本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。
城市绿地中立枯丝核菌和齐整小核菌的qPCR快速检测方法
doi: 10.11833/j.issn.2095-0756.20210801
Quantitative real-time PCR for rapid detection of Rhizoctonia solani and Sclerotium rolfsii in urban green space
-
摘要:
目的 土传病原真菌立枯丝核菌Rhizoctonia solani和齐整小核菌Sclerotium rolfsii严重威胁园林绿化植物正常生长。建立针对这2种土壤病原真菌的快速定量检测方法。 方法 通过筛选2种病原菌特异性引物,优化反应条件。 结果 初步建立了2种病原菌的实时荧光定量PCR(qPCR)检测方法。引物ST-RS1/ITS4和SRITSF/SRITSR可以分别用于立枯丝核菌和齐整小核菌的qPCR检测,其灵敏度分别达24×106和22×106拷贝·L−1,2次重复反应的变异系数分别为3.37%~4.61%和0.66%~8.61%。对上海绿地土壤样品的检测结果表明:立枯丝核菌和齐整小核菌的检出率分别为100%和19%。 结论 建立的qPCR检测方法具有较强特异性、较高灵敏度和较强重复性,可以用于上海城市绿地土壤中立枯丝核菌和齐整小核菌的快速、有效定量检测。图2表5参29 Abstract:Objective This study aims to establish a rapid quantitative detection method for Rhizoctonia solani and Sclerotium rolfsii, 2 soil-borne pathogenic fungi that seriously threaten the normal growth of landscape plants in Shanghai. Method The reaction conditions were optimized by screening 2 pathogen specific primers. Result A quantitative real-time PCR(qPCR) method was established for the detection of the two pathogens. The primers ST-RS1/ITS4 and SRITSF/SRITSR could be used for qPCR detection of R. solani and S. rolfsii, with sensitivity of 24×106 and 22×106 copies·L−1, respectively. The coefficients of variation of the 2 repeated reactions were 3.37%−4.61% and 0.66%−8.61%, respectively. The detection results of soil samples in Shanghai green space showed that the detection rates of R. solani and S. rolfsii were 100% and 19%, respectively. Conclusion The established qPCR method has high specificity, sensitivity and repeatability, and can be used for rapid and effective quantitative detection of R. solani and S. rolfsii in Shanghai urban green soil. [Ch, 2 fig. 5 tab. 29 ref.] -
Key words:
- urban green space soil /
- Rhizoctonia solani /
- Sclerotium rolfsii /
- qPCR
-
表 1 绿地土壤样品信息
Table 1. Information of green space soil samples
样品编号 绿地类型 采样位置 行政区 绿地名称 纬度(N) 经度(E) 1 道路绿地 金山区 朱平公路中央绿化带内 30°49′ 121°08′ 2 公园绿地 闵行区 闵行文化公园 31°10′ 121°21′ 3 公园绿地 金山区 亭林公园 30°20′ 121°18′ 4 道路绿地 金山区 亭卫公路 30°20′ 121°20′ 5 公园绿地 奉贤区 奉浦四季生态园 30°56′ 121°27′ 6 公园绿地 崇明区 崇明新城公园 31°37′ 121°25′ 7 公园绿地 黄浦区 复兴公园 31°13′ 121°27′ 8 道路绿地 徐汇区 虹梅路 31°08′ 121°24′ 9 道路绿地 普陀区 真北路 31°16′ 121°23′ 10 道路绿地 浦东新区 杨高中路 31°13′ 121°32′ 11 道路绿地 浦东新区 杨高北路 31°15′ 121°35′ 12 道路绿地 浦东新区 济阳路上浦路 31°08′ 121°29′ 13 道路绿地 浦东新区 杨高南路 31°11′ 121°31′ 14 道路绿地 青浦区 外青松公路 31°12′ 121°07′ 15 道路绿地 浦东新区 唐镇路 31°12′ 121°38′ 16 公园绿地 宝山区 炮台湾湿地公园 31°23′ 121°30′ 17 公园绿地 宝山区 淞南公园 31°20′ 121°28′ 18 道路绿地 闵行区 华宁路剑川路 31°01′ 121°23′ 19 道路绿地 杨浦区 殷行路 31°19′ 121°31′ 20 公园绿地 浦东新区 名人苑公园北门东侧 31°14′ 121°33′ 21 公园绿地 嘉定区 汇龙潭公园 31°22′ 121°14′ 表 2 用于立枯丝核菌和齐整小核菌qPCR的引物信息
Table 2. qPCR primer sets of R. solani and S. rolfsii
病原菌 引物名称 引物序列 (5ʹ→3ʹ) 产物大小/bp 退火温度/℃ 参考文献 立枯丝核菌 ST-RS1 AGTGTTATGCTTGGTTCCACT 187 60 [19] ITS4 TCCTCCGCTTATTGATATGC ITS1 TCCGTAGGTGAACCTGCGG 564 65 [20] GMRS-3 AGTGGAACCAAGCATAACACT 齐整小核菌 SCR-F CGTAGGTGAACCTGCGGA 540 54 [21] SCR-R CATACAAGCTAGAATCCC SRITSF TACACCTGTGAACCAACTG 465 52 [22] SRITSR CATACAAGCTAGAATCCC 表 3 qPCR引物在线比对结果
Table 3. On-line blast results of qPCR primers
引物名称 目的序列
长度/bp匹配目的
序列数/条匹配非目的
序列数/条错配
率/%ST-RS1/ITS4 187 908 76 7.7 ITS1/GMRS-3 564 936 63 6.3 SRITSF/SRITSR 465 429 38 8.1 SCR-F/SCR-R 540 30 4 13.3 表 4 质粒标准品和土壤样品测序比对结果
Table 4. Sequencing alignment result of plasmid standard and soil sample
引物 样品 同源菌株 基因登录号 相似度/% ST-RS1/ITS4 质粒标准品 R. solani BTRFB1 MZ158299 99.4 土壤样品 R. solani AG-F JQ343829 99.4 SRITSF/SRITSR 质粒标准品 S. rolfsii NTNM MT126473 99.5 土壤样品 S. rolfsii SR1 MG847186 98.8 表 5 qPCR的重复性
Table 5. Repeatability of qPCR
病原菌 样品编号 第1次试验 第2次试验 变异系数/% Ct 拷贝数/(×106拷贝·L−1) Ct 拷贝数/(×106拷贝·L−1) 立枯丝核菌 4 31.74 3.09×101 31.60 3.25×101 3.57 5 30.54 6.45×101 30.56 6.15×101 3.37 6 29.49 1.23×102 29.51 1.17×102 3.54 10 30.98 4.91×101 31.03 4.60×101 4.61 12 29.71 1.07×102 29.74 1.01×102 4.08 齐整小核菌 3 33.76 2.16×102 33.53 2.44×102 8.61 6 35.15 1.02×102 35.09 1.05×102 2.05 14 35.04 1.08×102 35.05 1.07×102 0.66 16 36.55 4.77×101 36.63 4.57×101 3.03 18 35.72 7.46×101 35.67 7.66×101 1.87 -
[1] 马想, 张浪, 黄绍敏, 等. 上海城市绿地土壤肥力变化分析[J]. 中国园林, 2020, 36(5): 104 − 109. MA Xiang, ZHANG Lang, HUANG Shaomin, et al. Analysis on the change of soil fertility in Shanghai urban space [J]. Chin Landscape Archit, 2020, 36(5): 104 − 109. [2] 李世东, 缪作清, 高卫东. 我国农林园艺作物土传病害发生和防治现状及对策分析[J]. 中国生物防治学报, 2011, 27(4): 433 − 440. LI Shidong, LIAO Zuoqing, GAO Weidong. Challenges, opportunities and obligations in management of soilborne plant diseases in China [J]. ChinJ Biol Control, 2011, 27(4): 433 − 440. [3] 付先惠, 曹敏, 唐勇. 植物病原菌在森林动态中的作用[J]. 生态学杂志, 2003, 22(3): 59 − 64. doi: 10.3321/j.issn:1000-4890.2003.03.012 FU Xianhui, CAO Min, TANG Yong. Effects of plant pathogens on forest dynamics [J]. Chin J Ecol, 2003, 22(3): 59 − 64. doi: 10.3321/j.issn:1000-4890.2003.03.012 [4] 彭丹丹, 张源明, 舒灿伟, 等. 植物病原真菌分子检测技术的研究进展[J]. 基因组学与应用生物学, 2017, 36(5): 2015 − 2022. PENG Dandan, ZHANG Yuanming, SHU Canwei, et al. Research progress on the molecular detection techniques of plant pathogenic fungi [J]. Genomics Appl Biol, 2017, 36(5): 2015 − 2022. [5] 杨珍, 戴传超, 王兴祥, 等. 作物土传真菌病害发生的根际微生物机制研究进展[J]. 土壤学报, 2019, 56(1): 12 − 22. YANG Zhen, DAI Chuanchao, WANG Xingxiang, et al. Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases [J]. Acta Pedol Sin, 2019, 56(1): 12 − 22. [6] 蒋杰贤, 严巍. 城市绿地有害生物预警及控制[M]. 上海: 上海科学技术出版社, 2007: 207 − 225. JIANG Jiexian, YAN Wei. Pest Warning and Control in Urban Green Space[M]. Shanghai: Shanghai Scientific and Technical Press, 2007: 207 − 225. [7] 骆丹, 田慧, 张彩霞, 等. 植物立枯丝核菌根腐病研究进展[J]. 中国植保导刊, 2020, 40(3): 23 − 31. doi: 10.3969/j.issn.1672-6820.2020.03.004 LUO Dan, TIAN Hui, ZHANG Caixia, et al. Advances in the research on plant root rot caused by Rhizoctonia solani [J]. China Plant Prot, 2020, 40(3): 23 − 31. doi: 10.3969/j.issn.1672-6820.2020.03.004 [8] ANDERSON N A. The genetics and pathology of Rhizoctonia solani [J]. Ann Rev Phytopathol, 2003, 20(1): 329 − 347. [9] FARR D F, BILLS G F, CHAMURIS G P, et al. Fungi on plants and plant products in the United States [J]. Mycologia, 1990, 82(3): 243 − 246. [10] BILLAH K M M, HOSSAIN M B, PRINCE M H, et al. Pathogenicity of Sclerotium rolfsii on different host, and its over wintering survival: a mini review [J]. Int J Adv Agric Sci, 2017, 2(7): 1 − 6. [11] FLORENCE E J M, SHARMA J K, SANKARAN K V, et al. Some diseases of forest tree seedlings in India caused by Sclerotium rolfsii and Rhizoctonia solani [J]. Eur J For Pathol, 1985, 15(3): 187 − 190. doi: 10.1111/j.1439-0329.1985.tb00883.x [12] 曹月霞. 尖孢镰刀菌西瓜专化型分子检测技术的建立及其效应子的初步鉴定[D]. 北京: 中国农业科学院, 2016. CAO Yuexia. The Establishment of the Molecular Detection Technique and Basic Identification of Effectors of Fusarium oxysporum f. sp. niveum[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. [13] 申永铭, 郭成瑾, 王喜刚, 等. 土壤中立枯丝核菌AG3菌核的荧光定量PCR快速检测[J]. 菌物学报, 2017, 36(10): 1383 − 1391. SHEN Yongming, GUO Chengjin, WANG Xigang, et al. Rapid detection of Rhizoctonia solani AG3 sclerotia in soil by quantitative real-time PCR [J]. Mycosystema, 2017, 36(10): 1383 − 1391. [14] OKUBARA P A, SCHROEDER K L, PAULITZ T C. Identification and quantification of Rhizoctonia solani and R. oryzae using real-time polymerase chain reaction [J]. Phytopathology, 2008, 98(7): 837 − 847. doi: 10.1094/PHYTO-98-7-0837 [15] MILNER H, JI Pingsheng, SABULA M, et al. Quantitative polymerase chain reaction (Q-PCR) and fluorescent in situ hybridization (FISH) detection of soilborne pathogen Sclerotium rolfsii [J]. Appl Soil Ecol, 2019, 136: 86 − 92. doi: 10.1016/j.apsoil.2019.01.002 [16] GAO Yuhan, WU Miao, GUO Rongjun, et al. Real time PCR quantification of Sclerotium rolfsii in chilli tissue and soil [J]. Plant Prot Sci, 2015, 51(2): 61 − 66. [17] 骆玉珍, 张维维, 李雅颖, 等. 上海市公园绿地土壤肥力特征分析与综合评价[J]. 中国土壤与肥料, 2019(6): 86 − 93. doi: 10.11838/sfsc.1673-6257.18508 LUO Yuzhen, ZHANG Weiwei, LI Yaying, et al. Analysis and comprehensive evaluation of soil fertility characteristics for the urban park in Shanghai [J]. Soil Fert Sci China, 2019(6): 86 − 93. doi: 10.11838/sfsc.1673-6257.18508 [18] 林福呈, 王洪凯. 丝状真菌分子细胞生物学与实验技术[M]. 北京: 科学出版社, 2010. LIN Fucheng, WANG Hongkai. Molecular Cell Biology and Experimental Techniques of Filamentous Fungi [M]. Beijing: Science Press, 2010. [19] LIEVENS B, BROUWER M, VANACHTER A, et al. Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples [J]. Plant Sci, 2006, 171(1): 155 − 165. doi: 10.1016/j.plantsci.2006.03.009 [20] JOHANSON A, TURNER H C, MCKAY G J, et al. A PCR-based method to distinguish fungi of the rice sheath-blight complex, Rhizoctonia solani, R. oryzae and R. oryzae-sativae [J]. FEMS Microbiol Lett, 2010, 162(2): 289 − 294. [21] JEEVA M L, MISHRA A K, VIDYADHARAN P, et al. A species-specific polymerase chain reaction assay for rapid and sensitive detection of Sclerotium rolfsii [J]. Australas Plant Pathol, 2010, 39(6): 517 − 523. doi: 10.1071/AP10027 [22] PRAVI V, JEEVA M L, ARCHANA P V. Rapid and sensitive detection of Sclerotium rolfsii associated with collar rot disease of Amorphophallus paeoniifolius by species-specific polymerase chain reaction assay [J]. Mol Biotechnol, 2014, 56(9): 787 − 794. doi: 10.1007/s12033-014-9757-x [23] 汪最, 李丽, 刘鹏, 等. ALV-J、REV和MDV多重荧光定量PCR检测方法的建立[J]. 中国动物传染病学报, 2020, 28(6): 73 − 78. WANG Zui, LI Li, LIU Peng, et al. Establishment of a triple real-time PCR detection ALV-J, REV and MDV [J]. Chin J Anim Infect Dis, 2020, 28(6): 73 − 78. [24] 张敏, 杨丹娇, 蓝岚, 等. 羊口疮病毒SYBR Green Ⅰ实时荧光定量PCR法的建立[J]. 四川畜牧兽医, 2021, 48(2): 25 − 28. ZHANG Min, YANG Danjiao, LAN Lan, et al. Establishment of SYBR GreenⅠreal-time fluorescence quantitative PCR method for sheep mouth virus [J]. Sichuan Anim Vet Sci, 2021, 48(2): 25 − 28. [25] 赵爽. 土壤病原真菌的检测及土壤中真菌群落多样性的研究 [D]. 南京: 南京农业大学, 2012. ZHAO Shuang. Soil Pathogens Detection and Soil Fungi Distribution in Soil[D]. Nanjing: Nanjing Agricultural University, 2012. [26] BUSTIN S A, BENES V, GARSON J A, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments [J]. Clin Chem, 2009, 55(4): 611 − 622. doi: 10.1373/clinchem.2008.112797 [27] CARRILLO J, MAYORQUIN J S, STAJICH J E, et al. Probe-based multiplex real-time PCR as a diagnostic tool to distinguish distinct fungal symbionts associated with Euwallacea kuroshio and E. whitfordiodendrus in California [J]. Plant Dis, 2019, 104(1): 227 − 238. [28] MALVICK D K, IMPULLITTI A E. Detection and quantification of Phialophora gregata in soybean and soil samples with a quantitative, real-time PCR assay [J]. Plant Dis, 2007, 91(6): 736 − 742. doi: 10.1094/PDIS-91-6-0736 [29] 魏锋, 余真真, 商文静, 等. 土壤大丽轮枝菌微菌核的快速定量检测[J]. 植物病理学报, 2013, 43(5): 449 − 457. WEI Feng, YU Zhenzhen, SHANG Wenjing, et al. Rapid detection and quantification of Verticillium dahliae microsclerotia in soil [J]. Acta Phytopathol Sin, 2013, 43(5): 449 − 457. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210801

计量
- 文章访问数: 9
- 被引次数: 0