55%时,秋季EWU日均值显著高于夏季(P<0.05),CRW为40%时秋季EWU日均值高于夏季,但不差异显著。CRW为40%和100%时,EWU日均值均显著低于其他水分梯度(P<0.05),表明CRW过高或过低都会降低EWU。综上所述,夏、秋季维持黑麦草同时具有较高PnEWUCRW为70%~85%,在这个水分范围内,Tr也保持较高水平,有利于植物的光合作用。

    图 5  夏、秋季不同喷播基质含水量下黑麦草水分利用效率(EWU)的日变化
    Figure 5  Diurnal variation of water use efficiency (EWU) of L. perenne under different spraying substrate water content in summer and autumn
    2.2.4   不同喷播基质含水量下黑麦草叶片气孔导度(Gs)、胞间CO2摩尔浓度(Ci)和气孔限制值(Ls)的日变化

    夏、秋季黑麦草GsCRW具有明显的阈值响应(图6),当CRW为70%~85%时,Gs呈现双峰曲线。当CRW=100%时,Gs为单峰曲线,峰值出现在12:00。当CRW为40%~55%时,全天Gs峰值出现在8:00,之后一直降低,维持在较低水平。CiLsCRW的阈值响应表现不同的变化规律(图7图8),上午和下午表现也不同。CRW为70%~100%时,Pn下降,GsCi明显下降,Ls明显升高,表明Pn下降原因是气孔限制。CRW=55%时,上午Pn下降,GsCi明显下降,Ls升高,但下午Pn下降,GsLs下降,Ci反而升高,可见限制黑麦草Pn的原因上午和下午不同,上午以气孔限制为主,气孔关闭导致CO2供应不足,下午以非气孔限制为主,水分胁迫导致植物叶片光合结构受损,Pn下降。当CRW=40%时,Ci从8:00开始上升且一直处于较高水平,而Ls全天都较低,表明水分胁迫严重损坏了植物叶片光合结构,降低了光合作用有关酶的活性,从而降低了Pn。由图9可知:夏、秋季不同CRW范围内PnGs的正比关系不同,当CRW>55%时,随着Gs增大,Pn线性增大,PnGs为线性正比关系;当CRW≤55%时,PnGs为非线性关系。因此,当CRW=55%时,黑麦草不仅发生了Pn限制机制的转变,其PnGs之间的关系也发生转变。综上所述,在CRW=55%时出现上午、下午CiLs变化相反的情况,表明此基质含水量是黑麦草叶片Pn下降由气孔限制为主转变为非气孔限制为主的临界点。

    图 6  夏、秋季不同喷播基质含水量下黑麦草气孔导度(Gs)的日变化
    Figure 6  Diurnal variation of stomatal conductance (Gs) of L. perenne under different water content of spraying substrate in summer and autumn
    图 7  夏、秋季不同喷播基质含水量下黑麦草胞间CO2摩尔浓度(Ci)的日变化
    Figure 7  Diurnal variation of intercellular CO2 concentration (Ci) of L. perenne under different water content of spraying substrate in summer and autumn
    图 8  夏、秋季不同喷播基质含水量下黑麦草气孔限制值(Ls)的日变化
    Figure 8  Diurnal variation of stomatal limit value (Ls) of L. perenne under different spraying substrate water content in summer and autumn
    图 9  夏、秋季黑麦草净光合速率(Pn)和气孔导度(Gs)的关系
    Figure 9  Relationship between net photosynthetic rate (Pn) and stomatal conductance (Gs) of L. perenne in summer and autumn

    为进一步确定黑麦草喷播基质相对含水量(CRW)分级临界值,对黑麦草PnTr、EWUGs的日均值与CRW构建回归模型(表3)。由PnCRW的回归模型知:夏、秋季Pn达最大值的CRW分别为78.17%、76.02%,其对应的最大Pn分别为9.68和 6.33 μmol·m−2·s−1。令Pn=0,求出夏、秋季水合补偿点的CRW分别为35.02%、30.83%(CRW大于100%的点均已舍去)。根据回归模型的积分式[2]求出CRW为40%~100%时黑麦草夏季Pn平均值为7.77 μmol·m−2·s−1,对应的CRW分别为58.98%和97.36%。同理可求出黑麦草秋季Pn平均值为5.29 μmol·m−2·s−1,对应的CRW分别为57.71%和94.33%。由此可以确定黑麦草夏、秋季Pn达到中等以上水平的CRW分别为58.98%~97.36%、57.71%~94.33%。

    表 3  夏、秋季黑麦草光合参数与喷播基质相对含水量的回归模型
    Table 3  Regression model between photosynthetic parameters of L. perenne and relative water content of spraying substrate in summer and autumn
    参数季节回归模型决定系数FP
    Pn夏季y=−22.092 7+0.813 0x−0.005 2x20.8878.989.12×10−11
    秋季y=−11.584 0+0.471 3x−0.003 1x20.8145.601.49×10−8
    Tr夏季y=−9.497 1+0.398 7x−0.002 5x20.94595.830.000
    秋季y=−0.574 0+0.083 8x−0.000 5x20.8339.085.74×10−8
    EWU夏季y=−0.844 9+0.061 0x−0.000 4x20.8031.053.93×10−7
    秋季y=−2.344 8+0.122 2x−0.000 83x20.7635.291.37×10−7
    Gs夏季y=−0.354 2+0.013 5x−0.000 086x20.7839.974.73×10−8
    秋季y=−0.319 7+0.012 2x−0.000 077x20.8353.943.30×10−9
      说明:y表示各参数,x表示喷播基质相对含水量(CRW)
    下载: 导出CSV 
    | 显示表格

    根据EWUCRW的回归模型,求出夏、秋季EWU达最大值的CRW分别为76.25%、73.61%,对应的最大值分别为1.48和 2.15 μmol·mmol−1。令EWU=0,求出夏、秋季的对应的CRW分别为15.41%、22.68%(CRW大于100%的点均已舍去)。根据回归模型的积分式求出CRW为40%~100%时黑麦草夏季EWU的平均值为1.35 μmol·mmol−1,对应的CRW分别为58.17%和94.33%。同理可求出黑麦草秋季EWU的平均值为1.89 μmol·mmol−1,对应的CRW分别为55.81%和91.42%。由此确定黑麦草夏、秋季EWU达到中等以上水平的CRW分别为58.17%~94.33%、55.81%~91.42%。

    PnEWU取最大值点、平均值点、最低值点和Pn下降气孔限制转折点的喷播基质CRW临界值,作为黑麦草喷播基质适宜含水量阈值分级临界点,建立喷播基质适宜含水量的阈值分级(表4)。此分级标准将PnEWU作为“产”“效”来评价黑麦草生产力和水分利用能力的依据,建立了黑麦草喷播基质适宜含水量阈值分级。以Pn=0时的水合补偿点作为临界点,低于此临界点划为“无产无效水”范围。Pn下降原因由气孔限制为主转为非气孔限制为主对应的CRW称为“Pn气孔限制转折点”。PnEWU取最大值时的CRW确定为“高产高效水”临界值点。依据PnEWUCRW的回归模型积分式求解二者的平均值来确定PnEWU达到中等以上水平的临界点,在此范围内称为“中产”“中效”,此范围外称为“低产”“低效”。为更清晰地展示5种阈值分级类型,借助坐标轴对其划分参数和数值进行展示(图10)。

    表 4  基于光合特性的黑麦草喷播基质适宜含水量阈值分级
    Table 4  Threshold gradient of suitable water content of L. perenne spraying substrate based on photosynthetic characteristics
    季节临界值指标临界点对应的CRW/%基质适宜含水量阈值分级类型基质适宜含水量阈值/%
    夏季 Pn=0 35.02 无产无效水 <35.02
    Pn(sl→nsl) 55.00 低产低效水 35.02~55.00,97.36~100.00
    Pn取平均值(Pn-ave) 58.98~97.36 中产中效水 78.17~97.36
    Pn取最大值(Pn-max) 78.17 中产高效水 55.00~76.25
    EWU取最大值(EWU-max) 76.25 高产高效水 76.25~78.17
    EWU取平均值(EWU-ave) 58.17~94.33
    秋季 Pn=0 30.83 无产无效水 <30.83
    Pn(sl→nsl) 55.00 低产低效水 30.83~55.00,94.33~100.00
    Pn取平均值(Pn-ave) 57.71~94.33 中产中效水 76.02~94.33
    Pn取最大值(Pn-max) 76.02 中产高效水 55.00~73.61
    EWU取最大值(EWU-max) 73.61 高产高效水 73.61~76.02
    EWU取平均值(EWU-ave) 55.81~91.42
      说明:Pn=0为水合补偿点,Pn(sl→nsl)Pn气孔限制转折点
    下载: 导出CSV 
    | 显示表格
    图 10  夏、秋季黑麦草喷播基质适宜含水量阈值分级坐标轴图示
    Figure 10  Coordinate graphic figures of spraying substrate suitable water content threshold gradient of L. perenne in summer and autumn

    夏、秋季黑麦草光合生理参数(PnTrEWUGsCiLs)日变化对喷播基质含水量的阈值响应规律与黄刺玫[5]、文冠果Xanthoceras sorbifolia[6]、连翘Forsythia suspensa[7]、山杏Prunus sibirica[8]、羊草Leymus chinensis和紫花苜蓿Medicago sativa[9]等对土壤水分阈值响应的规律一致,即CRW过高或过低均会抑制植物光合作用。CRW为70%~85%时,夏、秋季PnTr日变化均呈现双峰曲线,在12:00表现出“光合午休”现象。主要原因是中午气温最高,高温影响植物光合酶的活性,降低Pn;空气相对湿度低,叶片表面饱和水汽压差增大,叶片气孔保卫细胞失水过多,导致部分气孔关闭,降低TrPn[10]CRW为100%时,夏、秋季Pn日变化均呈现单峰曲线,峰值出现在12:00,但Pn日均值并不高。表明水分充足可以延缓植物光合午休,但CRW过高,喷播基质孔隙较小,不利于根系呼吸,影响根系吸收营养元素,造成光合叶绿素含量降低,从而降低Pn[11]CRW为100%时,夏、秋季Tr日变化的峰值延迟到14:00。已有研究表明:当水分充足时光照强度是影响Tr的主要因子,光合辐射可以促进叶片气孔开放,从而增强Tr[12-13]CRW为40%~55%时,夏、秋季PnTr均处于较低水平,原因是严重水分胁迫下植物为减少体内水分散失增加了气孔阻力[4],导致PnTr降低。研究表明:适度的干旱胁迫能有效提高植物的水分利用效率[14-15],与本研究观点一致,即CRW为70%~85%时黑麦草EWU达最大值,并非在CRW最高的时候。秋季EWU显著高于夏季,主要原因是秋季Tr的降低幅度比Pn的降低幅度要更大,这与许多学者[16-18]的研究结果一致。

    夏、秋季黑麦草Gs日变化与Pn的变化规律基本相似,但通过对PnGs的关系拟合可知:PnGsCRW≤55%时两者为非线性关系,CRW>55%时为线性正比关系,这与郎莹等[19]的研究结果一致。轻度水分胁迫下,叶片气孔部分关闭,Gs下降,进入叶片CO2减少,因此Ci降低,Ls升高,但是当CRW为55%时,下午时段Gs下降,Ci升高,表明水分胁迫可能破坏了叶片的光合结构,导致叶片吸收CO2、光合作用能力下降。这也进一步说明,在CRW为55%时,黑麦草Pn下降原因已经由气孔限制为主转变为非气孔限制为主。已有研究表明:当植物光合作用受到非气孔限制时,水分胁迫可能开始损坏光合结构[20-21],叶绿体受损并且不可逆[22],当CRW进一步降低,植物叶子变黄甚至脱落[21]。因此,CRW=55%被认为是黑麦草喷播基质适宜含水量阈值分级的临界点。

    采用PnEWU作为土壤水分的“产”“效”指标可评价土壤水分有效性和适宜含水量范围[2-3, 5, 7, 23],主要方法有3类:第1类为聚类分析法[4, 24],即通过试验获取多个水分梯度下的PnEWU进行聚类分析,得到不同的水分分级临界点。由于获取的水分梯度随机性较大,该方法缺乏足够代表性。第2类为极限值法,即通过获取PnEWUCRW的定量关系,找出PnEWU的最低值、最大值点和气孔限制转折点,以此来划分水分分级临界点。但此法并未对中等水平的“产”“效”进行划分[26]。第3类为回归方程拟合法,即通过建立植物PnEWUCRW的回归模型,计算Pn的水合补偿点、PnEWU最低值点、最大值点和平均值点对应的土壤水分,并以此作为土壤水分有效性阈值分级临界点。该方法对土壤水分分级比较完整[2-3, 21]。本研究结合第2类和第3类方法,即采用回归方程拟合法计算临界值点再结合Pn气孔限制转折点来确定喷播基质适宜含水量阈值分级标准。在拟合时采用了PnEWU的日平均值与CRW,相比只测上午光合数据[2, 4, 6, 21]的研究更具有代表性。本研究确定的“无产无效水”“低产低效水”“中产中效水”“中产高效水”和“高产高效水”5种喷播基质适宜含水量阈值分级类型,可以根据不同的工程绿化养护要求和黑麦草不同生长阶段对水分的需求来选择利用。例如,在裸露边坡等困难立地最突出的特征是干旱和缺水,坡面工程绿化以防治水土流失和提高水分利用效率为目标,而不是充分供水达到最高产量 [24-25]。因此既满足边坡植被修复要求,又不因灌溉量过大而造成坡面水土流失、影响植物生长和浪费水资源等问题,可以保持喷播基质含水量在“中产高效水”(55.00%≤CRW≤76.25%和55.00%≤CRW≤73.61%)的范围,以此为标准进行灌溉。

    夏、秋季黑麦草净光合速率水合补偿点的喷播基质相对含水量分别为35.02%和30.83%,即实际质量含水量分别为10.63%和9.36%,喷播基质含水量低于此值光合作用无效。夏、秋季黑麦草净光合速率下降由气孔限制转变为非气孔限制的喷播基质相对含水量均为55%,即实际质量含水量为16.70%,喷播基质含水量低于此值将对黑麦草叶片光合结构造成不可逆性损坏,建议灌溉养护时保持基质含水量不能低于此水分范围。客土喷播绿化以快速恢复植被为目标时可以保持喷播基质含水量在“高产高效水”范围,以此为标准进行灌溉,夏、秋季分别为76.25%≤CRW≤78.17%和73.61%≤CRW≤76.02%,即实际质量含水量分别为23.15%~23.73%和22.35%~23.08%。客土喷播绿化以提高水分利用效率并恢复基本植被(即恢复到当地自然植被盖度为准)为目标时,可以保持喷播基质含水量在“中产高效水”范围,以此为标准进行灌溉,夏、秋季分别为55.00%≤CRW≤76.25%和55.00%≤CRW≤73.61%,即实际质量含水量分别为16.70%~23.15%和16.70%~22.35%。

  • 图  1  广西西江流域水源涵养服务空间分布示意图

    Figure  1  Spatial distribution of water retention service in Xijiang River Basin of Guangxi

    图  2  广西西江流域多年平均降水量(A)与实际蒸散发(B)空间分布示意图

    Figure  2  Spatial distribution of average annual precipitation (A) and actual evapotranspiration (B) in Xijiang River Basin of Guangxi

    图  3  广西西江流域土壤饱和导水率空间分布示意图

    Figure  3  Spatial distribution of soil saturated hydraulic conductivity in Xijiang River Basin of Guangxi

    图  4  广西西江流域水源涵养服务空间分异特征示意图

    Figure  4  Spatial variation characteristic of water retention service in Xijiang River Basin of Guangxi

    图  5  广西西江流域水源涵养服务重要性分级空间分布示意图

    Figure  5  Spatial distribution of water retention service importance in Xijiang River Basin of Guangxi

    表  1  基于空间计量模型的水源涵养服务影响因素分析

    Table  1.   Influencing factors of water retention service based on spatial econometric model

    变量最小二乘法回归(OLS)空间误差模型(SEM)
    回归系数P回归系数P
    常数项 −510.200 0.000 −490.920 0.000
    土壤饱和导水率 1.772 0.000 1.649 0.000
    多年平均降水量 0.270 0.000 0.267 0.000
    植被净初级生产力 0.094 0.000 0.086 0.000
    坡度 3.401 0.000 3.185 0.000
    不透水率 −0.910 0.001 −0.973 0.000
    人口密度 −0.101 0.000 −0.033 0.021
    经济密度 0.012 0.000 0.004 0.006
    空间自相关系数 0.780 0.000
    对数似然值 −7 353.870 −6 863.070
    赤池信息准则 14 723.700 13 742.100
    施瓦兹准则 14 765.900 13 784.300
    拟合优度R2 0.853 0.939
    下载: 导出CSV

    表  2  水源涵养服务重要性分级标准

    Table  2.   Importance classification standard of water retention service

    重要性分级水源涵养服务/mm
    一般  33.61~101.35
    较重要 101.35~135.21
    中度重要135.21~174.29
    高度重要174.29~252.44
    极重要 252.44~697.91
    下载: 导出CSV
  • [1] WU Jianguo. Landscape sustainability science: ecosystem services and human wellbeing in changing landscape [J]. Landscape Ecol, 2013, 28: 999 − 1023.
    [2] 李双成, 刘金龙, 张才玉, 等. 生态系统服务研究动态及地理学研究范式[J]. 地理学报, 2011, 66(12): 1618 − 1630.

    LI Shuangcheng, LIU Jinlong, ZHANG Caiyu, et al. The research trends of ecosystem services and the paradigm in geography [J]. Acta Geogr Sin, 2011, 66(12): 1618 − 1630.
    [3] 柳冬青, 曹二佳, 张金茜, 等. 甘肃白龙江流域水源涵养服务时空格局及其影响因素[J]. 自然资源学报, 2020, 35(7): 1728 − 1743.

    LIU Dongqing, CAO Ergui, ZHANG Jinxi, et al. Spatiotemporal pattern of water conservation and its influencing factors in Bailongjiang Watershed of Gansu [J]. J Nat Resour, 2020, 35(7): 1728 − 1743.
    [4] 刘菊, 傅斌, 张成虎, 等. 基于InVEST模型的岷江上游生态系统水源涵养量与价值评估[J]. 长江流域资源与环境, 2019, 28(3): 577 − 585.

    LIU Ju, FU Bin, ZHANG Chenghu, et al. Assessment of ecosystem water retention and its value in the upper reaches of Minjiang River based on InVEST model [J]. Resour Environ Yangtza Basin, 2019, 28(3): 577 − 585.
    [5] PETUS C, DEVLIN M, da SILVA E T, et al. Defining wet season water quality target concentrations for ecosystem conservation using empirical light attenuation models: a case study in the Great Barrier Reef (Australia) [J]. J Environ Manage, 2018, 213: 451 − 466.
    [6] HOYER R, CHANG H. Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization [J]. Appl Geogr, 2014, 53: 402 − 416.
    [7] PESSACG N, FLAHERTY S, BRANDIZI L, et al. Getting water right: a case study in water yield modelling based on precipitation data [J]. Sci Total Environ, 2015, 537: 225 − 234.
    [8] MELAKU N D, RENSCHLER C S, HOLZMANN H, et al. Prediction of soil and water conservation structure impacts on runoff and erosion processes using SWAT model in the northern Ethiopian highlands [J]. J Soils Sediments, 2018, 18(4): 1743 − 1755.
    [9] SEKA A M, MOHAMMED A K. Evaluation of impacts of soil and water conservation on watershed hydrology of Kulfo River using hydrologic SWAT models [J]. Int J Sci Eng Res, 2016, 7(8): 2087 − 2092.
    [10] 龚诗涵, 肖洋, 郑华, 等. 中国生态系统水源涵养空间特征及其影响因素[J]. 生态学报, 2017, 37(7): 2455 − 2462.

    GONG Shihan, XIAO Yang, ZHENG Hua, et al. Spatial patterns of ecosystem water conservation in China and its impact factors analysis [J]. Acta Ecol Sin, 2017, 37(7): 2455 − 2462.
    [11] 顾铮鸣, 金晓斌, 沈春竹, 等. 近15 a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453 − 2462.

    GU Zhengming, JIN Xiaobin, SHEN Chunzhu, et al. Variation and influence factors of water conservation service function in Jiangsu Province from 2000 to 2015 [J]. Resour Environ Yangtza Basin, 2018, 27(11): 2453 − 2462.
    [12] 陈姗姗, 刘康, 包玉斌, 等. 商洛市水源涵养服务功能空间格局与影响因素[J]. 地理科学, 2016, 36(10): 1546 − 1554.

    CHEN Shanshan, LIU Kang, BAO Yubin, et al. Spatial pattern and influencing factors of water conservation service function in Shangluo City [J]. Sci Geogr Sin, 2016, 36(10): 1546 − 1554.
    [13] 宁亚洲, 张福平, 冯起, 等. 秦岭水源涵养功能时空变化及其影响因素[J]. 生态学杂志, 2020, 39(9): 3080 − 3091.

    NING Yazhou, ZHANG Fuping, FENG Qi, et al. Temporal and spatial variation of water conservation function in Qinling Mountain and its influencing factors [J]. Chin J Ecol, 2020, 39(9): 3080 − 3091.
    [14] 张佳田, 焦文献, 韩宝龙. 城镇化与生态系统服务的协调演化特征及空间耦合关系[J]. 生态学报, 2020, 40(10): 3271 − 3282.

    ZHANG Jiatian, JIAO Wenxian, HAN Baolong. Characteristics of coordination changes and spatial coupling relationship between urbanization and ecosystem services [J]. Acta Ecol Sin, 2020, 40(10): 3271 − 3282.
    [15] 梁晓瑶, 袁丽华, 宁立新, 等. 基于InVEST模型的黑龙江省生境质量空间格局及其影响因素[J]. 北京师范大学学报(自然科学版), 2020, 56(6): 864 − 872.

    LIANG Xiaoyao, YUAN Lihua, NING Lixin, et al. Spatial pattern of habitat quality and driving factors in Heilongjiang Province [J]. J Beijing Norm Univ Nat Sci, 2020, 56(6): 864 − 872.
    [16] 赵育恒, 曾晨. 武汉城市圈生态服务价值时空演变分析及影响因素[J]. 生态学报, 2019, 39(4): 1426 − 1440.

    ZHAO Yuheng, ZENG Chen. Analysis of spatial-temporal evolution and factors that influences ecological service values in Wuhan Urban Agglomeration, China [J]. Acta Ecol Sin, 2019, 39(4): 1426 − 1440.
    [17] 荣检, 胡宝清, 闫妍. 广西西江流域植被净初级生产力时空分布特征及其影响因素[J]. 生态学杂志, 2017, 36(4): 1020 − 1028.

    RONG Jian, HU Baoqing, YAN Yan. Spatial-temporal distribution and its influencing factors of vegetation net primary productivity in Guangxi Xijiang River basin [J]. Chin J Ecol, 2017, 36(4): 1020 − 1028.
    [18] 余新晓, 周彬, 吕锡芝, 等. 基于InVEST模型的北京山区森林水源涵养功能评估[J]. 林业科学, 2012, 48(10): 1 − 5.

    YU Xinxiao, ZHOU Bin, LÜ Xizhi, et al. Evaluation of water conservation function in mountain forest areas of Beijing based on InVEST model [J]. Sci Silv Sin, 2012, 48(10): 1 − 5.
    [19] 杨霞, 贾尔恒·阿哈提, 邱秀云, 等. 乌伦古河流域SWAT模型基础数据库构建[J]. 水资源与水工程学报, 2013, 24(6): 74 − 78.

    YANG Xia, Jiaerheng Ahati, QIU Xiuyun, et al. Construction of basic database for SWAT model in Wulungu River basin [J]. J Water Resour Water Eng, 2013, 24(6): 74 − 78.
    [20] 李磊, 董晓华, 喻丹, 等. 基于SWAT模型的清江流域径流模拟研究[J]. 人民长江, 2013, 44(22): 25 − 29, 42.

    LI Lei, DONG Xiaohua, YU Dan, et al. Study on runoff simulations on Qingjiang River Basin by SWAT model [J]. Yangtze River, 2013, 44(22): 25 − 29, 42.
    [21] 姜磊. 应用空间计量经济学[M]. 北京: 中国人民大学出版社, 2020.

    JIANG Lei. Applied Spatial Econometrics[M]. Beijing: China Renmin University Press, 2020.
    [22] 姜广辉, 何新, 马雯秋, 等. 基于空间自相关的农村居民点空间格局演变及其分区[J]. 农业工程学报, 2015, 31(13): 265 − 273.

    JIANG Guanghui, HE Xin, MA Wenqiu, et al. Rural settlements spatial pattern evolution and zoning district based on spatial autocorrelation [J]. Trans Chin Soc Agric Eng, 2015, 31(13): 265 − 273.
    [23] 王劲峰, 廖一兰, 刘鑫. 空间数据分析教程[M]. 2版. 北京: 科学出版社, 2019.

    WANG Jinfeng, LIAO Yilan, LIU Xin. Spatial Data Analysis Tutorial [M]. 2nd ed. Beijing: Science Press, 2019.
    [24] 高歌, 陈德亮, 任国玉, 等. 1956—2000年中国潜在蒸散量变化趋势[J]. 地理研究, 2006, 25(3): 378 − 387.

    GAO Ge, CHEN Deliang, REN Guoyu, et al. Trend of potential evapotranspiration over China during 1956 to 2000 [J]. Geogr Res, 2006, 25(3): 378 − 387.
    [25] CANADELL J, JACKSON R B, EHLERINGER J B, et al. Maximum rooting depth of vegetation types at the global scale [J]. Oecologia, 1996, 108(4): 583 − 595.
    [26] 傅斌, 徐佩, 王玉宽, 等. 都江堰市水源涵养功能空间格局[J]. 生态学报, 2013, 33(3): 789 − 797.

    FU Bin, XU Pei, WANG Yukuan, et al. Spatial pattern of water retetnion in Dujiangyan County [J]. Acta Ecol Sin, 2013, 33(3): 789 − 797.
    [27] 范亚宁, 刘康, 陈姗姗, 等. 秦岭北麓陆地生态系统水源涵养功能的空间格局[J]. 水土保持通报, 2017, 37(2): 50 − 56.

    FAN Yaning, LIU Kang, CHEN Shanshan, et al. Spatial pattern analysis on water conservative functionality of land ecosystem in northern slope of Qinling Mountains [J]. Bull Soil Water Conserv, 2017, 37(2): 50 − 56.
    [28] 包玉斌, 李婷, 柳辉, 等. 基于InVEST模型的陕北黄土高原水源涵养功能时空变化[J]. 地理研究, 2016, 35(4): 664 − 676.

    BAO Yubin, LI Ting, LIU Hui, et al. Spatial and temporal changes of water conservation of Loess Plateauin northern Shaanxi Province by InVEST model [J]. Geogr Res, 2016, 35(4): 664 − 676.
  • [1] 王冰怡, 张勇, 吴翠蓉, 王增, 傅伟军.  不同造林年限马尾松林碳密度结构特征及其影响因素 . 浙江农林大学学报, 2025, 42(2): 291-301. doi: 10.11833/j.issn.2095-0756.20240401
    [2] 王剑武, 季碧勇, 王铮屹, 朱程昊.  浙江省丽水市亚热带森林景观格局对森林碳密度的影响 . 浙江农林大学学报, 2024, 41(1): 30-40. doi: 10.11833/j.issn.2095-0756.20230205
    [3] 许浩, 李蔚, 刘伟, 王成康.  南京市域绿地格局时空演变特征及其影响因素 . 浙江农林大学学报, 2023, 40(2): 407-416. doi: 10.11833/j.issn.2095-0756.20220332
    [4] 刘菊莲, 韦博良, 吴雁南, 郑英茂, 刘金亮, 倪健, 于明坚, 郑子洪.  浙江九龙山常绿阔叶林不同物种的径级结构及空间关联 . 浙江农林大学学报, 2023, 40(3): 598-607. doi: 10.11833/j.issn.2095-0756.20220521
    [5] 李孜沫.  江西省国家森林乡村的空间格局及其影响机制 . 浙江农林大学学报, 2023, 40(6): 1292-1299. doi: 10.11833/j.issn.2095-0756.20230148
    [6] 何思笑, 张建国.  浙江省森林康养品牌资源空间分布特征及其影响因素 . 浙江农林大学学报, 2022, 39(1): 180-189. doi: 10.11833/j.issn.2095-0756.20210103
    [7] 黄晓芬, 白鸥.  浙江省森林乡村空间分布特征及其影响因素 . 浙江农林大学学报, 2022, 39(4): 884-893. doi: 10.11833/j.issn.2095-0756.20210558
    [8] 王越, 栾亚宁, 王丹, 戴伟.  油松林土壤有机碳储量变化及其影响因素 . 浙江农林大学学报, 2021, 38(5): 1023-1032. doi: 10.11833/j.issn.2095-0756.20210390
    [9] 徐丽, 彭浩贤, 潘萍, 欧阳勋志, 余枭, 章敏, 周巧晴.  江西省兴国县植被覆盖度及其空间格局变化 . 浙江农林大学学报, 2021, 38(6): 1117-1126. doi: 10.11833/j.issn.2095-0756.20200792
    [10] 葛扬, 张建国.  浙江省森林特色小镇空间分布特征及影响因素分析 . 浙江农林大学学报, 2020, 37(2): 374-381. doi: 10.11833/j.issn.2095-0756.2020.02.024
    [11] 李政欣, 包亚芳, 孙治.  浙江省3A级景区村庄空间分布特征及其影响因素 . 浙江农林大学学报, 2019, 36(6): 1096-1106. doi: 10.11833/j.issn.2095-0756.2019.06.006
    [12] 李洪吉, 蔡先锋, 袁佳丽, 曾莹莹, 于晓鹏, 温国胜.  毛竹快速生长期光合固碳特征及其与影响因素的关系 . 浙江农林大学学报, 2016, 33(1): 11-16. doi: 10.11833/j.issn.2095-0756.2016.01.002
    [13] 罗时琴, 吕文强, 李安定, 李坡.  织金洞二氧化碳的变化规律及其影响因素分析 . 浙江农林大学学报, 2015, 32(2): 291-297. doi: 10.11833/j.issn.2095-0756.2015.02.018
    [14] 蔡碧凡, 陶卓民, 张明如, 李涛, 陆森宏.  天目山景区客流季节性波动特征及影响因素 . 浙江农林大学学报, 2015, 32(6): 947-957. doi: 10.11833/j.issn.2095-0756.2015.06.019
    [15] 陆心月, 李兰英, 万超伟, 黄文静, 李浪.  嘉兴市农户参与“两分两换”政策状况及其影响因素分析 . 浙江农林大学学报, 2013, 30(5): 734-739. doi: 10.11833/j.issn.2095-0756.2013.05.016
    [16] 吕琨珑, 饶良懿, 李菲菲, 李会杰, 朱梦洵, 朱振亚, 周建.  中国森林粗木质残体储量及其影响因素 . 浙江农林大学学报, 2013, 30(1): 114-122. doi: 10.11833/j.issn.2095-0756.2013.01.017
    [17] 张佳佳, 傅伟军, 杜群, 张国江, 姜培坤.  浙江省森林凋落物碳密度空间分布的影响因素 . 浙江农林大学学报, 2013, 30(6): 814-820. doi: 10.11833/j.issn.2095-0756.2013.06.003
    [18] 李德会, 李贤伟, 王巧, 荣丽, 杨渺, 刘朔.  林木根系呼吸影响因素及根系呼吸对全球变化的响应 . 浙江农林大学学报, 2007, 24(2): 231-238.
    [19] 王景燕, 龚伟, 胡庭兴, 宫渊波, 冉华.  川南天然常绿阔叶林人工更新后的土壤水源涵养功能 . 浙江农林大学学报, 2007, 24(5): 569-574.
    [20] 文桂峰, 孙芳利, 于红卫.  苦槠木染色深度影响因素初探 . 浙江农林大学学报, 2004, 21(1): 6-9.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210616

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/5/1104

图(5) / 表(2)
计量
  • 文章访问数:  833
  • HTML全文浏览量:  157
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2022-04-22
  • 录用日期:  2022-05-13
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-10-20

广西西江流域水源涵养服务空间格局及其影响因素

doi: 10.11833/j.issn.2095-0756.20210616
    基金项目:  广西自然科学基金资助项目(2018GXNSFBA138026);广西科技基地和人才专项(桂科AD20238046);国家自然科学基金资助项目(42071135)
    作者简介:

    张成虎(ORCID: 0000-0001-8462-3755),从事生态学方面的研究。E-mail: chenghuzhang@nnnu.edu.cn

    通信作者: 刘菊(ORCID: 0000-0003-4390-4643),助理研究员,博士,从事生态系统服务方面的研究。E-mail: liuju0607@163.com
  • 中图分类号: S718.5

摘要:   目的  水源涵养在众多生态系统服务中占据着重要的地位。揭示水源涵养服务空间格局及其影响因素,识别水源涵养服务重要区,对流域水资源利用、分区管理与综合保护具有重要意义。  方法  以广西西江流域为研究对象,基于InVEST模型、GeoDa与ArcGIS等工具,使用全域和局域空间自相关检验研究区水源涵养服务空间分布模式,构建空间误差模型辨识水源涵养服务关键影响因素,采用分位数分类法进行水源涵养服务重要性分级。  结果  广西西江流域多年平均水源涵养量为185.36 mm,2015年总量为376.10亿 m3。全域莫兰指数为0.769,表明研究区水源涵养服务在空间分布上具有空间依赖性。考虑到多重共线性的影响,最终从13项影响因素中筛选出7项进入空间误差模型,得出土壤饱和导水率、多年平均降水量、坡度、植被净初级生产力、经济密度对水源涵养服务产生显著正面影响,而人口密度和不透水率对水源涵养服务产生显著负面影响。识别出黔浔江流域及左郁江流域南部区域是水源涵养服务重要区,在相关政策制定与管理决策中需重点和优先考虑。  结论  广西西江流域水源涵养服务在空间分布上呈现集聚分布,并以低-低聚集和高-高聚集类型为主。土壤饱和导水率、多年平均降水量、坡度以及不透水率是水源涵养服务最主要的影响因素。图5表2参28

English Abstract

张成虎, 刘菊, 胡宝清, 等. 广西西江流域水源涵养服务空间格局及其影响因素[J]. 浙江农林大学学报, 2022, 39(5): 1104-1113. DOI: 10.11833/j.issn.2095-0756.20210616
引用本文: 张成虎, 刘菊, 胡宝清, 等. 广西西江流域水源涵养服务空间格局及其影响因素[J]. 浙江农林大学学报, 2022, 39(5): 1104-1113. DOI: 10.11833/j.issn.2095-0756.20210616
PANShi-xiu, MEN Xiu-xiang, FENG Jin-chao, et al. A review of studies on habitat selection by small and solitary forest ruminants[J]. Journal of Zhejiang A&F University, 2007, 24(3): 357-362.
Citation: ZHANG Chenghu, LIU Ju, HU Baoqing, et al. Spatial pattern and its influencing factors of water conservation services in Xijiang River Basin, Guangxi[J]. Journal of Zhejiang A&F University, 2022, 39(5): 1104-1113. DOI: 10.11833/j.issn.2095-0756.20210616
  • 维持和改善生态系统服务是实现区域可持续发展的基本条件[1],开展生态系统服务的量化评估以实现生态系统有效管理,对保障区域可持续发展具有重大意义[2-3]。在众多生态系统服务中,水源涵养服务占据着重要的地位,对改善区域水文状况、调节区域水分循环发挥着关键作用[4-5]。生态系统是具有空间差异的复杂系统,其水源涵养服务又受到气候、地形、植被、土壤、土地利用、社会经济等多种自然和人文因素的影响,导致水源涵养服务也存在显著的空间差异。定量化与空间可视化评估已成为水源涵养服务评价的最新趋势,也是水资源有效管理和保护决策的重要需求[6]

    目前,国内外学者们已使用地理信息系统(GIS)、InVEST模型、SWAT模型等方法开展了大量的水源涵养服务空间可视化评估[7-9],并对不同地区、不同尺度的水源涵养服务空间格局及其影响因素进行了研究,如全中国[10]、江苏省[11]、商洛市[12]、甘肃白龙江流域[3]、秦岭地区[13]等。研究大多通过分区统计比较不同子流域、不同行政单元、不同海拔、不同土地利用方式、不同植被覆盖下水源涵养服务的差异[3, 10-13],并使用相关性分析、回归分析、主成分分析等探讨水源涵养服务与其影响因素之间的关系[10-12],但这些传统的统计模型构建中忽略了各变量的空间依懒性和空间异质性。近年来,空间回归模型如空间误差模型(SEM)、空间滞后模型(SLM)、地理加权回归模型(GWR)等受到广泛关注。张佳田等[14]通过SEM模型测度生态系统服务能力与城镇化水平及各子系统得分关系。梁晓瑶等[15]基于InVEST模型评估了黑龙江省的生境质量,利用多尺度GWR模型,探究了影响生境质量的自然和人文要素作用空间尺度差异及其影响程度。赵育恒等[16]对武汉城市圈生态服务价值时空演变分析及影响因素进行研究表明:SEM模型消除了由地域空间自相关带来的空间误差影响,使得模型更加稳健和准确。然而,使用空间回归模型探讨生态系统水源涵养服务影响因素的研究尚处于起步阶段。

    西江是珠江水系最大的支流,西江流域是贯通珠江—西江经济带陆海丝绸之路的重要通道,也是广西粮食主产区和珠江流域重要的生态屏障。广西西江流域水源涵养服务直接关系到该区域的水源安全和供水安全,对该区域社会经济发展至关重要,但目前对广西西江流域水源涵养服务的研究较少。因此,本研究基于InVEST模型,在小流域尺度上空间可视化评估该区域水源涵养服务,并使用GeoDa分析水源涵养空间格局,构建空间统计模型,辨识关键影响因素,最终基于ArcGIS进行水源涵养服务重要性分级和空间分区以识别水源涵养优先和重点保护的区域,以期为流域水资源利用、分区管理与综合保护等提供重要参考。

    • 西江作为珠江的主干流,全长2 214 km,横跨云南、贵州、广西、广东4个省(自治区)。广西西江流域(21°35′~26°13′N,104°26′~112°04′E)面积为20.29×104 km2,流域内主要支流有南盘江、红水河、柳江、右江、左郁江、桂贺江和黔浔江。该流域地处亚热带季风气候区,湿润多雨,夏长冬短,年均气温为16.5~23.1 ℃,年均降水量为1 080~2 760 mm。地貌复杂多样,属山地丘陵性盆地地貌,岩溶地貌发育。土壤类型多样,红壤比例大,石灰岩土广布。主要植被类型为森林(马尾松Pinus massoniana和甜槠Castanopsis eyrei等)、灌丛(假鹰爪Desmos chinensis)、草地(野古草Arundinella anomala)和栽培植被(水稻Oryza sativa和甘蔗Saccharum officinarum等)[17]

    • 利用InVEST模型的产水模块估算研究区产水量。该模块根据水量平衡原理,基于气候、地形和土地利用,利用降水量减去实际蒸散量计算每个栅格的径流量。计算公式如下:

      $$ {Y}_{jx}=\left(1-\frac{{A}_{xj}}{{P}_{x}}\right){P}_{x}。 $$ (1)

      式(1)中:Yjx为第j土地利用类型栅格x的年产水量(mm);Px为栅格单元x的年均降水量(mm);Axj为第j土地利用类型栅格x的实际年均蒸散发量(mm);计算过程参考InVEST模型用户手册与文献[4]。

    • 使用水源涵养量表征生态系统水源涵养服务。水源涵养量是降水量减去蒸散发和地表径流后,土壤层可调节的水量,即在产水量的基础上,再用地形指数、土壤饱和导水率和流速系数对产水量进行修正[18],计算公式为:

      $$ W=\mathrm{m}\mathrm{i}\mathrm{n}\left(1\text{,}\frac{249}{V}\right)\times \mathrm{m}\mathrm{i}\mathrm{n}\left(1\text{,}\frac{0.9 T}{3}\right)\times \mathrm{m}\mathrm{i}\mathrm{n}\left(1\text{,}\frac{K}{300}\right)Y \text{;} $$ (2)
      $$ T=\mathrm{l}\mathrm{g}\left(\frac{\mathrm{Q}}{DS}\right) 。 $$ (3)

      式(2)~(3)中:W为水源涵养量(mm);V为流速系数;K为土壤饱和导水率(mm·d−1),具体计算方法见文献[19-20];Y为产水量(mm);T为地形指数;Q为集水区栅格数量;D为土壤厚度(mm);S为百分比坡度(%)。min为ArcGIS栅格计算器中取最小值函数。

    • 全域莫兰指数是应用最为广泛的检验全域空间自相关的统计量,取值为[−1,1],正值表示空间聚集现象,负值表示空间分散现象,0表示空间上随机分布[21-22]。局域空间自相关可测度整个区域中一个单元上的某一属性与邻近单元同一属性值的相关程度,主要通过空间关联的局部指标分布图揭示各指标的空间关联结构模式[21-22]。全域莫兰指数的计算公式为:

      $$ {I_{\rm{g}}} = \frac{{n\displaystyle\sum\limits_{j = 1}^n {\sum\limits_{k = 1}^n {{W_{jk}}{Z_j}{Z_k}} } }}{{\displaystyle\sum\limits_{j = 1}^n {\displaystyle\sum\limits_{k = 1}^n {{W_{jk}}} } \sum\limits_{j = 1}^n {Z_j^2} }}。 $$ (4)

      式(4)中:Ig为全域莫兰指数;n为观测总数;ZjZk分别为第jk个斑块观测值与所有斑块观测值的均值之差。Wjk为空间权重,若斑块jk相邻,则Wjk为1,否则Wjk为0。使用标准化统计量(Z)表征空间自相关的显著性,计算公式为:

      $$ Z=\frac{{I}_{\mathrm{g}}-E}{\sqrt{V}} 。 $$ (5)

      式(5)中:EIg的期望值;VIg的方差。在0.05的置信水平下,|Z|=1.96,以|Z|>1.96表示该区域的空间自相关是显著的。

      局域莫兰指数的计算公式为:

      $${I_l} = \frac{{{Z_j}\displaystyle\sum\limits_{j = 1}^n {{W_{jk}}{Z_k}} }}{{\dfrac{1}{n}\displaystyle\sum\limits_{j = 1}^n {Z_j^2} }}。 $$ (6)

      式(6)中:Il为局域莫兰指数,其余变量含义与式(4)相同。根据IlZj与显著性检验结果,可将第j个斑块与周边斑块观测值的相关性划分为高-高聚集、高-低聚集、低-低聚集、低-高聚集和不显著5种类型,即局部指标分布图[21-22]

    • 相关研究表明:水源涵养的空间差异与气候、植被、土地利用、土壤和社会经济有关[10-12],地形则是通过影响自然和人文要素的梯度差异来改变水源涵养的分布格局[3]

      如果因变量或自变量存在空间自相关性,将导致经典线性回归模型的残差也存在空间自相关,从而其回归系数和拟合优度(R2)都将产生偏性和大方差,此时应当使用空间回归模型[23]。本研究使用GeoDa构建空间回归模型对流域水源涵养服务影响因素进行定量分析,对比不同空间回归模型结果以选择相应的模型,模型R2和对数似然值越大,模型拟合程度越好,而赤池信息准则和施瓦兹准则统计量越小,则模型拟合程度越好[23]

    • 根据InVEST模型需求和数据可获取性,以2015年为典型年,进行实证研究。模型所需数据有多年平均降水量、潜在蒸散量、土地利用类型、土壤厚度、植被可利用水、流域及小流域边界、生物物理参数表、地形指数、土壤饱和导水率以及产水量验证数据。

      多年平均降水量与潜在蒸散量。以广西西江流域内及周边61个气象站点2001—2015年降水、气温、实际水汽压、风速、相对湿度、日照百分率为数据,在ArcGIS中使用样条函数插值获取研究区多年平均降水量与多年平均潜在蒸散量栅格图层,其中,潜在蒸散量采用联合国粮食与农业组织(FAO)给出的修正Penman-Monteith方程[24]计算而来。

      土地利用类型。获取2015年的广西西江流域土地利用数据,一级分类为耕地、林地、草地、水域、城乡-工矿-居民用地和未利用地6类。数据来自中国科学院资源环境科学数据中心(http://www.resdc.cn)。

      土壤厚度、植被可利用水以及土壤饱和导水率。土壤厚度、黏粒含量、粉粒含量、砂粒含量、土壤有机质含量数据来自中国1∶100万土壤数据库。植被可利用水根据土壤质地计算,土壤饱和导水率根据土壤砂粒含量计算[19-20],详细计算过程参考模型手册以及文献[3-4]。

      小流域边界和地形指数。根据数字高程模型(DEM),使用ArcGIS中的水文分析获得小流域边界,既要尽可能细化小流域范围,合理表达河网稠密度等级下的集水盆地,便于后续空间展示,又要避免小流域细碎不利于模型计算,经过反复汇流累积阈值试验,最终汇流累积阈值设定为5 000时,小流域平均面积约141 km2,共划分了1 438个小流域。地形指数根据式(3)计算。DEM来自中国科学院资源环境科学数据中心(http://www.resdc.cn)。

      生物物理参数表。此表需要获取不同土地利用类型的植被蒸散系数、最大根系深度和流速系数。根据参考文献[3, 25-26]、模型使用手册中推荐的参数和广西西江流域的实际情况确定相关参数。

      产水量验证数据。使用地表水资源量对模拟产水量进行验证,2001—2015年广西西江流域地表水资源量数据来自广西壮族自治区水利厅官方网站(http://slt.gxzf.gov.cn/)。

    • 选取气候(多年平均降水量、实际蒸散量),地形(坡度、海拔),土地利用(林地面积比例、耕地面积比例),植被与土壤[植被净初级生产力(NPP)、土壤饱和导水率、植被可利用水、土壤厚度]以及社会经济(人口密度、经济密度、不透水率)共13个因子作为水源涵养服务的影响因素。其中,多年平均降水量、土壤饱和导水率、植被可利用水、土壤厚度来源同2.5.1部分;坡度、海拔来源于DEM;实际蒸散量来自InVEST模型产水结果中间数据;林地面积比例、耕地面积比例和不透水率根据土地利用中林地面积、耕地面积和建设用地面积与各小流域面积之比计算;NPP使用CASA模型计算;人口密度与经济密度是根据2016年《广西统计年鉴》中各区县常住人口、国内生产总值与各区县行政面积之比计算。使用ArcGIS将13个因子进行分区统计得到小流域矢量数据。

    • 根据研究区地表水资源量数据,计算出广西西江流域2001—2015年多年平均径流量为1 547.21亿 m3,经过反复模拟计算,当Zhang系数为6.933时,模拟产水量相对误差为1.63%,此时模拟结果最优。在此产水结果上,根据式(2)和式(3),计算研究区水源涵养量。结果显示:广西西江小流域多年平均水源涵养量为33.62~697.91 mm,平均为185.36 mm,标准差为106.26 mm,2015年水源涵养总量为376.10亿 m3,占多年平均产水量的23.90%,远高于2015年广西总用水量285.2亿 m3。研究区内水源涵养量呈现出明显的空间差异(图1),各子流域水源涵养量平均值由高到低依次为黔浔江流域(298.11 mm)、左郁江流域(251.94 mm)、桂贺江流域(194.06 mm)、柳江流域(148.80 mm)、红水河流域(144.04 mm)、右江流域(136.47 mm)、南盘江流域(65.57 mm),流域内水源涵养量的空间差异主要受降水、土壤性质、植被生长和地形等因素空间异质性的共同影响。水源涵养量较高的区域分布在左郁江流域南部地区以及黔浔江流域内,小流域多年平均水源涵养量为300.00~697.91 mm,该区域降水量较高,植被茂密,形成良好的土壤结构及通风状况,其土壤下渗、持水能力较强,水源涵养服务水平高。水源涵养量较低的区域主要分布在南盘江流域内,在右江流域、红水河流域、柳江流域、桂贺江流域以及左郁江流域北部地区有零星分布(图1),小流域多年平均水源涵养量小于100.00 mm,该区域降水量低、土壤饱和导水率偏低是导致水源涵养服务偏低的主要原因。

      图  1  广西西江流域水源涵养服务空间分布示意图

      Figure 1.  Spatial distribution of water retention service in Xijiang River Basin of Guangxi

    • 降水量和实际蒸散发是影响水源涵养服务的重要气候因子。从图2A可知:广西西江流域多年平均降水量为1 526.36 mm,空间差异明显,主要表现为由西北向东南逐渐增加的趋势,并与流域产水量的空间分布一致。构建最小二乘法回归模型(OLS)发现:本研究中降水量可以解释产水量变化的91.68%,是产水量最重要的影响因素;降水量可以解释水源涵养量变化的30.47%,降水量与水源涵养量具有较为一致的空间分布特征,表明降水量对水源涵养服务具有重要影响。

      图  2  广西西江流域多年平均降水量(A)与实际蒸散发(B)空间分布示意图

      Figure 2.  Spatial distribution of average annual precipitation (A) and actual evapotranspiration (B) in Xijiang River Basin of Guangxi

      实际蒸散发是水循环的重要环节,与降水、植被和土壤密切相关。研究区实际蒸散发较大,平均为751.41 mm,且存在显著的空间差异,主要表现为由西北向东南逐渐增加的趋势(图2B)。尽管左郁江流域南部和黔浔江流域的实际蒸散发较大,但该区域降水量高,加之植被与土壤的综合作用,使得该区域水源涵养量高于其他区域。OLS结果显示:实际蒸散发与降水量之间存在一定的共线性,两者可以解释水源涵养服务变化的36.00%。

    • 使用ArcGIS分区统计以对比不同土地利用类型的水源涵养量平均值,结果显示:不同土地利用类型水源涵养量平均值由高到低依次为林地(251.78 mm)、灌丛(184.63 mm)、草地(162.82 mm)、耕地(58.73 mm),其中,林地的水源涵养量平均值高于流域平均值。本研究中,不同土地利用类型植被净初级生产力平均值由高到低依次为林地(973.58 g·m−3)、草地(884.95 g·m−3)、灌丛(832.80 g·m−3)、耕地(660.42 g·m−3),对于林地而言,较高的净初级生产力可积累较多的生物量,群落层次丰富且密封性好的林地,林冠和凋落物的截留作用可减少地表径流;灌丛和草地由于地上生物量相比林地较少,导致地表产流较大,水源涵养服务有所降低[13];耕地由于受人类活动影响,其地上生物量更受季节性收获而变动,导致地表产流量增大,水源涵养服务降低。

    • 土壤是影响水源涵养服务的重要因子,通过土壤的孔隙结构特性,与植物根系、土壤生物共同实现水分的蓄积和再分配[27]。由图3可知:广西西江流域土壤饱和导水率平均为100.70 mm·d−1,存在显著空间差异,其高值主要分布在右江流域、左郁江流域和黔浔江流域,由北向南呈现逐渐增加的趋势。对比图1图3发现:广西西江流域水源涵养空间分布与土壤饱和导水率的空间分布较为一致。OLS结果显示:土壤饱和导水率可以解释水源涵养量变化的53.70%,是水源涵养服务最重要的影响因素。

      图  3  广西西江流域土壤饱和导水率空间分布示意图

      Figure 3.  Spatial distribution of soil saturated hydraulic conductivity in Xijiang River Basin of Guangxi

    • 相关研究表明:水源涵养量与人口密度呈负相关[3]。在流域尺度上,水源涵养服务与社会经济的相关性较弱;而在栅格尺度上,经济发展、人口增长、城镇化水平的提高,对水源涵养服务带来了负面影响[11]。OLS结果显示:人口密度、经济密度和不透水率3个指标仅可以解释水源涵养服务变化的6.86%,但三者均通过显著性检验。可见,社会经济因素对水源涵养服务具有显著影响,但影响程度较弱。

    • 全域空间自相关分析表明:全域莫兰指数为0.769,P为0.001,通过了Z检验,表明小流域尺度上广西西江流域水源涵养服务在空间分布上存在空间依赖性,说明水源涵养服务在空间分布上是集聚分布的。即高水源涵养量的小流域与较高水源涵养量的小流域相靠拢,而低水源涵养量的小流域与较低水源涵养量的小流域相邻。

      局域自相关性(图4)分析表明:广西西江流域水源涵养服务以低-低聚集和高-高聚集类型为主,这2种类型区面积所占比例分别为21.08%和13.56%,低-低聚集类型主要分布在南盘江流域、右江流域、红水河流域和柳江流域内等,而高-高聚集类型主要分布在左江及郁江流域南部,以及黔江和浔江东南部。低-高聚集类型和高-低聚集类型面积所占比例均较小,分别为0.25%和0.29%。水源涵养服务在流域内剩余的64.82%区域空间聚集类型不显著。

      图  4  广西西江流域水源涵养服务空间分异特征示意图

      Figure 4.  Spatial variation characteristic of water retention service in Xijiang River Basin of Guangxi

    • 在GeoDa中使用OLS检验13项因子对水源涵养服务的影响,使用逐步回归方法筛选出对水源涵养量影响显著且各自变量之间多重共线性统计量<30的因子组合,用于空间模型分析。最终筛选出土壤饱和导水率、降水量、植被净初级生产力、坡度、人口密度、经济密度及不透水率7个因子。由表1所示:OLS检验拟合优度R2为0.853,多重共线性统计量<30,残差莫兰指数为0.597,P为0.000,说明OLS模型回归后的残差存在明显的空间依赖性,则必须剔除OLS模型回归后残差中的空间依赖性因素,即使用空间回归模型进行影响因素分析。根据LM检验以及稳健性的LM检验结果,本研究最终选择空间误差模型(SEM)进行分析。SEM是指模型的误差项导致了空间变量之间的相关性,变量之间的空间相互作用存在于误差项。

      表 1  基于空间计量模型的水源涵养服务影响因素分析

      Table 1.  Influencing factors of water retention service based on spatial econometric model

      变量最小二乘法回归(OLS)空间误差模型(SEM)
      回归系数P回归系数P
      常数项 −510.200 0.000 −490.920 0.000
      土壤饱和导水率 1.772 0.000 1.649 0.000
      多年平均降水量 0.270 0.000 0.267 0.000
      植被净初级生产力 0.094 0.000 0.086 0.000
      坡度 3.401 0.000 3.185 0.000
      不透水率 −0.910 0.001 −0.973 0.000
      人口密度 −0.101 0.000 −0.033 0.021
      经济密度 0.012 0.000 0.004 0.006
      空间自相关系数 0.780 0.000
      对数似然值 −7 353.870 −6 863.070
      赤池信息准则 14 723.700 13 742.100
      施瓦兹准则 14 765.900 13 784.300
      拟合优度R2 0.853 0.939

      根据SEM结果(表1),模型拟合优度R2为0.939,显示出SEM拟合效果更优。SEM模拟结果中各因子的回归系数均有所改变,消除了由地域空间自相关带来的空间误差影响,使得模型更加稳健和准确。表1所示:土壤饱和导水率、多年平均降水量、坡度、植被净初级生产力、经济密度与水源涵养的系数均为正数,P均小于0.01,说明这些因素的提高均能极显著地增加生态系统水源涵养服务;而人口密度和不透水率的回归系数均为负值,P均小于0.05,说明随着人口密度、不透水率的增加均能显著地降低生态系统水源涵养服务。空间自相关系数在统计上也极显著,说明误差项存在空间依懒性。从回归系数看,土壤饱和导水率、多年平均降水量、坡度以及不透水率是水源涵养服务的主要影响因素。

    • 在ArcGIS软件中采用分位数分类法进行水源涵养服务重要性分级[28]。按水源涵养量相对值由低到高依次分为5个重要性等级,即一般重要、较重要、中度重要、高度重要、极重要(表2)。根据重要性分级评价结果,将极重要区和高度重要区划定为水源涵养服务重要区。

      表 2  水源涵养服务重要性分级标准

      Table 2.  Importance classification standard of water retention service

      重要性分级水源涵养服务/mm
      一般  33.61~101.35
      较重要 101.35~135.21
      中度重要135.21~174.29
      高度重要174.29~252.44
      极重要 252.44~697.91

      图5显示:研究区水源涵养服务极重要区面积占全流域的19.78%,集中分布在黔浔江流域以及左郁江流域南部地区,在其他子流域内呈现少量零星分布;除南盘江流域之外,水源涵养服务高度重要区(面积占比19.95%)在各子流域内均有分布,其分布较为分散,但紧密围绕在极重要区周边;水源涵养服务中等重要区(面积占比20.18%)主要分布在右江流域、红水河流域中游、柳江流域东北部和桂贺江流域内,零星分布在左郁江流域内;水源涵养服务较重要区(面积占比20.02%)主要分布在红水河流域上游、柳江流域西南部,零星分布在左郁江、右江和桂贺江流域内;水源涵养服务一般重要区(面积占比20.07%)主要分布在南盘江流域、右江流域、红水河流域上游、柳江流域西南部和左郁江流域北部。上述水源涵养高度重要区和极重要区作为广西西江流域水源涵养服务重要区,在制定水资源利用、生态保护等政策与规划时,是重点和优先保护的区域。

      图  5  广西西江流域水源涵养服务重要性分级空间分布示意图

      Figure 5.  Spatial distribution of water retention service importance in Xijiang River Basin of Guangxi

    • 广西西江小流域多年平均水源涵养量平均为185.36 mm,2015年水源涵养总量为376.10亿 m3,占多年平均产水量的23.90%。研究区水源涵养服务呈明显的空间差异,表现为由西北向东南逐渐增加的趋势,在空间分布上呈现聚集分布,并以低-低聚集和高-高聚集类型为主。土壤饱和导水率、多年平均降水量、坡度以及不透水率是水源涵养服务的主要影响因素。

    • 本研究发现自然因素中土壤饱和导水率、降水量和植被净初级生产力与水源涵养服务呈正相关,且影响较为显著,这与宁亚洲等[13]的研究结果一致,说明降水量越高,植被越茂密,越有利于形成良好的土壤结构,进而促进土壤持水能力,提高水源涵养服务。本研究中,社会经济因素对水源涵养服务具有显著影响,但影响程度较弱。其中,人口密度与水源涵养服务呈负相关,这与柳冬青等[3]、龚诗涵等[10]、顾铮鸣等[11]的研究结果相吻合;而经济密度与水源涵养服务呈正相关,这与龚诗涵等[10]和顾铮鸣等[11]的研究结果存在差异,可能与研究区经济密度差异程度有关。

      水源涵养服务空间定量化评估以及重要性分级是区域水资源利用、分区管理与综合保护的基础,在实际应用中评估结果的准确性是首先需要考虑的。本研究模型的简化以及缺少野外长期实测数据,增加了研究结果的不确定性,应在以下方向继续研究:①加强野外观测,获取长期实测数据,进一步完善参数本地化工作以提高结果准确性;②目前模型结果的验证多使用研究区水资源公报数据或水文站实际径流数据来进行产水量结果的验证,但现实中难以获取流域水源涵养服务实际监测数据进行结果验证,常用的综合蓄水法实测的是水源涵养潜在能力,如何区分流域水源涵养潜在能力与实际提供的水源涵养服务是将来评估的关键问题。

    • 本研究得到了北部湾环境演变与资源利用教育部重点实验室、广西地表过程与智能模拟重点实验室系统基金项目(GTEU-KLOP-X1708)、广西高校中青年教师基础能力提升项目(2018KY0360)和广西高校大学生创新创业计划(20180603286)的支持,在此表示感谢。感谢审稿专家与编辑老师对本文提出了建设性修改意见!

参考文献 (28)

目录

/

返回文章
返回