留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

欧洲千里光SvAPETALA1基因的克隆及功能分析

郝燕敏 陈柯俐 冯丽君 李菲菲 崔敏龙 朴春兰

郝燕敏, 陈柯俐, 冯丽君, 李菲菲, 崔敏龙, 朴春兰. 欧洲千里光SvAPETALA1基因的克隆及功能分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210651
引用本文: 郝燕敏, 陈柯俐, 冯丽君, 李菲菲, 崔敏龙, 朴春兰. 欧洲千里光SvAPETALA1基因的克隆及功能分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210651
HAO Yanmin, CHEN Keli, FENG Lijun, LI Feifei, CUI Minlong, PIAO Chunlan. Cloning and functional analysis of SvAPETALA1 in Senecio vulgaris[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210651
Citation: HAO Yanmin, CHEN Keli, FENG Lijun, LI Feifei, CUI Minlong, PIAO Chunlan. Cloning and functional analysis of SvAPETALA1 in Senecio vulgaris[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210651

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

欧洲千里光SvAPETALA1基因的克隆及功能分析

doi: 10.11833/j.issn.2095-0756.20210651
基金项目: 宁夏回族自治区重点研发计划重大项目(2019BFG02011)
详细信息
    作者简介: 郝燕敏(ORCID: 0000-0002-0402-6705),从事植物花器官发育研究。E-mail: 1833620856@qq.com
    通信作者: 朴春兰(ORCID: 0000-0001-9593-8023),助理研究员,从事生物技术与分子育种研究。E-mail: chunlan_piao@zafu.edu.cn
  • 中图分类号: S943.2

Cloning and functional analysis of SvAPETALA1 in Senecio vulgaris

  • 摘要:   目的  花器官发育是影响花观赏价值的重要因素,AP1类基因调控植物花器官的形成。研究菊科Asteraceae欧洲千里光Senecio vulgarisSvAP1基因在花器官形成中的重要作用,旨在探究菊科复杂花序结构产生的调控机制。  方法  以欧洲千里光为材料克隆获得了SvAP1基因,通过多序列比对、构建系统进化树、实时荧光定量PCR(qRT-PCR)反应、构建超表达载体、组织学染色观察等方法与技术,对SvAP1基因进行功能预测与分析。  结果  SvAP1基因开放阅读框长度为705 bp,编码234个氨基酸。多序列比对与系统进化分析显示:SvAP1基因属于MADS-box基因AP1类亚家族,C末端具有paleoAP1保守基序(motif)。欧洲千里光组织特异性表达分析表明:SvAP1基因在营养器官和花序中都有表达。转基因龙葵Solanum nigrum的形态学观察和石蜡切片技术分析显示:与野生型龙葵相比,转基因龙葵雌蕊发育异常,表现为子房膨大且雌蕊状组织增多。  结论  欧洲千里光SvAP1基因在龙葵中的超表达影响雌蕊发育,与ABC模型中A类基因超表达对植物花器官发育造成的影响存在差异,即转基因龙葵雄蕊无明显变化且雌蕊未转变为萼片状或叶片状器官。这可能与欧洲千里光花器官调节机制和花序结构的复杂性有关。由此可知,欧洲千里光SvAP1基因可能作为花器官特征基因在花器官形成中具有重要作用。图6表1参35
  • 图  1  欧洲千里光SvAP1氨基酸多序列比对以及系统进化树分析

    Figure  1  Amino acid sequence alignment and phylogenetic tree analysis of SvAP1 in S. vulgaris

    图  2  SvAP1在欧洲千里光不同部位的相对表达分析

    Figure  2  Relative expression of SvAP1 in different tissues of S. vulgaris      

    图  3  野生型及转基因龙葵PCR检测

    Figure  3  PCR detection of wild type S. nigrum and different transgenic lines

    图  4  野生型和转基因龙葵RT-PCR及表型分析

    Figure  4  RT-PCR and phenotypes analysis of wild type S. nigrumand different transgenic lines

    图  5  野生型及转基因龙葵花序

    Figure  5  Inflorescence in wild type S. nigrum and different transgenic lines

    图  6  野生型和转基因龙葵雌蕊及其石蜡切片

    Figure  6  Wild type S. nigrum and different transgenic lines pistil and their paraffin section

    表  1  基因克隆与分子鉴定所用引物序列

    Table  1.   Primer sequences for gene cloning and molecular identification

    引物名称正向(反向)引物序列(5′→3′)引物名称正向(反向)引物序列(5′→3′)
    SvAP1-F AATCTAGAATGGGGCGGGGAAGGGTGA NPT Ⅱ-R GTGGTCGAATGGGCAGGTAG
    SvAP1-R AAGAGCTCTTACTTGTTCATGAGATGAAT qSvAP1-F GTTGTGTGATGCTGACGTGG
    Sn18s-F CGCGCGCTACACTGATGTATTCAA qSvAP1-R GCGTGTTCCAGAGTCCAGTT
    Sn18s-R TACAAAGGGCAGGGACGTAGTCAA Sv18s-F ATAGCAGAACGACCTGTGAA
    NPT Ⅱ-F AGATGGATTGCACGCAGGTTC Sv18s-R GAAGCAAGATCCAACGCAAT
      说明:下划线标记处为特异性引物限制性内切酶酶切位点
    下载: 导出CSV
  • [1] FORNARA F, de MONTAIGU A, COUPLAND G. SnapShot: control of flowering in Arabidopsis[J/OL]. Cell, 2010, 141(3): e551[2021-08-10]. doi:  10.1016/j.cell.2010.04.024.
    [2] WILS C R, KAUFMANN K. Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana [J]. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(1): 95 − 105. doi:  10.1016/j.bbagrm.2016.07.014
    [3] SMACZNIAK C, IMMINK R G, ANGENENT G C, et al. Developmental and evolutionary diversity of plant MADS domain factors: insights from recent studies [J]. Development, 2012, 139(17): 3081 − 3098. doi:  10.1242/dev.074674
    [4] CHEN Liyu, NAN Haiyang, KONG Lingping, et al. Soybean AP1 homologs control flowering time and plant height [J]. J Integr Plant Biol, 2020, 62(12): 1868 − 1879. doi:  10.1111/jipb.12988
    [5] HUIJSER P, KLEIN J, LONNIG W E, et al. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus [J]. EMBO J, 1992, 11(4): 1239 − 1249. doi:  10.1002/j.1460-2075.1992.tb05168.x
    [6] HE Chunmei, LIU Xuncheng, TEIXEIRA D S J A, et al. Transcriptome sequencing and metabolite profiling analyses provide comprehensive insight into molecular mechanisms of flower development in Dendrobium officinale (Orchidaceae) [J]. Plant Mol Biol, 2020, 104(4/5): 529 − 548.
    [7] WANG Lulu, LI Yi, JIN Xingyue, et al. Floral transcriptomes reveal gene networks in pineapple floral growth and fruit development[J/OL]. Commun Biol, 2020, 3(1): 500[2021-08-10]. doi:  10.1038/s42003-020-01235-2.
    [8] MANDEL M A, GUSTAFSON-BROWN C, SAVIDGE B, et al. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1 [J]. Nature, 1992, 360(6401): 273 − 277. doi:  10.1038/360273a0
    [9] LIU Zhixiong, FEI Yue, ZHANG Kebing, et al. Ectopic expression of a Fagopyrum esculentum APETALA1 ortholog only rescues sepal development in Arabidopsisap1 Mutant[J/OL]. Int J Mol Sci, 2019, 20(8): 2021[2021-08-10]. doi:  10.3390/ijms20082021.
    [10] YUSTE-LISBONA F J, QUINET M, FERNÁNDEZ-LOZANO A, et al. Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato[J/OL]. Sci Rep, 2006, 6: 18796[2021-08-10]. doi:  10.1038/srep18796.
    [11] BELLO M A, CUBAS P, ÁLVAREZ I, et al. Evolution and expression patterns of CYC/TB1 genes in Anacyclus: phylogenetic insights for floral symmetry genes in Asteraceae[J/OL]. Front Plant Sci, 2017, 8: 589[2021-08-10]. doi:  10.3389/fpls.2017.00589.
    [12] 陈柯俐, 朴春兰, 郝燕敏, 等. 欧洲千里光CYCLOIDEA(CYC)类SvRAY1基因的克隆及功能分析[J]. 浙江农林大学学报, 2021, 38(6): 1153 − 1160.

    CHEN Keli, PIAO Chunlan, HAO Yanmin, et al. Cloning and functional analysis of CYCLOIDEA(CYC)-likeSvRAY1 gene from Senecio vulgaris [J]. J Zhejiang A&F Univ, 2021, 38(6): 1153 − 1160.
    [13] SHCHENNIKOVA A V, SHULGA O A, IMMINK R, et al. Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies [J]. Plant Physiol, 2004, 134(4): 1632 − 1641. doi:  10.1104/pp.103.036665
    [14] RUOKOLAINEN S, PENG Yan, BROHOLM S K, et al. Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition[J/OL]. BMC Plant Biol, 2010, 10: 128[2021-08-10]. doi: 10.1186/1471-2229-10-128.
    [15] SHCHENNIKOVA A V, SHULGA O A, SKRYABIN K G. Ectopic expression of the homeotic MADS-box gene HAM31(Helianthus annuus L. ) in transgenic plants Nicotiana tabacum L. affects the gynoecium identity [J]. Dokl Biochem Biophys, 2018, 483(1): 363 − 368. doi:  10.1134/S1607672918060182
    [16] LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and Clustal X version 2.0 [J]. Bioinformatics, 2007, 23(21): 2947 − 2948. doi:  10.1093/bioinformatics/btm404
    [17] KUMAR S, STECHER G, LI M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms [J]. Mol Biol Evol, 2018, 35(6): 1547 − 1549. doi:  10.1093/molbev/msy096
    [18] WANG Enli, ENGEL T. SPASS: a generic process-oriented crop model with versatile windows interfaces [J]. Environ Model Software, 2000, 15(2): 179 − 188. doi:  10.1016/S1364-8152(99)00033-X
    [19] 祁宏英, 姚美玲, 徐洪国. 龙葵花芽分化形态解剖学研究[J]. 北方园艺, 2017(9): 135 − 138.

    QI Hongying, YAO Meiling, XU Hongguo. Anatomical and morphological characteristics of development of flower bud differentiation in Solanum nigrum L. [J]. Northern Hortic, 2017(9): 135 − 138.
    [20] LITT A, KRAMER E M. The ABC model and the diversification of floral organ identity [J]. Semin Cell Dev Biol, 2010, 21(1): 129 − 137. doi:  10.1016/j.semcdb.2009.11.019
    [21] ZHANG Chunling, WEI Ludan, WANG Wenjing, et al. Identification, characterization and functional analysis of AGAMOUS subfamily genes associated with floral organs and seed development in Marigold (Tagetes erecta)[J/OL]. BMC Plant Biol, 2020, 20(1): 439[2021-08-10]. doi: 10.1186/s12870-020-02644-5.
    [22] MONNIAUX M, MCKIM S M, CARTOLANO M, et al. Conservation vs divergence in LEAFY and APETALA1 functions between Arabidopsis thaliana and Cardamine hirsuta [J]. New Phytol, 2017, 216(2): 549 − 561. doi:  10.1111/nph.14419
    [23] LITT A, IRISH V F. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development [J]. Genetics, 2003, 165(2): 821 − 833. doi:  10.1093/genetics/165.2.821
    [24] SHIMA Y, FUJISAWA M, KITAGAWA M, et al. Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis [J]. Biosci Biotechnol Biochem, 2014, 78(2): 231 − 237. doi:  10.1080/09168451.2014.878221
    [25] SUNG S K, MOON Y H, CHUNG J E, et al. Characterization of MADS box genes from hot pepper [J]. Mol Cells, 2001, 11(3): 352 − 359.
    [26] JANG S, AN K, LEE S, et al. Characterization of tobacco MADS-box genes involved in floral initiation [J]. Plant Cell Physiol, 2002, 43(2): 230 − 238. doi:  10.1093/pcp/pcf015
    [27] BERBEL A, NAVARRO C, FERRÁNDIZ C, et al. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species [J]. Plant J, 2001, 25(4): 441 − 451. doi:  10.1046/j.1365-313x.2001.00974.x
    [28] CHI Yingjun, HUANG Fang, LIU Haicui, et al. An APETALA1-like gene of soybean regulates flowering time and specifies floral organs [J]. J Plant Physiol, 2011, 168(18): 2251 − 2259. doi:  10.1016/j.jplph.2011.08.007
    [29] CHEN Mingkun, LIN I C, YANG C H. Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation [J]. Plant Cell Physiol, 2008, 49(5): 704 − 717. doi:  10.1093/pcp/pcn046
    [30] LI Cunjie, CHEN Liyuan, FAN Xiaoning, et al. MawuAP1 promotes flowering and fruit development in the basal angiosperm Magnolia wufengensis (Magnoliaceae) [J]. Tree Physiol, 2020, 40(9): 1247 − 1259. doi:  10.1093/treephys/tpaa057
    [31] 孙迎坤, 李纪元, 殷恒福. 山茶花CjAPL1基因正义表达载体的构建及对拟南芥的转化分析[J]. 园艺学报, 2014, 41(4): 789 − 796.

    SUN Yingkun, LI Jiyuan, YIN Hengfu. Sense expression vector construction and analysis of transgenic Arabidopsis thaliana with CjAPL1 gene from Camellia japonica [J]. Acta Hortic Sin, 2014, 41(4): 789 − 796.
    [32] 邓柠檬, 高兰, 王晨, 等. 金钗石斛AP1/FUL亚家族基因DnAPL1的克隆和功能分析[J]. 植物生理学报, 2020, 56(9): 1854 − 1862.

    DENG Ningmeng, GAO Lan, WANG Chen, et al. Isolation and functional characterization of DnAPL1, an AP1/FUL subfamily member from Dendrobium nobile [J]. Plant Physiol Commun, 2020, 56(9): 1854 − 1862.
    [33] MOREL P, CHAMBRIER P, BOLTZ V, et al. Divergent functional diversification patterns in the SEP/AGL6/AP1 MADS-box transcription factor superclade [J]. Plant Cell, 2019, 31(12): 3033 − 3056. doi:  10.1105/tpc.19.00162
    [34] RISSEEUW E, VENGLAT P, XIANG Daoquan, et al. An activated form of UFO alters leaf development and produces ectopic floral and inflorescence meristems[J/OL]. PLoS One, 2013, 8(12): e83807[2021-09-01]. doi:  10.1371/journal.pone.0083807.
    [35] CHEN Zhong, YE Meixia, SU Xiaoxing, et al. Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar [J]. Transgenic Res, 2015, 24(4): 705 − 715. doi:  10.1007/s11248-015-9870-z
  • [1] 陈柯俐, 朴春兰, 郝燕敏, 冯丽君, 周佳圆, 栾思楠, 刘乐乐, 李菲菲, 袁思明, 崔敏龙.  欧洲千里光CYCLOIDEA(CYC)类SvRAY1基因的克隆及功能分析 . 浙江农林大学学报, 2021, 38(6): 1153-1160. doi: 10.11833/j.issn.2095-0756.20200802
    [2] 卜柯丽, 傅卢成, 王灵杰, 栗青丽, 王柯杨, 马元丹, 高岩, 张汝民.  毛竹茎秆快速生长期PeATG1/PeATG4基因表达分析 . 浙江农林大学学报, 2020, 37(1): 43-50. doi: 10.11833/j.issn.2095-0756.2020.01.006
    [3] 蒋琦妮, 付建新, 张超, 董彬, 赵宏波.  桂花OfAP1基因的克隆及表达分析 . 浙江农林大学学报, 2019, 36(4): 664-669. doi: 10.11833/j.issn.2095-0756.2019.04.005
    [4] 王丽媛, 孙鹏, 李华威, 傅建敏, 刁松锋, 韩卫娟, 索玉静, 买旖旎.  柿性器官败育及相关基因的表达 . 浙江农林大学学报, 2019, 36(2): 236-246. doi: 10.11833/j.issn.2095-0756.2019.02.004
    [5] 刘玉成, 王艺光, 张超, 董彬, 付建新, 胡绍庆, 赵宏波.  桂花OfCCD1基因启动子克隆与表达特性 . 浙江农林大学学报, 2018, 35(4): 596-603. doi: 10.11833/j.issn.2095-0756.2018.04.003
    [6] 毛玮, 曹跃芬.  棉纤维发育的遗传特性及相关基因的研究进展 . 浙江农林大学学报, 2018, 35(6): 1155-1165. doi: 10.11833/j.issn.2095-0756.2018.06.021
    [7] 李冰冰, 刘国峰, 魏书, 黄龙全, 张剑韵.  烟草NtPLR1基因克隆与表达分析 . 浙江农林大学学报, 2017, 34(4): 581-588. doi: 10.11833/j.issn.2095-0756.2017.04.003
    [8] 赵传慧, 周厚君, 童再康, 林二培, 黄华宏, 牛明月.  光皮桦成花相关MADS-box基因BlMADS1的克隆与表达 . 浙江农林大学学报, 2015, 32(2): 221-228. doi: 10.11833/j.issn.2095-0756.2015.02.008
    [9] 沈红霞, 韩秀杰, 赵凡凡, 张保新, 余风艳, 王晓杜.  猪日本乙型脑炎病毒NS1基因的表达和抗体制备 . 浙江农林大学学报, 2013, 30(3): 396-400. doi: 10.11833/j.issn.2095-0756.2013.03.015
    [10] 马腾飞, 林新春.  植物SOC1/AGL20基因研究进展 . 浙江农林大学学报, 2013, 30(6): 930-937. doi: 10.11833/j.issn.2095-0756.2013.06.019
    [11] 朱龙飞, 徐英武, 林新春.  绿竹花发育相关基因BoAP3的克隆与分析 . 浙江农林大学学报, 2013, 30(6): 839-843. doi: 10.11833/j.issn.2095-0756.2013.06.006
    [12] 杜明利, 高群英, 高岩, 张汝民.  外来物种大花金鸡菊不同器官成分的气质联用(GC-MS)分析 . 浙江农林大学学报, 2012, 29(2): 313-318. doi: 10.11833/j.issn.2095-0756.2012.02.024
    [13] 徐小雁, 田敏, 王彩霞, 龙明华.  文心兰花发育相关基因OAP3的克隆与表达分析 . 浙江农林大学学报, 2011, 28(6): 900-906. doi: 10.11833/j.issn.2095-0756.2011.06.010
    [14] 田敏, 龚茂江, 徐小雁, 王彩霞.  兰科植物花发育的基因调控研究进展 . 浙江农林大学学报, 2011, 28(3): 494-499. doi: 10.11833/j.issn.2095-0756.2011.03.023
    [15] 黄有军, 周丽, 陈芳芳, 周秦, 黄坚钦, 黄敏仁, 王明庥.  山核桃成花过程基因表达的cDNA-AFLP分析 . 浙江农林大学学报, 2009, 26(3): 297-301.
    [16] 赵宏波, 周莉花, 郝日明.  夏蜡梅和光叶红蜡梅花发育特性和柱头可授性 . 浙江农林大学学报, 2009, 26(3): 302-307.
    [17] 王正加, 黄有军, 夏国华, 郑炳松, 金松恒, 黄坚钦.  山核桃APETALA1同源基因的克隆与序列分析 . 浙江农林大学学报, 2008, 25(4): 427-430.
    [18] 姜贝贝, 房伟民, 陈发棣, 顾俊杰.  氮磷钾配比对切花菊‘神马’生长发育的影响 . 浙江农林大学学报, 2008, 25(6): 692-697.
    [19] 乔桂荣, 栾维江, 潘红伟, 卓仁英.  利用农杆菌介导法获得RNAi转基因枫香的研究 . 浙江农林大学学报, 2007, 24(2): 140-144.
    [20] 张纪卯.  毛果青冈1 年生苗各器官干物质生产分配及相关关系 . 浙江农林大学学报, 2006, 23(6): 705-709.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210651

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/4/1

计量
  • 文章访问数:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 录用日期:  2022-03-25
  • 修回日期:  2022-03-15

欧洲千里光SvAPETALA1基因的克隆及功能分析

doi: 10.11833/j.issn.2095-0756.20210651
    基金项目:  宁夏回族自治区重点研发计划重大项目(2019BFG02011)
    作者简介:

    郝燕敏(ORCID: 0000-0002-0402-6705),从事植物花器官发育研究。E-mail: 1833620856@qq.com

    通信作者: 朴春兰(ORCID: 0000-0001-9593-8023),助理研究员,从事生物技术与分子育种研究。E-mail: chunlan_piao@zafu.edu.cn
  • 中图分类号: S943.2

摘要:   目的  花器官发育是影响花观赏价值的重要因素,AP1类基因调控植物花器官的形成。研究菊科Asteraceae欧洲千里光Senecio vulgarisSvAP1基因在花器官形成中的重要作用,旨在探究菊科复杂花序结构产生的调控机制。  方法  以欧洲千里光为材料克隆获得了SvAP1基因,通过多序列比对、构建系统进化树、实时荧光定量PCR(qRT-PCR)反应、构建超表达载体、组织学染色观察等方法与技术,对SvAP1基因进行功能预测与分析。  结果  SvAP1基因开放阅读框长度为705 bp,编码234个氨基酸。多序列比对与系统进化分析显示:SvAP1基因属于MADS-box基因AP1类亚家族,C末端具有paleoAP1保守基序(motif)。欧洲千里光组织特异性表达分析表明:SvAP1基因在营养器官和花序中都有表达。转基因龙葵Solanum nigrum的形态学观察和石蜡切片技术分析显示:与野生型龙葵相比,转基因龙葵雌蕊发育异常,表现为子房膨大且雌蕊状组织增多。  结论  欧洲千里光SvAP1基因在龙葵中的超表达影响雌蕊发育,与ABC模型中A类基因超表达对植物花器官发育造成的影响存在差异,即转基因龙葵雄蕊无明显变化且雌蕊未转变为萼片状或叶片状器官。这可能与欧洲千里光花器官调节机制和花序结构的复杂性有关。由此可知,欧洲千里光SvAP1基因可能作为花器官特征基因在花器官形成中具有重要作用。图6表1参35

English Abstract

郝燕敏, 陈柯俐, 冯丽君, 李菲菲, 崔敏龙, 朴春兰. 欧洲千里光SvAPETALA1基因的克隆及功能分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210651
引用本文: 郝燕敏, 陈柯俐, 冯丽君, 李菲菲, 崔敏龙, 朴春兰. 欧洲千里光SvAPETALA1基因的克隆及功能分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210651
HAO Yanmin, CHEN Keli, FENG Lijun, LI Feifei, CUI Minlong, PIAO Chunlan. Cloning and functional analysis of SvAPETALA1 in Senecio vulgaris[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210651
Citation: HAO Yanmin, CHEN Keli, FENG Lijun, LI Feifei, CUI Minlong, PIAO Chunlan. Cloning and functional analysis of SvAPETALA1 in Senecio vulgaris[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210651

返回顶部

目录

    /

    返回文章
    返回