-
森林乡村是指乡村自然生态风貌保持完好,乡土田园特色突出,森林氛围浓郁,森林功能效益显著,涉林产业发展良好,人居环境整洁,保护管理有效的生态宜居乡村,其创建目标是“共建森林乡村,共享美丽家园”,有利于示范带动乡村绿化美化,推进落实乡村振兴战略和农村人居环境整治[1]。因此,开展国家森林乡村评选、评定与评价及其相关研究,具有重要的现实意义。
自2019年国家森林乡村评定以来,国内关于国家森林乡村的研究集中在以下层面:一是国家森林乡村分布的空间特征与影响机制。在全国尺度,无论是针对第1批或是第2批国家森林乡村的研究,均表明空间上具有以“胡焕庸线”为指向的“东密西疏”和形成多个集聚分布中心的空间格局[2−5]。在省域尺度,对浙江[6]、湖南[7]、湖北[8]等省份的案例研究表明:虽然各省国家森林乡村分布特征各有差异,但通常都存在区域分布不均衡、冷热点层次分明等空间格局;影响因素互不相同,但地形地貌、气候条件、河流水系、森林资源等自然环境因素,文化资源、社会经济基础、交通通达性等社会环境因素通常是主要考量因素。二是国家森林乡村的分异特征与分区优化。最新研究基于森林乡村可达类型与耦合分区的组合分析,将全国森林乡村划分为重点发展区、特色挖掘区、集聚提升区、适度引导区和功能转型区等5类,并提出针对性发展策略[9]。
江西是中国南方重点林区,森林面积约10.2 万km2,森林覆盖率持续稳定在63.1%以上,林业在江西省生态文明建设中发挥着重要的主体作用。本研究开展江西省国家森林乡村区域空间格局及影响机制研究,以期服务于江西地区乡村振兴战略和美丽乡村战略的深度实施。
-
江西省位于长江中下游地区,北临长江,赣江自南向北纵贯全省,汇入长江,国土面积约16.69万km2,为典型的亚热带季风气候区,年均气温为16.3~19.5 ℃,年降水量为1 341.0~1 943.0 mm。江西省东、西、南三面环山,中部丘陵和河谷平原交错分布,北部为鄱阳湖平原。江西省共辖11个地级市,依据地理空间的差异可以分为赣北、赣中、赣南3个区域。
-
2019年,国家林业和草原局等相关部门连续认定了第1批3 974个、第2批3 693个,合计7 667个国家森林乡村。其中,江西省第1批有224个(5.64%)、第2批有206个(5.58%),合计430个国家森林乡村,相当于国家森林乡村5.61%的抽样统计样本,以及江西省行政村(21 392个) 2.01%的抽样统计样本。
-
遵循指标评价、数据获取等不同维度,从“评价、解析、指标、数据”4个层次构建江西省国家森林乡村空间格局形成机制的评价结构体系(表1),其中:以评价认定办法中明确的六大维度为评价维,并进一步从自然环境因素(地理环境、森林植被、生态环境)和社会环境因素(社会经济、旅游资源、行政管理) 2个层面限定要素作为解析维;指标维是支撑解析维的分解指标编码,数据维是对应指标维的量化指标,形成层层分解、递进的评价量化体系。各项指标以国家森林乡村评选当年,即2019年为参照年份,若个别年份数据缺失,则以相邻年份予以插补。各项指标的数据获取主要通过统计数据和共享数据2种途径:①区域面积、行政村数量、森林产值等指标数据来源于《2020年中国县域统计年鉴》《2020年江西统计年鉴》以及江西省11个地级市统计年鉴,另有个别数据来源于江西省11个地级市国民经济和社会发展统计公报等。国家森林公园、4A级及以上景区等指标数据来源于国家林业和草原局、国家文化和旅游部等官网。②共享数据主要通过网络共享资源获取[10−17]。
表 1 江西省国家森林乡村“评价、解析、指标、数据”四维结构体系
Table 1. Four-dimensional structural system of “evaluation-analysis-indicators-data” for national forest villages in Jiangxi Province
评价维 解析维 指标维 数据维 q r 自然生态风貌保护
山水林田湖草系统治理
森林绿地建设
森林质量效益
乡村绿化管护
乡村生态文化地理环境 F1 海拔 0.249 0.231* F2 地形起伏度 0.013 0.077 F3 年均气温 0.142 −0.082 F4 年降水量 0.164 −0.072 F5 干燥指数 0.177 0.066 F6 湿润指数 0.196 −0.015 森林植被 F7 森林净初级生产力 0.358 −0.121 F8 生物丰度指数 0.389 0.249* F9 森林冠层高度 0.288 0.226* F10 归一化植被指数 0.274 0.215* 生态环境 F11 生态系统服务价值 0.271 −0.122 F12 生态环境质量 0.376 0.212* 社会经济 F13 国内生产总值 0.304 −0.264** F14 人口密度 0.153 −0.136 F15 林业产值 0.178 −0.173 旅游资源 F16 国家森林公园数量 0.152 0.284** F17 旅游扶贫村数量 0.378 0.253* F18 传统村落数量 0.393 0.150 F19 4A级及以上景区数量 0.318 0.255* 行政管理 F20 居民地数量 0.014 −0.117 F21 行政村数量 0.287 −0.132 说明:q为各因素参与地理探测器分析的贡献度;r为各因素参与国家森林乡村数量相关系数,取绝对值进行横向比较。*和**分别表示0.05和0.01水平相关性显著。 -
江西省国家森林乡村空间格局分析主要基于ArcGIS 10.7软件平台,使用的工具包括最近邻指数、变异系数、核密度、地理加权回归等。最近邻指数$ R=\dfrac{{\bar {r}_{1}}}{{\bar {r}_{\mathrm{E}}}} $。其中:$ {\bar{r}_{1}} $为平均实际最近距离,$ {\bar{r}_{\mathrm{E}}} $为理论最近距离。R=1时,趋于随机型分布;R>1时,趋于均匀型分布;R<1时,趋于凝聚型分布。变异系数${{C}}_v=\dfrac{{\bar S}}{\mathrm{\delta }}$×100%。其中:$ {\bar S} $为泰森多边形面积平均值,δ为其标准差。33%<$ {C}_{v} $<64%时,随机分布;$ {C}_{v} $≥64%时,集群分布;$ {C}_{v} $≤33%时,均匀分布。核密度$f\left(x\right)=\dfrac{1}{nh}\displaystyle \sum _{i=1}^{n}K\left(\dfrac{{x}-{x}_{i}}{{h}}\right)$。其中:$ K\left(\dfrac{{x}-{x}_{i}}{h}\right) $为核函数;h>0为带宽;x − xi表示估值点x到事件xi处的距离。$ f\left(x\right) $值越大,表示点越密集,发生的概率越高。地理加权回归${y}_{i}={\beta }_{0}\left({u}_{i},{v}_{i}\right)+\displaystyle \sum _{i=1}^{k}{\beta }_{i}\left({u}_{i},{v}_{i}\right){x}_{ij}+{\varepsilon }_{i}$。其中:$ {y}_{i} $为第i个县区国家森林乡村数量,k为参与地理加权回归样本数量,$ \left({u}_{i},{v}_{i}\right) $为第i个县区地理中心坐标,$ \;{\beta }_{0} $为常数项,$ \;{\beta }_{i} $为第j个自变量回归系数,$ {x}_{ij} $为第i个县区为采样点时第j个变量,$ {\varepsilon }_{i} $为随机误差。
-
地理探测器是用以探测空间分异性,以及揭示其背后驱动因子的统计学方法,其理论核心是通过地理分区来探测研究对象与环境因子之间空间分布格局的一致性[18],公式:$q=1-\dfrac{\displaystyle \sum_{h=1}^{L}{N}_{h}{\sigma }_{h}^{2}}{N{\sigma }^{2}}$。其中:q为因子影响力;L为自变量分层数;$ {N}_{h} $为h层的单元数;N为研究区域整体单元数;$ {\sigma }_{h}^{2} $和$ {\sigma }^{2} $分别是h层和全区的方差。q取值范围为[0, 1],q越大,表明因子影响力越强,反之则相反。
-
由图1可见:从市域尺度看,430个国家森林乡村在江西省11个地级市都有分布,市均39.09个,其中,赣州、上饶、吉安、宜春、九江、抚州等6市共分布336个(78.14%)。从县域尺度看,430个国家森林乡村分布在江西省79个县(市、区),县均5.44个,县均密度3.72 个·万km−2。据此统计国家森林乡村分布高数量县、高密度县,去除两者重复,获得37个县(市、区),共分布森林乡村288个(66.98%),它们是江西省国家森林乡村保护与开发的重点县(市、区)。可见,江西省国家森林乡村分布广泛,但集中程度高,少数县(市、区)分布多数国家森林乡村。
图 1 江西省国家森林乡村市域、县域尺度数量及密度分级图
Figure 1. Quantity and density grading of national forestvilliages in Jiangxi Province at the city and county scales
使用平均最近邻指数(R)衡量国家森林乡村的集中度,发现江西省第1批、第2批、全2批国家森林乡村R分别为0.64、0.73、0.78,均<1.00,表明江西省国家森林乡村呈凝聚型分布特征。再使用变异系数衡量江西省国家森林乡村的离散程度(图2A~C),发现江西省第1批、第2批、全2批国家森林乡村变异系数分别为139.99%、186.02%、82.08%,均>64.00%,同样表明江西省国家森林乡村呈集聚型分布特征。江西省国家森林乡村凝聚型或集聚型的空间分布特征是对“少数县(市、区)分布多数国家森林乡村”行政格局的集中呈现。
-
分别以江西省11个地级行政中心和100个县级行政中心为区域经济中心,借助GIS邻近距离和缓冲区工具进行测算,结果(表2)发现:430个国家森林乡村距地级行政中心的平均距离约59.93 km,距县级行政中心平均距离约19.20 km。以江西省352个古村落距离地级行政中心52.00 km的平均距离为参照,国家森林乡村距离中心城市更远,相对偏离约8.00 km。再分别以地级行政中心和县级行政中心为圆心,以平均距离为半径,作60.00、20.00 km缓冲区,统计获得缓冲区内分别分布森林乡村251个(58.37%)、245个(56.98%),表明近半数的国家森林乡村偏离区域经济中心城市。选取高速公路、国道、铁路作为主要陆路交通线,以五级以上河流作为主要水路交通线,同样借助邻近距离和缓冲区工具进行测算,结果发现:430个森林乡村距离主要陆路交通线平均距离约11.50 km,10.00 km缓冲区范围内分布243个,占56.51%;距离主要水路交通线平均距离约10.55 km,10.00 km缓冲区范围内分布243个,占56.51%。以全国首批3947个国家森林乡村中的43.5%分布在公路干道约1.00 km范围内,71.57%分布在距河流5.00 km范围内为参照,江西省国家森林乡村距离主要水陆交通线的距离明显偏远。江西省国家森林乡村距离经济中心、水陆交通线较远,集中反映了偏离经济中心的经济格局。
表 2 江西省国家森林乡村与主要经济中心、水陆交通线空间关系
Table 2. Spatial relationship between national forest villages, major economic centers, and transportation lines in Jiangxi Province
项目 平均距
离/km缓冲区/
km国家森林
乡村数量/个国家森林
乡村占比/%地级行政中心 59.93 60 251 58.37 县级行政中心 19.20 20 245 56.98 陆路交通 11.50 10 243 56.51 水路交通 10.55 10 243 56.51 -
江西“三面环山”的特征奠定了其国家森林乡村密迩省界边缘的地缘格局(图2D):①省界边缘区内国家森林乡村占比大。430个国家森林乡村距离省界平均距离约39.51 km。以江西省省界向省域范围内作40.00 km缓冲区,利用位置选择工具,统计该范围内分布国家森林乡村253个,占全省58.84%,说明江西近60%的国家森林乡村是“沿边”分布的。②省界边缘区内国家森林乡村重点县占比大。37个森林乡村重点县中,有32个位于省界40.00 km缓冲区范围内,占86.49%。③省界边缘区内国家森林乡村核密度高值区占比大。分别计算第1、2批和全2批国家森林乡村的核密度值,发现均具有“多核-沿边”分布特征,并几乎全部位于省界40.00 km缓冲区范围内。
-
由图3可见:①江西省国家森林乡村整体具有“低地指向性”。江西省430个国家森林乡村平均海拔约225 m,较江西省246 m的平均海拔低21 m。其中,0~200 m的森林乡村数量最多,达238个(55.35%);200 m以上数量持续减少。②不同区域国家森林乡村的平均海拔低于区域平均海拔,也具有“低地指向性”。其中,赣北、赣中、赣南地区国家森林乡村平均海拔分别为188、228、313 m,分别较赣北、赣中、赣南地区186、249、365 m的区域平均海拔低2、21、52 m,这与江西自北向南逐渐抬升的地势一致[19]。
-
由表1可知:自然环境因素q从大到小依次为生物丰度、生态环境质量、森林净初级生产力、森林冠层高度、归一化植被指数、生态系统服务价值、海拔、年降水量、年均气温、地形起伏度。社会环境因素q从大到小依次为传统村落、旅游扶贫村、4A级及以上景区、国内生产总值、行政村数量、林业产值、人口密度、国家森林公园数量、居民地数量。自然因素r从大到小依次为生物丰度、海拔、森林冠层高度、归一化植被指数、生态环境质量、生态系统服务价值、森林净初级生产力。社会因素r从大到小依次为国内生产总值、4A级及以上景区数量、旅游扶贫村数量、传统村落数量、行政村数量。表明主要环境因素与国家森林乡村分布具有空间耦合性,两者具有相关性。江西省各县国家森林乡村数量与其生态环境质量(r=0.212,P<0.05)、国内生产总值(r=−0.264,P=0.01)具有相关性,表明生态环境质量越好,国家森林乡村越多,而社会经济相对发达的地区,国家森林乡村越少。
-
筛选q>0.25的评价指标进一步参与地理加权回归分析,使用ArcGIS 10.7的自然断裂法,将各项评价指标的回归系数划分为优势区、普优区、一般区、劣势区等4级。从空间格局看,主要影响因素的优势区基本分布在省界边缘地带,特别是赣北—赣东北或赣南—赣西南地区。优势区意味着该因素在该区域具有相对较高的影响力,而劣势区则相反。具体而言,在自然环境因素中,生物丰度(图4A)、归一化植被指数(图4B)优势区均位于赣北—赣东北地区;生态环境质量(图4C)、森林净初级生产力(图4D)、森林冠层高度(图4E)、生态系统服务价值(图4F)指标优势区均位于赣南—赣西南地区。此外,只有海拔(图4G)的优势区位于赣西地区,这里为罗霄山脉、幕阜山脉等中低山区。社会环境因素中,传统村落数量(图4H)、旅游扶贫村数量(图4I)、国内生产总值(图4J)优势区均位于赣北—赣东北地区;4A级及以上景区数量(图4K)、行政村数量(图4L)优势区均位于赣南—赣西南地区。主要影响因素对国家森林乡村空间格局的形成兼具正负效应,存在全部正值、全部负值和负值转正值3种状态。以生态环境质量为例,回归系数为正值,且自西南向东北呈层状递减,表明生态环境质量对国家森林乡村具有正效应(图4C)。以国内生产总值为例,回归系数为负值,且自东北向西南递减,表明国内生产总值指标对国家森林乡村具有负效应,同样直接印证了江西省国家森林乡村偏离经济中心的经济格局(图4J)。
-
江西省域尺度的国家森林乡村与全国尺度的国家森林乡村存在共性与个性。共性方面:①国家森林乡村的空间分布总体均呈集聚状态。在全国尺度,具有以“胡焕庸线”为指向的“东密西疏”分布格局,江西正处于此线以东的相对密集区;在省域尺度,全国形成多个集聚分布中心,包括浙江、江西、湖南等省份。②国家森林乡村的海拔高程通常具有低地性,反映人类营建村落时,客观上优先选择平原、盆地、河谷等低海拔地区的普遍倾向。③森林植被、生态环境等指标对国家森林乡村空间格局的形成具有较强解释力。国家森林乡村是一种依托森林资源的人居聚落,由于森林具有涵养水源、保持水土、调节气候、维持生物多样性等综合自然效益,通常森林植被条件越好,其生态环境质量越优质、生态系统服务价值越突出。个性方面:①江西省国家森林乡村偏离主要经济中心和水陆交通线,而全国尺度国家森林乡村则对经济中心和交通线具有更强依赖性。同时,与一般城市相比,国家森林乡村是一种初级形态的乡村人居聚落,其人口、经济、建筑规模普遍较小,故而在人口密度、林业产值、居民地等社会环境因素指标方面不占优势,解释力不高。②地理环境指标在全国范围内与在省域范围内具有显著的差异性。与全国尺度相比,江西省域尺度上国家森林乡村对于年均气温、年降水量、干湿指数等指标敏感性不强。③国家森林乡村注重自然生态环境、人居环境品质,而旅游资源禀赋较高的地区,通常也是自然环境优越的地区,两者相得益彰。不过,国家森林公园是偏重依托于占全国林地面积40%的国有林场或自然保护区内的国有林地,而占全国林地面积60%的集体林区却很少,故解释力较低。
通过对江西省国家森林乡村空间格局及其影响机制进行研究,得到以下结论:①江西省国家森林乡村具有偏重少数地区的行政格局、偏离经济中心的经济格局、密迩省界边缘的地缘格局、低地指向性的地形格局。这种空间格局集中反映出:国家森林乡村归根结底属于农村地区,其开发与保护应立足农村地区自然环境相对优越但生态脆弱、社会经济发展相对滞后的基本点;国家森林乡村是一种人居聚落,其选址与营建具有“由易到难,由低到高,由河谷、平原到山地、丘陵”的基本规律;江西省国家森林乡村分布集中度高,37个重点县(市、区)应是未来持续推进开发与保护的先行区。②江西省国家森林乡村空间格局的形成具有典型的影响机制。自然环境因素中,森林植被(如生物丰度、森林冠层高度、森林净初级生产力等)、生态环境指标(如生态环境质量、生态系统服务价值等)对国家森林乡村空间格局形成的解释力显著优于地理环境指标;社会环境因素中,旅游资源指标(如传统村落、旅游扶贫村、4A级以上景区数量等)对国家森林乡村空间格局的形成具有更强的解释力,而社会经济、行政管理指标解释力普遍较低。这从侧面反映家森林乡村在评定过程中提出的“森林功能效益显著,涉林产业发展良好”并未在实践中有效贯彻和落实,对于今后国家森林乡村评定工作的开展具有“纠偏”意义。
本研究对国家森林乡村评选、评定与评价,提出如下建议:①国家森林乡村应服务于乡村振兴战略、美丽乡村战略,须持续推进高质量保护与开发,格外关注自然环境等因素;②国家森林乡村集中分布的重点县应是进一步保护与开发的“先头兵”和“桥头堡”,具有引领示范作用;③应完善国家森林乡村评选、评定与评价机制,引入退出机制,形成持续发展的动态良性循环。
Spatial pattern and impact mechanism of national forest villages in Jiangxi Province
-
摘要:
目的 探讨国家森林乡村的空间格局及其影响机制,助力乡村绿化、美化、优化。 方法 以江西430个国家森林乡村为对象,构建“评价、解析、指标、数据”四维体系,综合运用GIS空间分析、地理探测器、地理加权回归等方法,探讨其空间格局及形成的影响机制。 结果 ①江西国家森林乡村呈低地指向性的地形格局、密迩省界边缘的地缘格局、偏重少数地区的行政格局、偏离经济中心的经济格局。②自然环境因素中的森林植被、生态环境对国家森林乡村空间格局形成的解释力显著优于地理环境指标;社会环境因素中,旅游资源具有更强的解释力。③从空间格局看,主要因素的影响优势区基本分布在省界边缘地带,特别是赣北—赣东北或赣南—赣西南地区;从回归系数看,主要因素对国家森林乡村空间格局的形成兼具正负关系,显现出综合影响效应。 结论 生物丰度、植被指数等环境因素与国家森林乡村分布具有空间耦合性,但影响差异显著,体现了不同空间尺度共性与个性并存,并兼具一定的“纠偏”价值。图4表2参19 Abstract:Objective Explore the spatial pattern and impact mechanism of national forest villiages is helpful for rural greening, beautification, and optimization. Method Taking 430 national forest villages in Jiangxi as the research object, a four-dimensional structure system of “evaluation-analysis-index-data” was constructed, and the spatial pattern and its formation mechanism were discussed by comprehensively using GIS spatial analysis, geographical detectors and geographical weighted regression. Result (1) The national forest villages in Jiangxi exhibit a low land oriented terrain pattern, a geopolitical pattern at the edge of the provincial boundary, an administrative pattern that emphasizes minority administrative regions, and an economic pattern that deviates from the economic center. (2) The explanatory power of forest vegetation and ecological environment in natural environmental factors on the formation of national forest villages spatial pattern is significantly better than that of geographical environmental indicators. The tourism resources in social environmental factors have a stronger explanatory power on the formation of the national forest villages spatial pattern. (3) From the perspective of spatial pattern, the dominant areas of the main influencing factors are mainly distributed in the marginal areas of the provincial boundary, especially in the northern-northeastern Jiangxi or southern-southwestern Jiangxi regions. From the perspective of regression coefficients, the main influencing factors have a positive and negative relationship with the formation of the national forest rural spatial pattern, showing a comprehensive impact effect. Conclusion There is spatial coupling between environmental factors such as biological abundance, vegetation index, and the distribution of national forests villiages, but the impact varies significantly, reflecting the coexistence of commonality and individuality at different spatial scales, and possessing a certain value of “correction”. [Ch, 4 fig. 2 tab. 19 ref.] -
Key words:
- national forest villages /
- spatial pattern /
- impact mechanism /
- Jiangxi
-
土地资源是人类社会赖以生存发展的基础,近年来,随着城市化进程不断加快,耕地流失和土地破碎化问题日益严重,区域景观生态风险评价已成为全球环境变化的研究热点[1-3]。日益频繁的人类活动及高强度的开发建设,使得土地景观趋于破碎化,结构趋于复杂化,威胁着人地关系的和谐[4]。景观生态风险评价方法主要分为景观指数法和基于风险源-汇的理论分析法。研究对象多集中在生态环境敏感脆弱和人为干扰剧烈的区域,如城镇[5-7]、流域[8]、海岸带[9]、矿区[10-11]、自然保护区[12]、道路沿线[13]、湿地[14]等,数据源多为人工解译方法获得的遥感解译数据或土地利用现状图矢量图[10-14]。如HAYES等[15]利用GIS技术对生境模型的空间数据进行编译和对比,直观评估出华盛顿西北部近海岸海洋环境的生态风险空间分布状况。张莹等[12]以扎龙自然保护区为研究对象,基于研究区景观格局变化特点构建景观生态风险指数,总结了1995−2010年保护区多尺度下景观生态风险的时空变化特征。刘炎序等[16]以深圳市社会-生态系统为评价研究对象,借助GIS空间分析手段,制作出“忽视风险情景”“正常风险情景”“重视风险情景”等景观生态风险图。王涛等[17]运用景观生态学理论,综合选取指数构建了景观生态风险评价模型,定量化总结1985−2015年杞麓湖流域的景观生态风险分布特征。景观具有高度空间异质性,存在一定的空间分布规律,在景观生态风险评价体系中引入景观指数法,不仅能增加景观异质性的关注度和空间定量描述,还能使风险评价摆脱传统方法中由于某一特定风险因子表征区域状态所造成的局限性[18]。宿松县地处大别山南麓,地理位置特殊,山区和湖泊面积占总面积的86%,生态环境敏感脆弱。人类活动的干扰导致该地区林地面积不断退化,农田城镇化明显,生态系统的基本结构和功能够遭到破坏,景观生态风险日益加剧。本研究从土地景观生态安全角度重新审视该区域的环境和发展问题,通过探究县域景观结构的变化动态,构建最佳粒度下景观指数的生态风险评价模型,进行景观生态风险评价研究,以期为县域尺度景观生态风险的管理提供理论和技术支持。
1. 研究区概况
宿松县(29°47′20′′~30°25′30′′N,115°52′52′′~116°34′40′′E)位于安徽省西南方向,是安徽、湖北、江西三省的交界处,也是八县结合部,地处长江下游北岸的顶端。全县东西宽约67 km,南北长约72 km,总面积达2 394 km2;东北接壤太湖县,西边紧邻湖北省的蕲春县和黄梅县,东南角连接望江县,南边隔江相望于江西省湖口县和彭泽县;属北亚热带湿润季风气候,四季分明,季风性明显;年平均气温16.6 ℃,由于地势原因,境内温度自西北方向至东南逐渐增高;季节性降水较明显,城区为暴雨多发地区;光照充足,年均无霜期254 d。
2. 材料与方法
2.1 数据来源及预处理
标准采用2017年的GQJC 03−2017《基础性地理国情监测内容与指标》,与2015年标准不同的是,2017年新标准将耕地、园地合并为种植土地;林地、草地合并为了林草覆盖。本研究以2015、2017年的地理国情普查成果为依据,结合研究目标,参考GB/T 21010−2017《土地利用现状分类》,根据土地实际用途以及地物意义,将普查数据中的地表覆盖分类重新划分为耕地、园地、林地、草地、建筑用地(房屋建筑区、构筑物、人工堆掘地)、交通用地(道路)、水域、未利用地(荒漠与裸露地表)八大土地景观类型[19](图1)。通过ArcGIS对划分后的土地斑块类型进行分类、合并处理。选取宿松县景观格局变化研究的最佳粒度值100 m[20],利用Arc GIS重采样功能得出2015、2017年宿松县土地景观栅格分布图。
2.2 景观格局指数的筛选
本研究从类型和景观水平共选取5个景观指数(表1),从面积与结构、形状、多样性等3个方面对宿松县2015−2017年土地利用格局的动态变化进行研究,并利用FRAGSTATS软件计算出相关值。
表 1 不同水平下选取的土地利用景观指数Table 1 Land use landscape index selected at different levels景观特征 景观指数 水平类型 含义 面积与结构 斑块面积(CA) 类型 描述某斑块类型的
总面积斑块类型面积比例指数(PLAND) 类型 描述某斑块类型所占整个景观面积比例 形状 景观形状指数(LSI) 类型/景观 描述斑块形状边界
形状的复杂性多样性 Simpson 多样性指数(SIDI) 景观 描述斑块类型多样性程度 Simpson 均匀度指数(SIEI) 景观 描述斑块类型均匀性程度 2.3 生态风险小区的构建
样方面积的大小需满足研究区景观斑块平均面积的2~5倍,样本才能综合反映采样地点周围综合景观格局信息[21]。2015和2017年景观斑块平均面积分别为1.872 7、1.862 6 km2,确定风险小区边长选择区间为1.930 0~3.064 5 km,考虑单元格划分既要保证足够多的单元数来反映研究区景观格局的分布规律,又要避免计算强度和精度等问题,因此本研究以3 km×3 km风险小区为评价单元,采用等间距采样方法,将研究区划分为308个风险小区,网格中心点为景观生态风险指数的采样点(图2)。
2.4 生态风险评价模型的构建及专题图的绘制
生态风险是生态系统结构和功能在响应外界干扰时保持本身处在低能量平衡的一种可能性[22]。景观生态风险由外部的扰动强度和内部的脆弱性来衡量。本研究选取景观干扰度指数和景观脆弱度指数对景观生态风险进行定量分析,该方法能够快速有效识别土地资源异质性带来地干扰度和生态系统自身的脆弱程度[23]。
2.4.1 景观干扰度指数
景观干扰度指数(Gi)表示i类土地景观抵抗外界的干扰能力和自我恢复能力,景观格局所受的人为和自然的干扰强度越大,则整个土地景观生态系统敏感性越强,其景观生态风险越大。选取景观破碎度指数(Pi)、景观分离度指数(Di)、景观分维度指数(Fi)来构建景观干扰度指数,计算公式为:
$$G_i = W_1 \times P_i + W_2 \times D_i + W_3 \times F_i \text{。}$$ (1) 式(1)中:W1、W2、W3分别为景观破碎度、景观分离度、景观分维度等3个景观指数的权重值,结合相关研究成果分别赋值0.5、0.3、0.2;i为特定的土地覆盖类型[24-25]。
2.4.2 景观脆弱度指数
景观脆弱度数值大小与区域景观抵抗外界干扰能力的程度成反比。本研究依据各土地类型结构组成形成的土地利用稳定性,和自身的敏感性、脆弱性及分布集中性程度,参考相关研究成果[26-27],将各土地利用类型的脆弱度值进行赋值,并归一化处理,结果见表2。
表 2 景观脆弱度值归一化结果Table 2 Normalized results of landscape vulnerability values景观类型 脆弱度值 归一化值 建设用地 1 0.028 交通用地 2 0.056 林地 3 0.083 园地 4 0.111 耕地 5 0.139 水域 6 0.167 草地 7 0.194 未利用地 8 0.222 2.4.3 景观生态风险指数
不同的土地利用方式对区域生态风险的贡献程度不同,为了定量分析土地景观结构变化带来的景观生态风险,将景观干扰度指数(外部)和景观脆弱度指数(内部)引入景观生态风险指数(ERI)概念能够使其更具针对性,能够结合采样方法将土地利用格局转化为空间化的生态风险变量。公式如下[28-29]:
$${E_{{\rm{RI}}k}} = \sum\limits_{i = 1}^n {\frac{{{A_{ki}}}}{{{A_k}}}} ({G_i} \times {R_i}) \text{。}$$ (2) 式(2)中:ERIk为第k个风险小区景观生态风险指数,Aki为第k个风险小区i类景观类型面积的总和,Ak为第k个风险小区n类景观类型面积的总和。Gi为i类景观类型的景观干扰度指数,Ri为i类景观类型的景观脆弱度指数。
最后用空间采样及普通克里金插值法进行分析,根据风险值的范围,采用自然间断法将生态风险程度划分为5个等级:低生态风险区、较低生态风险区、中等风险区、较高风险区、和高生态风险区。
3. 结果与分析
3.1 土地利用格局动态变化分析
根据表3~4可见:2015−2017年景观结构发生了变化,景观形状呈复杂化趋势,多样化程度和均匀度不断加强。耕地、林地、水域、草地等优势景观类型面积有所减少,而与人类活动密切相关的建筑用地、园地、交通用地面积有所增加。优势景观类型面积的减少,弱势景观类型面积的增高造成斑块类型分布不断均匀化,同时多样指数的提高说明研究区景观类型的丰富度有所增高,破碎化程度进一步加深。其中林地面积减少的最多,为969 hm2,减少的林地面积与增加的建设用地面积几乎相等,建设用地景观形状指数增幅最大。且2017年比2015人口增长0.31%,城镇人口增长21.11%,建筑业生产总值增长11 000万元。说明宿松县的城市化进程,尤其是城镇建设和农房面积的扩张是导致大量林地面积减少和建设用地形状复杂化的主要原因;耕地主要分布于城镇村庄周围,随着农业科技自动化水平的提高和城镇面积进一步扩张,城镇村庄周围的农业用地都逐渐转化为非农业用地,导致耕地面积有所减少,园地面积有所增加;由于耕地为主体景观类型且分布广泛,交通用地主要贯穿于城镇村庄内部,随着建设用地的大幅度增加,交通用地呈现增加趋势,造成草地、未利用地面积有所减少,耕地斑块形状变得更加复杂。综上,经济发展在一定程度上加剧了景观格局的不稳定状态。
表 3 2015和2017年类型水平上的格局指数Table 3 Pattern index values at the type level in 2015 and 2017景观类型 年份 CA/hm2 PLAND/% LSI 林地 2015 54 007 22.785 6 72.819 4 2017 53 038 22.376 7 72.817 8 耕地 2015 86 614 36.542 5 81.321 4 2017 86 367 36.438 2 82.403 7 建设用地 2015 11 000 4.640 9 73.838 1 2017 12 084 5.098 2 76.163 6 园地 2015 2 328 0.982 2 27.247 4 2017 2 380 1.004 1 27.479 6 交通用地 2015 1 984 0.837 1 41.677 8 2017 2 164 0.913 0 43.414 9 草地 2015 18 324 7.730 9 87.638 4 2017 18 278 7.711 5 86.273 1 水域 2015 62 615 26.417 3 30.990 0 2017 62 580 26.402 5 31.503 0 未利用地 2015 151 0.063 7 9.160 0 2017 132 0.055 7 9.869 6 说明:CA为斑块类型面积,PLAND为斑块面积比例,LSI 为景观形状指数 表 4 2015和2017年景观水平上的格局指数Table 4 Pattern index values at the landscape level in 2015 and 2017年份 LSI SIDI SIEI 2015 74.329 6 0.736 7 0.842 0 2017 75.241 8 0.739 0 0.844 5 说明:LSI为景观形状指数,SIDI为Simpson 多样性指数, SIEI为Simpson 均匀度指数 3.2 景观单一生态风险的变化分析
3.2.1 景观破碎度分析
图3表明:西北部和东南部景观破碎程度较低,中部较高。由于宿松县地处大别山山脉,西北部主体景观类型为林地;东南部华阳河农场总场、汇口镇北部、洲头乡北部为主要的农业区,主体景观类型为耕地和水域,且均呈集聚状态分布,景观破碎程度较低;中部破碎化均较高且呈现由东向西的扩张趋势,其中程岭乡的破碎化程度最大,且高破碎度区域依然呈增加趋势,这与中部的景观类型为建筑用地、耕地、草地密切相关,虽然耕地依然为主体景观类型,但是由于受到错综复杂的交通用地、建设用地等其他土地类型的分割,造成中部耕地类型破碎化程度较大。
3.2.2 景观分离度分析
图4表明:西北部山区景观分离度较低,东南部农业区次之,景观分布较简单,中部地区景观分离度较高,景观分布复杂。2015−2017年西北部北浴乡、陈汉乡、柳坪乡主体景观类型为林地且位于山区,景观分离度未发生明显改变,分离度低于0.602 4;东南部复兴镇、洲头乡南部景观分离度虽发生轻微变化,但变化范围不大;中部西侧二郎镇、孚玉镇,及程岭乡西北部分离度最高、变化最为剧烈,呈现自东向西的扩张趋势。
3.2.3 景观分维度分析
图5表明:西北部分维度最低,景观形状简单,中部中等区域所占比例较大,且较高级有向中等和高级分离度转化的趋势,高区域集中于东南部,景观形状较复杂。西北部分维度较低,主要是由于该地位于大别山区,主体景观类型由斑块较大的乔木林地组成;与之相对应分维度高区域为中部九姑乡、孚玉镇及东南部华阳河农场地区,原因是由于九姑乡存在较多分散的草地面积,一条自然水系贯穿孚玉镇,且水系形状较复杂,华阳河农场主体景观类型农业用地耕地,其形状均较不规则。综上所述,分维度指数与地貌形态、人类活动的制约和影响有着密切的联系。
3.3 景观综合生态风险时空变化分析
3.3.1 景观生态风险的时空变化分析
图6表明:宿松县景观生态风险空间分布呈明显区位性和异质性特征的景观结构分布规律。低风险区主要集中于西北部山地地带,受其他生态风险等级的胁迫,研究期间面积有所下降,优势景观类型为林地且连片集中分布,景观结构稳定,景观破碎度和分离度较低;较低生态风险区位于西北部林地边缘和黄湖、龙湖南部地带,2015−2017年较低生态风险区有边缘向中部萎缩的趋势,以集中连片的深水域、耕地、和破碎化林地为主,景观结构较为完善,但也是人类主要活动区域的边缘地带,存在一定程度的风险;中等风险区和较高生态风险区主要分布于中部,以及东南部湖泊、长江边缘地带,优势景观类型主要以耕地、水域、林地、草地为主,耕地主要位于山地丘陵地带,自身形状复杂,水网密布且草地、林地的破碎化程度较高造成景观的动态变化较大,生态风险进一步加剧;高生态风险区主要分布于西南和东部边缘地带,2017年中部九姑乡出现大片的高生态风险区,高岭乡高生态风险面积逐渐内部扩张,而其余边缘高生态风险区面积均有所降低,表明高生态风险区有从边缘向中部发展的趋势。综上所述,宿松县的生态风险分布呈现明显的阶梯状态,与研究区内的地势从西北到东南逐渐降低,山区、丘陵、湖泊、平原依次分布的地貌有密切关系。
利用ArcGIS对2015和2017年不同等级的土地景观生态风险面积统计(表5)表明:2015−2017年风险面积占比从高到低依次为较高生态风险区、中等生态风险区、较低生态风险区、低生态风险区、高生态风险区。研究区以较高生态风险区和中等生态风险区为主,2017年二者占比分别为31.22%、27.10%,合计超过总面积的一半。生态等级表现为低等级向相邻高等级转化,风险程度逐渐增加。低生态风险、较低生态风险区面积均有所降低,其中较低生态风险区面积主要由低生态风险区转入和转出为中等生态风险区的面积决定,面积减少了23.174 km2;中等生态风险面积降低幅度较明显,减少了45.605 km2,降幅占2015年中等风险区总面积的6.63%;较高生态风险区、高生态风险区的面积均有所增加,其中高生态风险面积在2 a间增加了65.326 km2,占2015年高风险区总面积的49.73%。根据各等级转化趋势可以得出,宿松县应进一步加大土地利用的治理,减少人为干扰强度,降低破碎化程度,避免较高生态风险区,进一步向高生态风险区转化。
表 5 2015和2017年各级生态风险面积及其占比Table 5 Areas and percentages of ecological risks at all levels in 2015 and 2017生态风险等级 2015年 2017年 面积/km2 占比/% 面积/km2 占比/% 低 315.329 13.31 309.537 13.06 较低 504.786 21.30 481.612 20.32 中 687.981 29.02 642.376 27.10 较高 730.788 30.83 740.033 31.22 高 131.350 5.54 196.676 8.30 3.3.2 基于乡镇的景观生态风险变化分析
为了进一步对宿松县的景观生态风险进行分析,依据地形地貌、社会经济条件等限制因素,将宿松县24个乡镇分为五大类,山地旅游区、交通枢纽镇、鱼米之乡、农业区、矿产资源区,统计出各类型地区的风险等级面积(表6)。图5和表6表明:2015−2017年除矿产资源区外,各类地区低生态风险、较低生态风险、中等生态风险面积均呈降低趋势;鱼米之乡、矿产资源区的较高生态风险区面积,由于转化为高生态风险面积而有所降低。低生态风险区集中于西北部山地旅游地区,其中陈汉乡完全处于低生态风险区,风险程度最低,隘口乡旅游资源丰富,2017年出现中等生态风险区,面积为0.389 km2,表明旅游业在一定程度上促进了中等生态风险区从中部向西北部扩张;2015−2017年中部交通枢纽镇二郎镇、孚玉镇的较高生态风险面积增长6.316 km2,且邻乡破凉镇中三乡交界处出现较高生态风险区,表明以城镇为中心的城镇扩张进一步加剧了生态风险;中等生态风险区集中于农业区复兴镇、破凉镇等,2015−2017生态风险增加程度较大为复兴镇,增加面积为3.119 km2,这与复兴镇滨江依湖的地理位置有着密切的关系,表明水域的脆弱性比耕地大,更易受到人为干扰;高生态风险区主要位于有“鱼米之乡”之称的高岭乡和佐坝乡,2017年这2个乡镇的高生态风险面积占总高生态风险区面积的47%,与2个乡镇河网分布错综复杂,渔业活动频繁有着密切的关系;矿产资源区九姑乡含有丰富的石灰石资源,2017年高生态风险区出现,中等风险区面积消失,高生态风险面积为21.715 km2,占该乡总面积的42.6%,表明矿产资源区潜在生态风险程度最大。综上所述,宿松县的潜在生态风险由高到低依次为矿产资源区、鱼米之乡、交通枢纽镇、农业区、山地旅游区。
表 6 2015和2017年宿松县各类乡镇不同等级的生态风险区面积Table 6 Ecological risk area of different grades in various township of Susong County in 2015 and 2017类别 乡镇 年份 不同等级生态风险区面积/ km2 低 较低 中等 较高 高 山地旅游区 北浴乡、柳坪乡、陈汉乡、隘口乡、趾凤乡、凉亭镇 2015 249.104 69.701 43.759 8.108 0.016 2017 247.286 68.742 41.539 11.401 1.720 农业区 河塌乡、五里乡、复兴镇、下仓镇、破凉镇、华阳河农场、长铺镇 2015 7.043 155.911 323.446 187.567 35.868 2017 6.904 147.139 299.386 221.214 35.192 交通枢纽镇 二郎镇、孚玉镇、九成监狱 2015 0.731 36.072 98.160 50.707 9.616 2017 0.057 33.934 90.754 59.559 10.982 鱼米之乡 高岭乡、程岭乡、千岭乡、佐坝乡、
许岭镇、洲头乡、汇口镇2015 58.451 243.102 222.531 433.498 85.850 2017 55.290 231.797 210.697 418.581 127.067 矿产资源区 九姑乡 2015 0 0 0.085 50.908 0 2017 0 0 0 29.278 21.715 4. 讨论
景观生态风险评价是研究区域生态环境的有效手段。本研究表明:由于经济的发展,人类活动强度的增加,城镇用地的扩张,土地利用的景观生态风险等级有明显的变化趋势,呈低等级向高等级转变,这与张双双等[5]、白舒婷[29]、闻国静等[30]、王涛等[31]的结论类似。目前相关研究多集中于大区域[6-9]的生态风险讨论。县域为中国主要的行政单元,更是连接城市与乡村的节点[32],利用高分影像下采集的地理国情数据具有精度高、尺度细的优点,更能进一步提高生态风险评价结果的精度。本研究表明:乡镇经济的发展程度与景观生态风险的等级大小为正相关关系,即发展程度越高,景观生态风险越大,这与傅微等[23]的研究结果相似。通过对单一景观指数的生态风险分析及乡镇角度的生态风险评价,能进一步针对研究区的地貌、经济特征提出合理化的建议和对策。因此,本研究针对宿松县经济发展中带来的景观生态风险问题,为防止由于建设用地、交通用地的盲目扩张,造成林地、耕地流失,景观生态系统结构遭到破坏等现象的继续发生,提出了以下建议:①低生态风险区和较低生态风险主要位于西北部山区和黄湖、龙湖的中心等区域,景观类型以林地、和水域为主,是生物生长最优栖息地和水源涵养区,景观生态风险指数虽然低,但依然是重点保护对象。因此该区域应充分利用山地景观资源和水源资源,在现有自然保护区和旅游景区的基础上,划出一定的保护区域,扩大相邻林地和水域的面积,使其集中连片,保证生态环境的质量,降低景观破碎度,提高生态系统抗风险能力。②中等生态风险区主要位于宿松县中部的农业大乡,景观类型以耕地为主。由于宿松县是农业大县,耕地资源的保护和利用十分重要,建议对耕地质量等级划分,在保证耕地质量的基础上对质量差的耕地实施退耕还林政策。针对山区耕地,大力推广高效节水灌溉技术,适量推广种植经济价值高、耗水少的药材,减少水资源的浪费,保证区域农业用水。③较高生态风险区主要位于河网密布的鱼米之乡以及交通运输的枢纽镇。区域内存在大量生态稳定性脆弱的湿地,应建立湿地公园等自然保护区,并在河道周围加强林草工程维护,减少土地流失,降低水系破碎度,提高生态系统稳定性。此外还需控制该区域的人口数量,减少建设用地的扩张对耕地资源的占用。④高生态风险区主要位于矿产资源开发区等地。应严格控制对矿产资源的开采,减少矿山企业数量。充分利用遥感技术手段对矿山环境数据进行调查和监测,建立档案,编制相应的矿山环境治理方案,提高矿山修复效率,减少水土流失滑坡等自然灾害的发生。尤其是九姑山,需对矿产资源开采进行严格的管理和控制,降低人类活动的干扰强度。
5. 结论
2015−2017年宿松县土地景观结构存在一定变化,景观形状呈复杂化趋势,多样化程度和均匀度不断增强,生态风险结果与地貌特征、经济发展存在明显关联性,呈阶梯状分布,经济发展一定程度上造成了景观格局的不稳定。西北部以林地为主的山地旅游区景观,景观破碎度、分离度、分维度均较低,景观多样化水平低,景观生态风险较低。中部和东南部以耕地、建设用地、河网为主的农业区、交通枢纽镇、鱼米之乡景观,景观破碎度、分离度、分维度较高,景观分布结构较为复杂,景观生态风险较高,其中矿产资源区九姑乡的潜在生态风险程度最大。宿松县以较高生态风险区和中等风险区为主,2015−2017年低生态风险区、较低生态风险区、中等生态风险区面积呈降低趋势,而较高生态风险区和高生态风险区面积呈增加趋势,生态等级表现为低等级向相邻高等级转化。
-
表 1 江西省国家森林乡村“评价、解析、指标、数据”四维结构体系
Table 1. Four-dimensional structural system of “evaluation-analysis-indicators-data” for national forest villages in Jiangxi Province
评价维 解析维 指标维 数据维 q r 自然生态风貌保护
山水林田湖草系统治理
森林绿地建设
森林质量效益
乡村绿化管护
乡村生态文化地理环境 F1 海拔 0.249 0.231* F2 地形起伏度 0.013 0.077 F3 年均气温 0.142 −0.082 F4 年降水量 0.164 −0.072 F5 干燥指数 0.177 0.066 F6 湿润指数 0.196 −0.015 森林植被 F7 森林净初级生产力 0.358 −0.121 F8 生物丰度指数 0.389 0.249* F9 森林冠层高度 0.288 0.226* F10 归一化植被指数 0.274 0.215* 生态环境 F11 生态系统服务价值 0.271 −0.122 F12 生态环境质量 0.376 0.212* 社会经济 F13 国内生产总值 0.304 −0.264** F14 人口密度 0.153 −0.136 F15 林业产值 0.178 −0.173 旅游资源 F16 国家森林公园数量 0.152 0.284** F17 旅游扶贫村数量 0.378 0.253* F18 传统村落数量 0.393 0.150 F19 4A级及以上景区数量 0.318 0.255* 行政管理 F20 居民地数量 0.014 −0.117 F21 行政村数量 0.287 −0.132 说明:q为各因素参与地理探测器分析的贡献度;r为各因素参与国家森林乡村数量相关系数,取绝对值进行横向比较。*和**分别表示0.05和0.01水平相关性显著。 表 2 江西省国家森林乡村与主要经济中心、水陆交通线空间关系
Table 2. Spatial relationship between national forest villages, major economic centers, and transportation lines in Jiangxi Province
项目 平均距
离/km缓冲区/
km国家森林
乡村数量/个国家森林
乡村占比/%地级行政中心 59.93 60 251 58.37 县级行政中心 19.20 20 245 56.98 陆路交通 11.50 10 243 56.51 水路交通 10.55 10 243 56.51 -
[1] 国家林业和草原局. 国家森林乡村评定办法(暂行)[EB/OL]. 2019-09-05[2023-02-08]. http://www.zjly.gov.cn/art/2019/9/6/art_1346870385.html. National Forestry and Grassland Administration. National Forest Villages Assessment Measures (Provisional) [EB/OL]. 2019-09-05[2023-02-08]. http://www.zjly.gov.cn/art/2019/9/6/art_1346870385.html. [2] 陈刚, 吴清, 杨俭波, 等. 中国国家森林乡村的空间分布特征与影响因素[J]. 经济地理, 2021, 41(6): 196 − 204. CHEN Gang, WU Qing, YANG Jianbo, et al. Spatial distribution characteristics and influencing factors of China national forest villages [J]. Economic Geography, 2021, 41(6): 196 − 204. [3] 郑群明, 田甜, 杨小亚. 中国国家森林乡村的空间分布特征及其影响因素[J]. 中国生态旅游, 2021, 11(3): 441 − 454. ZHENG Qunming, TIAN Tian, YANG Xiaoya. The spatial distribution and influencing factors of the national forest villages in China [J]. Journal of Chinese Ecotourism, 2021, 11(3): 441 − 454. [4] 杨燕, 胡静, 李亚娟, 等. 基于GIS的中国森林乡村空间结构及影响因素研究[J]. 干旱区资源与环境, 2021, 35(6): 182 − 191. YANG Yan, HU Jing, LI Yajuan, et al. Spatial structure of forest villages in China and the influencing factors [J]. Journal of Arid Land Resources and Environment, 2021, 35(6): 182 − 191. [5] 唐明贵, 胡静, 汤慧, 等. 中国森林乡村空间分布特征及其影响因素分析[J]. 农业工程学报, 2022, 38(10): 258 − 266. TANG Minggui, HU Jing, TANG Hui, et al. Spatial distribution and influencing factors of forest villages in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10): 258 − 266. [6] 黄晓芬, 白鸥. 浙江省森林乡村空间分布特征及其影响因素[J]. 浙江农林大学学报, 2022, 39(4): 884 − 893. HUANG Xiaofen, BAI Ou. Spatial distribution characteristics and influencing factors of forest villages in Zhejiang Province [J]. Journal of Zhejiang A&F University, 2022, 39(4): 884 − 893. [7] 罗文斌, 蒋理, 雷洁琼, 等. 湖南省国家森林乡村分布格局及影响因素研究[J]. 中国农业资源与区划, 2022, 43(2): 33 − 42. LUO Wenbin, JIANG Li, LEI Jieqiong, et al. Research on the distribution pattern and influencing factors of national forest villages in Hunan Province [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(2): 33 − 42. [8] 侯灿, 胡道华, 张启凡, 等. 湖北省国家森林乡村的空间分布及类型特征探究[J]. 湖南工业大学学报, 2021, 35(2): 81 − 87. HOU Can, HU Daohua, ZHANG Qifan, et al. An inquiry into the spatial distribution and type characteristics of national forest villages in Hubei Province [J]. Journal of Hunan University of Technology, 2021, 35(2): 81 − 87. [9] 孔雪松, 府梦雪, 孙建伟, 等. 中国森林乡村的多尺度分异特征与分区优化[J]. 地理研究, 2022, 41(7): 2051 − 2064. KONG Xuesong, FU Mengxue, SUN Jianwei, et al. Multi-scale differentiation characteristics and optimization zones of forest villages in China [J]. Geographical Research, 2022, 41(7): 2051 − 2064. [10] 游珍, 封志明, 杨艳昭. 中国1 km地形起伏数据集[J]. 全球变化数据学报, 2018, 2(2): 151 − 155. YOU Zhen, FENG Zhiming, YANG Yanzhao. Relief degree of land surface dataset of China (1 km) [J]. Global Change Research Data Publishing &Repository, 2018, 2(2): 151 − 155. [11] 徐新良, 张亚庆. 中国气象背景数据集[DS/OL]. 北京: 中国科学院资源环境科学数据中心数据注册与出版系统, 2017, 2023-02-08[2023-02-10]. https://www.resdc.cn. XU Xinliang, ZHANG Yaqing. China Meteorological Background Data Set [DS/OL]. Beijing: Data Registration and Publishing System of Resources and Environmental Science Data Center of China Academy of Sciences, 2017, 2023-02-08[2023-02-10]. https://www.resdc.cn. [12] 郭春霞, 诸云强, 孙伟, 等. 中国1 km生物丰度指数分布数据集[J]. 全球变化数据学报, 2017, 1(1): 60 − 65. GUO Chunxia, ZHU Yunqiang, SUN Wei, et al. Dataset of biological abundance index of China in 1985 and 2005 at 1 km resolution [J]. Global Change Research Data Publishing &Repository, 2017, 1(1): 60 − 65. [13] LIU Xiaoqiang, SU Yanjun, HU Tianyu. Neural network guided interpolation for mapping canopy height of China’s forests by integrating GEDI and ICESat-2 data [J/OL]. Remote Sensing of Environment, 2022, 269(2): 112844[2023-02-07]. doi: 10.1016/j.rse.2021.112844. [14] XU Dong, YANG Feng, YU Le, et al. Quantization of the coupling mechanism between eco-environmental quality and urbanization from multisource remote sensing data [J/OL]. Journal of Cleaner Production, 2021, 321: 128948[2023-02-07]. doi: 10.1016/j.jclepro.2021.128948. [15] 徐新良. 中国陆地生态系统服务价值空间分布数据集[DS/OL]. 北京: 中国科学院资源环境科学数据中心数据注册与出版系统, 2018[2023-02-08]. http://www.resdc.cn/. XU Xinliang. Spatial Distribution Dataset of Service Value of Terrestrial Ecosystem in China [DS/OL]. Beijing: Data Registration and Publishing System of Resources and Environmental Science Data Center of China Academy of Sciences, 2018 [2023-02-08]. https://www.resdc.cn. [16] 徐新良. 中国GDP空间分布公里网格数据集[DS/OL]. 北京: 中国科学院资源环境科学数据中心数据注册与出版系统, 2017[2023-02-08]. https://www.resdc.cn. XU Xinliang. Grid Data Set of Kilometers of GDP Spatial Distribution in China [DS/OL]. Beijing: Data Registration and Publishing System of Resources and Environmental Science Data Center of China Academy of Sciences, 2017[2023-02-08]. https://www.resdc.cn. [17] Deutsches Zentrum für Luft- und Raumfahrt. World Settlement Footprint [DB/OL]. 2019-12-15[2023-02-08]. https://geoservice.dlr.de/web/maps/eoc:wsf2019. [18] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116 − 134. WANG Jinfeng, XU Chengdong. Geodetector: principle and prospective [J]. Acta Geographica Sinica, 2017, 72(1): 116 − 134. [19] 李孜沫. 汾河流域古村落的时空演化与形成机理[J]. 经济地理, 2019, 39(2): 207 − 214, 231. LI Zimo. The spatial-temporal evolution and formation mechanism of ancient villages in Fenhe river basin [J]. Economic Geography, 2019, 39(2): 207 − 214, 231. 期刊类型引用(4)
1. 李俊鹏. 厌氧氨氧化相关工艺处理垃圾渗滤液脱氮研究现状. 辽宁化工. 2023(04): 554-556+560 . 百度学术
2. 宋慧赟,王莹,陈虎,吕永康. 盐度对新型生物脱氮技术影响的研究进展. 化工进展. 2021(04): 2298-2307 . 百度学术
3. 孙明珠,任婧,徐爱玲,宋志文. 丙酮酸盐对硝化微生物复合培养过程的影响. 环境科学与技术. 2021(06): 58-66 . 百度学术
4. 李剑宇,王少坡,邱春生,王栋,于静洁,赵明. PN/A技术应用于城市污水主流处理的挑战与实践. 水处理技术. 2020(11): 24-30 . 百度学术
其他类型引用(4)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230148