留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京市核心区洋白蜡行道树健康评价及影响因素

王琰 余韵 刘勇 王开勇 周晓杰 王洋

辛鹏程, 魏天兴, 陈宇轩, 等. 山西西南部黄土丘陵区典型林分生态化学计量特征[J]. 浙江农林大学学报, 2024, 41(3): 549-556. DOI: 10.11833/j.issn.2095-0756.20230573
引用本文: 王琰, 余韵, 刘勇, 等. 北京市核心区洋白蜡行道树健康评价及影响因素[J]. 浙江农林大学学报, 2022, 39(6): 1340-1349. DOI: 10.11833/j.issn.2095-0756.20220109
XIN Pengcheng, WEI Tianxing, CHEN Yuxuan, et al. Ecological stoichiometric characteristics of typical forest stands in the Loess Hilly Region of southwest Shanxi[J]. Journal of Zhejiang A&F University, 2024, 41(3): 549-556. DOI: 10.11833/j.issn.2095-0756.20230573
Citation: WANG Yan, YU Yun, LIU Yong, et al. Health assessment and influencing factors of Fraxinus pennsylvanica in Beijing core area[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1340-1349. DOI: 10.11833/j.issn.2095-0756.20220109

北京市核心区洋白蜡行道树健康评价及影响因素

DOI: 10.11833/j.issn.2095-0756.20220109
基金项目: 北京市园林绿化局项目(CEG-2018-01)
详细信息
    作者简介: 王琰(ORCID: 0000-0002-8636-8660),从事森林培育学研究。E-mail: 369131843@qq.com
    通信作者: 刘勇(ORCID: 0000-0002-6958-0205),教授,博士生导师,从事森林培育学研究。E-mail: lyong@bjfu.edu.cn
  • 中图分类号: S731

Health assessment and influencing factors of Fraxinus pennsylvanica in Beijing core area

  • 摘要:   目的  针对城市树木健康评价的快速化、准确化及生产化,调查并分析北京市首都功能核心区主要绿化树种洋白蜡Fraxinus pennsylvanica的生长、健康及管护现状,为构建精炼、全面的洋白蜡行道树健康评价体系及管护技术措施提供科学依据。  方法  以北京市核心区11条主要街道的洋白蜡行道树为研究对象,采用主成分分析、K-means聚类构建健康评价模型,采用判别分析进行结果验证,将评价结果与评价指标结合建立洋白蜡BP神经网络健康预测模型;同时从生长状况、管护措施以及环境因子3个方面,分析胸径、树高、修枝留茬数量、防踩铺装等因素对洋白蜡行道树健康状况的影响。  结果  研究区域中,健康、亚健康、不健康及濒死单株分别占总数的39.20%、41.26%、16.78%和2.76%;建立的BP神经网络健康预测模型中,训练集、验证集、测试集与总集的期望值与预测值之间的相关系数分别为0.999 7、0.972 0、0.997 6及0.995 3,均大于0.950 0,表明此模型能准确地反映洋白蜡行道树12个评价指标与健康评价类别的关系,可用于对同一地区其他白蜡行道树健康状况预测;方差分析和多重比较表明:胸径、修枝留茬、防踩铺装、株距、树池面积、车道数及车道走向均对洋白蜡行道树的健康状况存在显著影响(P<0.05),树高影响较小。当洋白蜡胸径为60~70 cm、树体无修枝留茬、树池铺装透水性好、株距为5~10 m、树池面积为1~2 m2、道路宽度适宜且为南北走向时,洋白蜡健康状况最好。  结论  研究区域内,洋白蜡行道树整体呈亚健康状态,具有良好的保育保养潜力,部分受害严重,亟需处理。在洋白蜡行道树栽植及后期管护中,确保其修剪规范、铺装材料透水强、株距5~10 m、树池面积1~2 m2以及适宜的道路情况,是保证洋白蜡行道树健康状况良好的重要措施。图3表13参26
  • 生态化学计量学主要关注生物地球化学循环过程中营养元素间的相互作用与平衡[1],从植物生态学、土壤学等多学科角度探究植物器官、物种、群落和生态系统的元素计量关系和规律,广泛用于判断植物体和群落的养分限制状况[2]、指导生态系统养分管理[3]、预测全球养分变化背景下的植被动态研究[4]。植物-凋落物-土壤是陆地生态系统重要的养分储存库,三者之间彼此影响和制约。植物养分输移活动通过叶片从大气中固定碳(C),依靠枝在植物各器官间进行养分运转,借助根系吸收和存储土壤中的养分,最后以凋落物淋溶、光降解、微生物分解和根系分泌等方式将C、氮(N)、磷(P)等元素归还土壤[5],因此,以上循环形成了植物-凋落物-土壤的C、N、P生态系统组分连续体,其关联性有助于深入认识植被各组分对营养元素的利用与分配规律。目前,研究多集中在区域土壤与植物单一器官(叶片)的生态化学计量比研究,如梁楚欣等[6]探究了滇东石漠化区不同植被恢复模式下土壤C、N、P质量分数及化学计量比的差异,王浩伊等[7]研究了大兴安岭不同生活型针叶林生态化学计量与生长阶段的关系,而对于植物多器官(叶、枝、根)-凋落物-土壤为整体的相关研究较少。因此,阐明植物-凋落物-土壤生态系统养分循环及调控机制,可揭示生态系统植物-凋落物-土壤之间的物质循环特征。黄土高原生态环境敏感,独特的地貌导致水土流失严重[8]。植被恢复能有效防治水土流失,随着人工恢复为主的“退耕还林还草”工程的实施[9],黄土高原植被覆盖率、土壤质量明显提升,形成了自然恢复和人工恢复为主的植被类型[10]。以往对黄土高原植被恢复的生态化学计量研究,集中在单一树种不同器官[11]、不同密度人工林土壤[12]等方面,关于不同植被恢复类型下植物各器官生态化学计量特征、凋落物与土壤生态化学计量特征关系的研究仍较少。鉴于此,为系统了解植被恢复过程中植物与土壤的生态过程,本研究以黄土丘陵区人工恢复植被油松Pinus tabuliformis林、刺槐Robinia pseudoacacia林、侧柏Platycladus orientalis林为研究对象,以自然恢复植被辽东栎Quercus liaotungensis天然次生林为对照,系统研究乔木叶、枝、根,凋落物和土壤生态化学计量特征,揭示黄土高原生态系统的生态过程、养分循环和限制因素,为黄土高原人工林植被恢复工作和森林经营改造提供科技支撑。

    研究区位于山西省临汾市吉县森林生态系统国家野外科学观测研究站所在地的蔡家川流域(35°53′~36°21′N,110°27′~110°07′E),该区地处黄土高原东南部半湿润地区,属于典型的黄土残塬沟壑区,季风气候显著,年平均气温为10 ℃,年平均降水量为579 mm,年平均蒸发量达1 729 mm,降水集中在6—9月,海拔为400~1 820 m。本研究选取蔡家川流域具有典型代表性的人工油松林、刺槐林、侧柏林、辽东栎天然次生林,林下植物主要为丁香Syringa oblata、黄刺玫Rosa xanthina、绣线菊Spiraea salicifolia、青蒿Artemisia caruifolia、连翘Forsythia suspensa、梾木Cornus macrophylla、糙苏Phlomoides umbrosa、紫菀Aster tataricus等。自1991年起,在蔡家川流域内进行退耕还林的全面植被恢复工作,流域内梁峁坡沟综合规划设计,营造人工林,保护天然林,栽植了油松、刺槐及侧柏等适应性强、耐干旱瘠薄的树种,该人工林为生态公益林,没有进行间伐、施肥等人工经营措施,天然林采取自然恢复的方式。研究区样地基本特征见表1

    表 1  研究区样地基本特征
    Table 1  Basic information about the sampling site in the study area
    林分海拔/m坡度/(°)坡向平均树高/m平均胸径/cm凋落物厚度/cm郁闭度/%林分密度/(株·hm−2)
    油松林 1 1472010.514.02.4501 680
    刺槐林 1 123710.512.92.9711 310
    侧柏林 1 18614西北7.58.41.0491 200
    辽东栎林1 14125东南9.311.23.1671 150
    下载: 导出CSV 
    | 显示表格

    于2022年7—8月进行外业调查。在每个长势良好的人工油松林、刺槐林、侧柏林和天然次生林辽东栎林等典型样地,分设3个乔木样方(20 m×20 m),在样方内进行每木检尺,调查郁闭度、树高和胸径等指标。样方内挑选3株长势均匀的标准木,在树冠处同一层东、西、南、北4个方位采集健康成熟的叶片与细枝(直径<2 cm),在标准木的冠幅范围内随机钻取3个0~60 cm的土芯,用冲洗法获取根样品(直径<2 mm),分别混匀后装入塑封袋;在样方内按对角线法选取3个1 m×1 m的具有代表性的凋落物样方,采集枯枝落叶(未分解、半分解和已分解),混匀后装入塑封袋;五点取样法采集0~20 cm土层土壤样品,混匀后装入塑封袋。以上采集的样品带回实验室后,叶、枝、根在100 ℃杀青15 min,随后降温至65 ℃恒温,将叶、枝、根与凋落物烘干至恒量,粉碎,过0.15 mm筛。土壤样品自然风干后,研磨过0.25 mm筛。采用元素分析仪测定全碳、全氮,采用硫酸-高氯酸消煮-钼锑抗比色法测定全磷。

    采用SPSS 25.0对数据进行K-S检验,验证数据正态性;采用单因素方差分析(one-way ANOVA)比较不同林分类型及不同组分生态化学计量差异;经方差齐性检验,使用最小显著性差异法(LSD)进行显著性检验(α=0.05);采用R 4.3.1对其进行相关性分析;绘图均在Origin 2021和R 4.3.1中进行。

    图1可知:4个林分的植物叶、枝、根平均C质量分数分别为516.35、495.05、490.76 g·kg−1,平均N质量分数为19.14、6.75、10.46 g·kg−1,平均P质量分数为1.61、1.11、0.74 g·kg−1。各林分器官间叶的N、P质量分数显著高于枝和根(P<0.05)。

    图 1  不同林分植物各器官、凋落物和土壤C、N、P质量分数
    Figure 1  C, N and P contents of plant organs, litter and soil of different forest stands

    不同林分植物各器官-凋落物-土壤C、N、P质量分数存在显著差异(P<0.05)。油松叶、枝、根和凋落物C质量分数最高;辽东栎土壤C质量分数最高;刺槐叶、根和土壤N质量分数最高;辽东栎枝和凋落物N质量分数最高;侧柏各组分中的N质量分数均显著低于其他树种(P<0.05);油松叶和土壤P质量分数最高,侧柏叶、枝、根P质量分数最低。

    图2可知:4个林分的植物叶、枝、根平均C/N分别为31.44、107.79、92.40,平均C/P为360.02、547.72、751.41,平均N/P为12.25、6.11、14.58。根的C/N和C/P显著高于叶和枝(P<0.05)。

    图 2  不同林分植物各器官、凋落物和土壤C、N、P化学计量比
    Figure 2  C, N and P stoichiometric ratios of plant organs, litter and soil of different forest stands

    不同林分植物各器官-凋落物-土壤C/N、C/P、N/P存在显著差异(P<0.05)。侧柏叶、枝、根的C/N和C/P显著高于其他树种(P<0.05),枝、根、凋落物的C/P在不同林分中表现为辽东栎最低。油松凋落物的C/N、C/P、N/P显著高于其他树种(P<0.05)。辽东栎土壤的C/N、C/P、N/P显著高于其他树种(P<0.05),油松土壤的C/N、C/P、N/P显著低于其他树种(P<0.05)。

    图3所示:典型林分植物叶、枝、根的C、N呈显著正相关(P<0.05)。叶C与凋落物C、土壤P呈极显著正相关(P<0.01),与凋落物P呈极显著负相关(P<0.01);叶N与凋落物N、P、土壤N呈显著正相关(P<0.05);枝C与凋落物C呈显著正相关(P<0.05),与凋落物N、P呈显著负相关(P<0.05);枝N与凋落物N、土壤C呈显著正相关(P<0.05);枝P与凋落物N、土壤C、N呈显著正相关(P<0.05);根C与凋落物C、土壤P呈极显著正相关(P<0.01),与凋落物P呈极显著负相关(P<0.01);根N与凋落物N、土壤N呈显著正相关(P<0.05);凋落物C与凋落物P、土壤C呈显著负相关(P<0.05),与土壤P呈极显著正相关(P<0.01);土壤N与土壤P呈极显著正相关(P<0.01)。

    图 3  典型林分植物各器官-凋落物-土壤化学计量特征的相关性关系
    Figure 3  Correlations between plant organs, litter and soil stoichiometric characteristics of typical forest stands

    叶C/N与凋落物C/N呈显著正相关(P<0.05);叶N/P与凋落物C/N呈显著负相关(P<0.05);根C/P与凋落物C/N呈显著正相关(P<0.05),与土壤C/P、N/P呈显著负相关(P<0.05);凋落物C/N、C/P均与土壤C/N、C/P呈极显著负相关(P<0.01),与N/P呈极显著负相关(P<0.001);土壤C/N与土壤C/P、N/P呈极显著正相关(P<0.001);土壤C/P与土壤N/P呈极显著正相关(P<0.001)。

    植物C、N、P养分分配及环境因子共同决定了植物的生长发育和营养水平[13]。本研究中4种林分乔木叶片C、N、P平均质量分数分别为516.35、18.64、1.61 g·kg−1,叶片C质量分数较全球植物叶片平均值(461.60 g·kg−1)偏高,但是N、P质量分数低于全球平均水平(20.60、2.00 g·kg−1)[1]。说明该研究区的C储备丰富,N、P较为贫瘠。这与黄土高原土壤结构松散,水土流失严重,植物难以从土壤中吸收N、P元素有关[14],亦与中国土壤P质量分数普遍较低的规律一致[15]。本研究中,油松叶片、枝、根C质量分数高于其他植被,表明油松体内积累了更多的有机质,能更好地抵御不良环境的侵扰,这与马钦彦等[16]对针叶树种的研究结果一致。相关研究表明:植物C质量分数越高,植物对外界不利条件的抵抗能力越强[17]。油松作为常绿针叶树种,叶片角质层发达,含有大量木质素与单宁等含碳化合物,具有更强的叶片韧性,可以更好地承受外界物理损伤。刺槐各组分间N质量分数显著高于其他植被类型,刺槐作为豆科Leguminosae植物,通过根瘤固定空气中的N,具有较强的固氮能力[18],可以缓解黄土高原普遍缺N的现象。

    植物叶C/N、C/P与植物的固氮能力、养分吸收和利用效率存在正反馈机制,与植物生长速率存在负反馈机制[19]。本研究中,刺槐叶C/N、C/P最低,表明刺槐在生长过程中生长速率较快。相关研究表明:植物叶N/P能够解释植物养分的受限制情况[20]。本研究中,油松、侧柏和辽东栎叶的平均N/P为8.34~13.71。胡耀升等[21]研究表明:当N/P<14时,植物的生长受N的限制;当14<N/P<16时,植物的生长受N、P共同限制。而本研究结果表明:黄土丘陵区油松、侧柏、辽东栎的生长主要受N限制,刺槐N/P为15.24,说明刺槐的生长同时受N和P的限制。凋落物是植物与土壤养分循环之间的纽带[22],其分解速率的快慢和养分释放的多少决定了植物的养分利用效率和土壤养分的供应状况[23]。其中,凋落物的C/N、C/P能反映其分解速率,C/N、C/P较低时凋落物更易分解。本研究中,油松凋落物C/N、C/P高于其他树种,不易分解,这是因为油松凋落物中较高的C和较低的C/N抑制了微生物的分解作用[24]。有研究发现:凋落物N/P也可以表征其分解速率的受限制情况[25]。本研究中,黄土丘陵区4种林分凋落物N/P均低于25,表明研究区凋落物分解主要受N限制。研究区土壤C/N、C/P平均值远小于全国平均值[26],这与郭鑫等[27]的研究结果一致,表明研究区土壤有机质分解矿化作用较快,不利于土壤有机质积累,且土壤P的有效性较高,土壤微生物受P的限制作用较小。作为衡量土壤质量的重要参数,土壤N/P可以表征土壤养分限制情况,本研究中黄土丘陵区土壤N/P远低于中国陆地平均水平[26],表明研究区内植物生长主要受限于土壤N。

    在长期的进化过程中,植物通过调节养分配置,形成相应的元素分配规律,从而产生对应的生长特性,以适应外界环境的变化。本研究中不同器官C、N、P质量分数及其计量比存在密切联系,叶与根的C、N质量呈显著正相关,说明叶与根养分分配具有协同性,这与王淳等[28]的研究结果一致。不同器官间的C/N、C/P、N/P均呈显著正相关,说明不同器官之间相互促进,协同增长;植物资源利用在不同植物器官间是一致的,同时也受相同元素限制。因此,分析植物、凋落物和土壤间C、N、P及化学计量特征的相关关系,有助于解释生态系统养分循环的内部调控规律[29]

    本研究中典型林分植物各器官C、N与凋落物C、N呈显著正相关,叶C/N与凋落物C/N呈显著正相关,可见,植物与凋落物在各元素间存在较强的相关性,这是因为叶片是凋落物的直接来源,两者之间存在养分转移。叶和根的N与土壤N呈显著正相关关系,表明叶和根与土壤供给的氮之间相互促进。凋落物C与土壤C呈显著负相关,凋落物C/N、C/P与土壤C/N、C/P、N/P间呈显著负相关,说明凋落物是植物地上部分与土壤之间的介质,凋落物分解速率的快慢,影响着凋落物与土壤之间的养分循环关系[30]。凋落物分解速率慢,其自身养分含量高,返还到土壤中的养分将减少,因此,凋落物与土壤元素之间存在负相关关系。

    山西西南部黄土丘陵区典型林分乔木叶、枝、根、凋落物和土壤的生态化学计量特征具有显著差异,油松林具有较好的固碳能力,刺槐林具有较好的固氮效果。刺槐生长受N、P限制;油松、侧柏、辽东栎生长受N限制;研究区土壤氮缺乏且凋落物分解受N限制。典型林分植物叶、枝、根之间化学计量特征显著正相关,说明植物各器官养分分配具有协同性,凋落物与土壤之间化学计量特征显著负相关,表明凋落物和土壤之间的养分动态变化具有协变性。因此,从养分限制角度考虑,建议在晋西北黄土丘陵区人工林管护过程中合理营造刺槐混交林,增强固氮能力,并缓解N元素的养分限制性。

  • 图  1  BP神经网络模型的拓扑结构

    Figure  1  Topological structure of BP neural network model

    图  2  BP神经网络模型的误差下降曲线图

    Figure  2  Error decline curve of BP neural network model

    图  3  期望值和预测值的相关系数

    Figure  3  Correlation coefficient between measured and predicted values

    表  1  研究区域道路概况

    Table  1.   Roads’ profile in study area

    道路名称单向车道数道路走向道路类型行政区划道路名称单向车道数道路走向道路类型行政区划
    南礼士路二条1东西支路 西城青年沟路  1东西次干路东城
    南纬路   2东西次干路西城先农坛西路 1南北支路 西城
    燕京北街  1东西支路 西城二七剧场路 1南北支路 西城
    史家胡同  1东西支路 东城南花市大街 2南北次干路东城
    西兴隆街  1东西支路 东城德胜门内大街2南北次干路西城
    崇文门西大街3东西主干道东城
    下载: 导出CSV

    表  2  主成分特征根及方差贡献率

    Table  2.   Principal component characteristic root and variance contribution rates

    主成分特征根方差贡献率(wi)/%累计方差贡献率(W)/%主成分特征根方差贡献率(wi)/%累计方差贡献率(W)/%
    F11.95216.26416.264F41.1379.47752.449
    F21.71214.26730.531F51.1029.17961.629
    F31.49312.44142.972F61.0088.39670.025
      说明:F1~F6为前6个主成分。i=1, 2, 3
    下载: 导出CSV

    表  3  因子载荷矩阵

    Table  3.   Factor load matrix

    指标主成分指标主成分
    F1F2F3F4F5F6F1F2F3F4F5F6
    x10.492−0.3120.211−0.1680.3510.291x70.781−0.156−0.3980.091−0.1800.019
    x20.4090.1090.047−0.3250.6360.148x80.722−0.280−0.3700.169−0.2600.045
    x30.3280.5330.369−0.206−0.3000.031x90.2720.3190.110−0.3200.222−0.401
    x40.2940.5340.234−0.174−0.4260.002x10−0.1160.0660.2630.062−0.1040.816
    x50.1610.0600.3370.6960.258−0.164x11−0.0410.675−0.4730.0430.2190.111
    x60.2900.3640.3570.5180.108−0.012x12−0.1360.482−0.6440.1770.1250.177
    下载: 导出CSV

    表  4  基于K-means聚类分析的健康判别结果

    Table  4.   Health discrimination results based on K-means clustering analysis    

    健康等级线性判别分析
    健康/株亚健康/株不健康/株濒死/株总计/株
    健康 341000341
    亚健康035900359
    不健康001460146
    濒死 0002424
    总计 34135914624870
    下载: 导出CSV

    表  5  11条道路洋白蜡的健康状况

    Table  5.   Health condition of F. pennsylvanica in 11 roads

    道路名称健康树亚健康树不健康树濒死树总数/株
    数量/株比例/%数量/株比例/%数量/株比例/%数量/株比例/%
    南礼士路二条35.402239.301933.901221.4056
    南纬路   2147.701840.90511.4000.0044
    燕京北街  5163.002632.1044.9000.0081
    史家胡同  1016.703456.701321.7035.0060
    西兴隆街  3852.802940.3045.6011.4072
    崇文门西大街2030.304162.1046.1011.5066
    青年沟路  6932.407937.106028.2052.30213
    先农坛西路 1841.902251.2037.0000.0043
    二七剧场路 2440.002236.701321.7011.7060
    南花市大街 4669.701725.8034.5000.0066
    德胜门内大街4137.604945.001816.5010.90109
    总数    34139.2035941.2614616.78242.76870
    下载: 导出CSV

    表  6  胸径对洋白蜡健康状况的影响

    Table  6.   Effects of DBH on the health status of F. pennsylvanica

    胸径/cm样本量健康综合得分
    平均值±标准差极小值极大值标准误
    ≥10~<20820.96±0.07 ab0.711.150.01
    ≥20~<303540.96±0.08 ab0.391.150.00
    ≥30~<402410.93±0.11 a0.451.100.01
    ≥40~<501320.93±0.09 a0.451.070.01
    ≥50~<60540.92±0.10 a0.471.080.01
    ≥60~<7070.99±0.06 b0.881.060.02
      说明:不同字母表示不同胸径间差异显著(P<0.05)
    下载: 导出CSV

    表  7  树高对洋白蜡健康状况的影响

    Table  7.   Effects of tree height on the health status of F. pennsylvanica

    树高/m样本量健康综合得分
    平均值±标准差极小值极大值标准误
    ≥0~<680.89±0.12 a0.641.000.04
    ≥6~<124940.94±0.10 a0.451.150.00
    ≥12~<183390.95±0.09 a0.391.150.00
    ≥18~<24290.95±0.05 a0.841.050.01
      说明:不同字母表示不同树高间差异显著(P<0.05)
    下载: 导出CSV

    表  8  修枝留茬对洋白蜡健康状况的影响

    Table  8.   Effects of pruning stubble on the health status of F. pennsylvanica

    修枝留茬/个
    样本量健康综合得分
    平均值±标准差极小值极大值标准误
    03750.97±0.08 b0.581.150.00
    12150.94±0.10 a0.391.080.01
    2~31800.92±0.11 a0.451.100.01
    >31000.92±0.08 a0.561.060.01
      说明:不同字母表示不同修枝留茬数间差异显著(P<0.05)
    下载: 导出CSV

    表  9  树池防踩铺装情况对洋白蜡健康状况的影响     

    Table  9.   Effects of anti-stepping paving condition on the health status of F. pennsylvanica

    防踩铺装样本量健康综合得分
    平均值±标准差极小值极大值标准误
    无铺装   1030.88±0.12 a0.451.050.01
    透水性强铺装7480.95±0.09 b0.391.150.00
    透水性差铺装190.91±0.10 a0.621.030.02
      说明:不同字母表示不同防踩铺装间差异显著(P<0.05)
    下载: 导出CSV

    表  10  株距对洋白蜡健康状况的影响

    Table  10.   Effects of plant spacing on the health status of F. pennsylvanica    

    株距/m样本量健康综合得分
    平均值±标准差极小值极大值标准误
    ≥0~<5680.90±0.11 a0.451.090.01
    ≥5~<107500.95±0.09 b0.391.150.00
    ≥10520.94±0.09 b0.661.050.01
      说明:不同字母表示不同株距间差异显著(P<0.05)
    下载: 导出CSV

    表  11  树池面积对洋白蜡健康状况的影响

    Table  11.   Effects of tree pool area on the health status of F. pennsylvanica    

    树池面积/m2样本量健康综合得分
    平均值±标准差极小值极大值标准误
    ≥0~<190.90±0.10 a0.640.990.03
    ≥1~<27720.95±0.09 b0.391.150.00
    ≥2890.90±0.11 a0.451.040.01
      说明:不同字母表示不同树池面积间差异显著(P<0.05)
    下载: 导出CSV

    表  12  单向车道数对洋白蜡健康状况的影响

    Table  12.   Effects of the number of unidirectional traffic lanes on the health status of F. pennsylvanica

    单向车
    道数/条
    样本量健康综合得分
    平均值±标准差极小值极大值标准误
    15850.93±0.10 a0.391.120.00
    22190.97±0.07 b0.641.150.00
    3660.95±0.06 ab0.701.070.01
      说明:不同字母表示不同单向车道数间差异显著(P<0.05)
    下载: 导出CSV

    表  13  车道走向对洋白蜡健康状况的影响

    Table  13.   Effects of directions of traffic lanes on the health status of F. pennsylvanica

    车道走向样本量健康综合得分
    平均值±标准差极小值极大值标准误
    东西5920.94±0.10 a0.391.150.00
    南北2780.96±0.07 b0.641.150.00
      说明:不同字母表示不同车道走向间差异显著(P<0.05)
    下载: 导出CSV
  • [1] 周姝雯, 高菲, 马克明. 基于ENVI-met模型的北京市典型道路行道树树种优化研究[J]. 中国园林, 2020, 36(6): 141 − 144.

    ZHOU Shuwen, GAO Fei, MA Keming. Research on species optimization of typical road trees in Beijing based on ENVI-met [J]. Chin Landscape Archit, 2020, 36(6): 141 − 144.
    [2] 汪瑛. 北京市行道树结构分析与健康评价[D]. 北京: 中国林业科学研究院, 2011.

    WANG Ying. The Structural Analysis and Health Assessment of Roadside Trees in Beijing [D]. Beijing: Chinese Academy of Forestry, 2011.
    [3] CHOW W T L, ROTH M. Temporal dynamics of the urban heat island of Singapore [J]. Int J Climatol, 2006, 26(15): 2243 − 2260.
    [4] 潘辉, 刘晓华, 黄石德, 等. 城市行道树对道路空间CO浓度的影响[J]. 福建林学院学报, 2008, 28(4): 356 − 360.

    PAN Hui, LIU Xiaohua, HUANG Shide, et al. Effects of urban forest trees on CO concentration in street space [J]. J Fujian Coll For, 2008, 28(4): 356 − 360.
    [5] FERNÁNDEZ-JURICIC E. Avifaunal use of wooded streets in an urban landscape [J]. Conserv Biol, 2000, 14(2): 513 − 521.
    [6] 邵鹏. 北京城市核心区国槐行道树健康评价研究[D]. 北京: 北京林业大学, 2020.

    SHAO Peng. A Study on Health Assessment of Sophora japonica Street Trees in Beijing Urban Core Area [D]. Beijing: Beijing Forestry University, 2020.
    [7] 翁殊斐, 黎彩敏, 庞瑞君. 用层次分析法构建园林树木健康评价体系[J]. 西北林学院学报, 2009, 24(1): 177 − 181.

    WENG Shufei, LI Caimin, PANG Ruijun. Establishment of landscaping tree health assessment model using analytic hierarchy process [J]. J Northwest For Univ, 2009, 24(1): 177 − 181.
    [8] 游惠明, 游秀花, 陈笑玲, 等. 福州市行道树种综合评价与分级选择[J]. 中国城市林业, 2009, 7(1): 15 − 17.

    YOU Huiming, YOU Xiuhua, CHEN Xiaoling, et al. Integrated evaluation and selection of street trees species in Fuzhou City [J]. J Chin Urban For, 2009, 7(1): 15 − 17.
    [9] 罗贵斌. 汉中市中心城区常绿行道树综合评价[J]. 西北林学院学报, 2016, 31(2): 302 − 308.

    LUO Guibin. Comprehensive evaluation of the evergreen streettrees planted in the downtown of Hanzhong city [J]. J Northwest For Univ, 2016, 31(2): 302 − 308.
    [10] 李佳慧, 彭祚登, 刘勇, 等. 北京市首都功能核心区国槐健康评价及其影响因素研究[J]. 西北农林科技大学学报(自然科学版), 2021, 49(1): 64 − 73.

    LI Jiahui, PENG Zuodeng, LIU Yong, et al. Health evaluation and influencing factors of Sophora japonica in the capital functional core area of Beijing [J]. J Northwest A&F Univ Nat Sci Ed, 2021, 49(1): 64 − 73.
    [11] 杜甲宝, 潘盼, 杨芳绒. 主成分分析法在郑州市行道树综合性能评价研究中的应用[J]. 西北林学院学报, 2009, 24(3): 190 − 193.

    DU Jiabao, PAN Pan, YANG Fangrong. Application of principal component analysis method in the comprehensive function assessment of the street trees in Zhengzhou [J]. J Northwest For Univ, 2009, 24(3): 190 − 193.
    [12] 郄光发, 彭镇华, 王成. 北京城区银杏行道树生长现状与健康状况研究[J]. 林业科学研究, 2013, 26(4): 511 − 515.

    QIE Guangfa, PENG Zhenhua, WANG Cheng. Growth and health status of Ginkgo biloba in Beijing urban street area [J]. Res For, 2013, 26(4): 511 − 515.
    [13] 莫训强, 闫维, 陈小奎, 等. 活力度分级法在天津空港经济区行道树健康评价中的应用[J]. 国土与自然资源研究, 2012(1): 88 − 90.

    MO Xunqiang, YAN Wei, CHEN Xiaokui, et al. Application of street trees’ vigorous degree in greening management: a case of Tianjin airport economic area [J]. Territ Nat Resour Study, 2012(1): 88 − 90.
    [14] 马志林, 陈丽华, 于显威, 等. 北京西山地区不同林分健康状况比较研究[J]. 生态环境学报, 2010, 19(3): 646 − 651.

    MA Zhilin, CHEN Lihua, YU Xianwei, et al. Study on health assessment and comparison of different tree species in the west-mountains area, Beijing [J]. Ecol Environ Sci, 2010, 19(3): 646 − 651.
    [15] 姬文元, 邢韶华, 郭宁, 等. 川西米亚罗林区云冷杉林健康状况评价[J]. 林业科学, 2009, 45(3): 13 − 18.

    JI Wenyuan, XING Shaohua, GUO Ning, et al. Health evaluation on spruce and fir forests in Miyaluo of the western Sichuan [J]. Sci Silv Sin, 2009, 45(3): 13 − 18.
    [16] 朱宇, 刘兆刚, 金光泽. 大兴安岭天然落叶松林单木健康评价[J]. 应用生态学报, 2013, 24(5): 1320 − 1328.

    ZHU Yu, LIU Zhaogang, JIN Guangze. Health assessment of individual trees in natural Larix gmelinii forest in Great Xing’ an mountains of China [J]. Chin J Appl Ecol, 2013, 24(5): 1320 − 1328.
    [17] 张楠, 董丽, 郝培尧, 等. 北京市中心城区行道树结构的研究[J]. 中南林业科技大学学报, 2014, 34(5): 101 − 106.

    ZHANG Nan, DONG Li, HAO Peiyao, et al. Study on structure of street trees in central districts of Beijing [J]. J Cent South Univ For Technol, 2014, 34(5): 101 − 106.
    [18] 余韵. 北京城市核心区白蜡行道树健康评价研究[D]. 北京: 北京林业大学, 2020.

    YU Yun. A Study on Health Assessment of Roadside Trees Fraxinus ssp. in Core Area of Beijing [D]. Beijing: Beijing Forestry University, 2020.
    [19] 北京市市场监督管理局. 城市树木健康诊断技术规程: DB11/T 1692—2019 [S]. 北京: 中国标准出版社, 2019.

    Beijing Municipal Bureau of Market Supervision and Administration. Technical Regulations for Health Diagnosis of Urban Trees: DB11/T 1692−2019 [S]. Beijing: China Quality and Standards Publishing & Media Co. , Ltd.
    [20] HAN Xin, WEI Zheng, ZHANG Baozhong, et al. Crop evapotranspiration prediction by considering dynamic change of crop coefficient and the precipitation effect in back-propagation neural network model[J/OL]. J Hydrol, 2021, 596(3/4): 126104[2021-12-10]. doi: 10.1016/j.jhydrol.2021.126104.
    [21] 雷廷, 贾军元, 田福金, 等. 基于BP神经网络预测岩石导热系数[J]. 世界地质, 2021, 40(1): 131 − 139.

    LEI Ting, JIA Junyuan, TIAN Fujin, et al. Prediction of rock thermal conductivity based on BP neural network [J]. Glob Geol, 2021, 40(1): 131 − 139.
    [22] KUMAR M, RAGHUWANSHI N S, SINGH R. Artificial neural networks approach in evapotranspiration modeling: a review [J]. Irrig Sci, 2011, 29(1): 11 − 25.
    [23] HUANG Xiaoqiao, LI Qiong, TAI Yonghang, et al. Hybrid deep neural model for hourly solar irradiance forecasting [J]. Renewable Energy, 2021, 171: 1041 − 1060.
    [24] 赵丹, 李锋, 王如松. 城市地表硬化对植物生理生态的影响研究进展[J]. 生态学报, 2010, 30(14): 3923 − 3932.

    ZHAO Dan, LI Feng, WANG Rusong. Effects of ground surface hardening on plant eco-physiological progress inurban landscape [J]. Acta Ecol Sin, 2010, 30(14): 3923 − 3932.
    [25] 李科科, 李延明, 丛日晨, 等. 模拟道路种植环境对银杏生长的影响[J]. 中国园林, 2020, 36(7): 117 − 122.

    LI Keke, LI Yanming, CONG Richen, et al. Simulating the influence of road planting environment on the growth of Ginkgo biloba [J]. Chin Landscape Archit, 2020, 36(7): 117 − 122.
    [26] 吴迪. 基于日照分析的郑州市行道树配置模式研究[D]. 郑州: 河南农业大学, 2018.

    WU Di. Configuration Models Research of Avenue Trees Based on Sunlight Analysis in Zhengzhou City[D]. Zhengzhou: Henan Agricultural University, 2018.
  • [1] 程佳洁, 陈荣, 喻卫武, 陈文超, 胡渊渊, 张祖瑛, 宋丽丽.  ‘细榧’和‘象牙榧’种实后熟过程中游离氨基酸差异分析 . 浙江农林大学学报, 2025, 42(2): 239-248. doi: 10.11833/j.issn.2095-0756.20250169
    [2] 崔传登, 师庆东, 李想, 史浩伯, 万彦博, 李鼎浩.  沙漠腹地达里雅布依绿洲胡杨林健康评价 . 浙江农林大学学报, 2024, 41(6): 1134-1141. doi: 10.11833/j.issn.2095-0756.20240148
    [3] 王爽, 董彬, 王艺光, 赵宏波.  不同梅品种花果特性分析与评价 . 浙江农林大学学报, 2024, 41(1): 113-123. doi: 10.11833/j.issn.2095-0756.20230213
    [4] 栾景然, 冯国红, 朱玉杰.  基于连续投影算法-遗传算法-BP神经网络的可见/近红外光谱木材识别 . 浙江农林大学学报, 2022, 39(3): 671-678. doi: 10.11833/j.issn.2095-0756.20210377
    [5] 牛媛, 敖妍, 李云, 田秀铭, 杨长文, 刘小天, 李志虹.  文冠果优良无性系授粉组合选择及结实性状分析 . 浙江农林大学学报, 2020, 37(2): 209-219. doi: 10.11833/j.issn.2095-0756.2020.02.003
    [6] 火艳, 招雪晴, 黄厚毅, 黄贤斌, 许云方, 祝遵凌, 苑兆和.  观赏石榴表型遗传多样性分析 . 浙江农林大学学报, 2020, 37(5): 939-949. doi: 10.11833/j.issn.2095-0756.20190619
    [7] 卯光宪, 谭伟, 柴宗政, 赵杨, 杨深钧.  基于BP神经网络的马尾松人工林胸径-树高模型预测 . 浙江农林大学学报, 2020, 37(4): 752-760. doi: 10.11833/j.issn.2095-0756.20190486
    [8] 蒋冬月, 沈鑫, 陈雅静, 邹宜含, 吴帆, 李因刚, 柳新红.  浙江野生樱花枝干及叶片形态变异分析 . 浙江农林大学学报, 2019, 36(4): 723-732. doi: 10.11833/j.issn.2095-0756.2019.04.012
    [9] 钱力, 张超, 齐鹏, 余树全.  永康城市土壤重金属污染评价及来源分析 . 浙江农林大学学报, 2016, 33(3): 427-433. doi: 10.11833/j.issn.2095-0756.2016.03.008
    [10] 张广来, 李璐, 廖文梅.  基于主成分分析法的中国林业产业竞争力水平评价 . 浙江农林大学学报, 2016, 33(6): 1078-1084. doi: 10.11833/j.issn.2095-0756.2016.06.022
    [11] 郑蓉.  产地绿竹笋品质及土壤养分的主成分与典型相关分析 . 浙江农林大学学报, 2012, 29(5): 710-714. doi: 10.11833/j.issn.2095-0756.2012.05.012
    [12] 杨建华, 李淑芳, 范志远, 习学良, 邹伟烈, 刘娇, 潘莉.  美国山核桃主要经济性状的主成分分析及良种选择 . 浙江农林大学学报, 2011, 28(6): 907-910. doi: 10.11833/j.issn.2095-0756.2011.06.011
    [13] 汪荣.  福建滨海水鸟栖息地主成分分析与评价 . 浙江农林大学学报, 2011, 28(3): 472-478. doi: 10.11833/j.issn.2095-0756.2011.03.020
    [14] 沈俊岭, 倪慧群, 陈晓阳, 黄少伟.  麻疯树遗传多样性的相关序列扩增多态性(SRAP)分析 . 浙江农林大学学报, 2010, 27(3): 347-353. doi: 10.11833/j.issn.2095-0756.2010.03.005
    [15] 金潇潇, 陈发棣, 陈素梅, 房伟民.  20个菊花品种花瓣的营养品质分析 . 浙江农林大学学报, 2010, 27(1): 22-29. doi: 10.11833/j.issn.2095-0756.2010.01.004
    [16] 刘丽, 陈双林, 李艳红.  基于林分结构和竹笋产量的有机材料覆盖雷竹林退化程度评价 . 浙江农林大学学报, 2010, 27(1): 15-21. doi: 10.11833/j.issn.2095-0756.2010.01.003
    [17] 左继林, 龚春, 汪建平, 周文才, 温强, 徐林初.  赣油茶25个优良无性系品质评价 . 浙江农林大学学报, 2008, 25(5): 624-629.
    [18] 施拥军, 徐小军, 杜华强, 周国模, 金伟, 周宇峰.  基于BP神经网络的竹林遥感监测研究 . 浙江农林大学学报, 2008, 25(4): 417-421.
    [19] 李伟, 周伟, 纪德, 张仁功.  哀牢山自然保护区南华分区黑颈长尾雉春季栖息地利用 . 浙江农林大学学报, 2006, 23(2): 153-158.
    [20] 黄必恒.  浙江省各市县国民经济状况统计分析 . 浙江农林大学学报, 1999, 16(4): 420-424.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220109

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/6/1340

图(3) / 表(13)
计量
  • 文章访问数:  578
  • HTML全文浏览量:  114
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-09
  • 修回日期:  2022-05-28
  • 录用日期:  2022-06-05
  • 网络出版日期:  2022-11-21
  • 刊出日期:  2022-12-20

北京市核心区洋白蜡行道树健康评价及影响因素

doi: 10.11833/j.issn.2095-0756.20220109
    基金项目:  北京市园林绿化局项目(CEG-2018-01)
    作者简介:

    王琰(ORCID: 0000-0002-8636-8660),从事森林培育学研究。E-mail: 369131843@qq.com

    通信作者: 刘勇(ORCID: 0000-0002-6958-0205),教授,博士生导师,从事森林培育学研究。E-mail: lyong@bjfu.edu.cn
  • 中图分类号: S731

摘要:   目的  针对城市树木健康评价的快速化、准确化及生产化,调查并分析北京市首都功能核心区主要绿化树种洋白蜡Fraxinus pennsylvanica的生长、健康及管护现状,为构建精炼、全面的洋白蜡行道树健康评价体系及管护技术措施提供科学依据。  方法  以北京市核心区11条主要街道的洋白蜡行道树为研究对象,采用主成分分析、K-means聚类构建健康评价模型,采用判别分析进行结果验证,将评价结果与评价指标结合建立洋白蜡BP神经网络健康预测模型;同时从生长状况、管护措施以及环境因子3个方面,分析胸径、树高、修枝留茬数量、防踩铺装等因素对洋白蜡行道树健康状况的影响。  结果  研究区域中,健康、亚健康、不健康及濒死单株分别占总数的39.20%、41.26%、16.78%和2.76%;建立的BP神经网络健康预测模型中,训练集、验证集、测试集与总集的期望值与预测值之间的相关系数分别为0.999 7、0.972 0、0.997 6及0.995 3,均大于0.950 0,表明此模型能准确地反映洋白蜡行道树12个评价指标与健康评价类别的关系,可用于对同一地区其他白蜡行道树健康状况预测;方差分析和多重比较表明:胸径、修枝留茬、防踩铺装、株距、树池面积、车道数及车道走向均对洋白蜡行道树的健康状况存在显著影响(P<0.05),树高影响较小。当洋白蜡胸径为60~70 cm、树体无修枝留茬、树池铺装透水性好、株距为5~10 m、树池面积为1~2 m2、道路宽度适宜且为南北走向时,洋白蜡健康状况最好。  结论  研究区域内,洋白蜡行道树整体呈亚健康状态,具有良好的保育保养潜力,部分受害严重,亟需处理。在洋白蜡行道树栽植及后期管护中,确保其修剪规范、铺装材料透水强、株距5~10 m、树池面积1~2 m2以及适宜的道路情况,是保证洋白蜡行道树健康状况良好的重要措施。图3表13参26

English Abstract

辛鹏程, 魏天兴, 陈宇轩, 等. 山西西南部黄土丘陵区典型林分生态化学计量特征[J]. 浙江农林大学学报, 2024, 41(3): 549-556. DOI: 10.11833/j.issn.2095-0756.20230573
引用本文: 王琰, 余韵, 刘勇, 等. 北京市核心区洋白蜡行道树健康评价及影响因素[J]. 浙江农林大学学报, 2022, 39(6): 1340-1349. DOI: 10.11833/j.issn.2095-0756.20220109
XIN Pengcheng, WEI Tianxing, CHEN Yuxuan, et al. Ecological stoichiometric characteristics of typical forest stands in the Loess Hilly Region of southwest Shanxi[J]. Journal of Zhejiang A&F University, 2024, 41(3): 549-556. DOI: 10.11833/j.issn.2095-0756.20230573
Citation: WANG Yan, YU Yun, LIU Yong, et al. Health assessment and influencing factors of Fraxinus pennsylvanica in Beijing core area[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1340-1349. DOI: 10.11833/j.issn.2095-0756.20220109
  • 洋白蜡Fraxinus pennsylvanica是中国重要的造林绿化树种,也是北京市使用频度最高的行道树种之一,其形体端正,枝叶繁茂而鲜绿,秋叶橙黄,不仅美观性强,还能捕获大量空气中的颗粒物,降低风速,改善城市空气质量[1]。行道树是城市绿地系统的骨干,以“线”的形式联系着城市中分散的“点”和“面”的绿化,构成完整的城市森林生态系统[2]。行道树在缓解城市热岛效应[3]、净化空气[4]、改善城市环境及维护城市内部生物多样性[5]等方面均能起到显著作用,其健康状况不仅反映了城市绿化质量高低,同时也是景观效果及生态效益得以发挥的重要基础。行道树易受人为活动的干扰,生长空间受限及后期疏于管护,易出现树势衰弱、腐烂空洞及病虫害频发等问题,存在较高的安全隐患,限制其景观和生态效益的发挥[6]

    近年来,层次分析法[7-9]、主成分分析[10-11]、综合打分法[12]、树木活力度分级[13]等方法广泛应用于树木健康评价中。不同评价方法各有优劣,评价结果精度也不尽相同,整体呈现出多方法相结合的发展趋势[14-16]。针对行道树开展健康评价研究,尚未形成实用性强的评价体系。基于此,本研究在北京市核心区11条街道洋白蜡行道树调查结果基础上,结合行道树生境、管护措施等多方面因素,运用主成分分析及聚类分析建立洋白蜡行道树健康评价体系,采用判别分析进行结果验证,并基于验证结果建立BP神经网络预测模型,以期了解北京市核心区洋白蜡行道树健康状况,为行道树快速、准确的健康评价提供技术支撑。

    • 北京市位于39°56′N,116°20′E,地处华北平原北部,面积为16 410.54 km2,下辖16个区。研究区位于新规划的首都功能核心区,地处北京城区中部,是全国政治、文化和国际交往中心的核心承载区,面积为92.5 km2,共32个街道183个街区[6, 17]。核心区年平均降水量为545.9 mm,年平均气温为11.4 ℃[17],气候为暖温带半湿润半干旱大陆性季风气候,冬季寒冷干燥,夏季高温多雨,春秋短促,土壤类型主要是棕壤土。

    • 调查于2018年夏季进行。选取分布于北京市核心区多个方位、包含多种道路类型的11条行道树为洋白蜡的街道。随机选取每条街道2侧各至少20株样树,对其生长状况、环境条件等指标进行每木调查,共计调查870株洋白蜡。道路概况见表1

      表 1  研究区域道路概况

      Table 1.  Roads’ profile in study area

      道路名称单向车道数道路走向道路类型行政区划道路名称单向车道数道路走向道路类型行政区划
      南礼士路二条1东西支路 西城青年沟路  1东西次干路东城
      南纬路   2东西次干路西城先农坛西路 1南北支路 西城
      燕京北街  1东西支路 西城二七剧场路 1南北支路 西城
      史家胡同  1东西支路 东城南花市大街 2南北次干路东城
      西兴隆街  1东西支路 东城德胜门内大街2南北次干路西城
      崇文门西大街3东西主干道东城
    • 将指标中定性数据量化后,与定量数据相结合,共同构建洋白蜡行道树健康评价指标体系。本研究参考汪瑛[2]、邵鹏[6]、余韵[18]以及DB 11/T1692—2019《城市树木健康诊断技术规程》[19]的指标选择和赋值原则,从行道树树冠、树干、根部的生长状况及病虫害、环境条件及管护等多个角度建立指标体系,共选取12个评价指标。所选指标及赋值原则如下:①长势与枯枝(x1):冠形饱满、长势良好无枯枝,赋值为4;树冠缺损和枯枝率≤10%,为轻度,赋值为3;树冠缺损和枯枝率为10%~≤30%,为中度,赋值为2;树冠缺损严重和枯枝率>30 %,为重度,赋值为1。②枝叶茂密程度(x2):非常茂密赋值为3;茂密赋值为2;不茂密赋值为1。③树干异常音(x3):木槌敲击树干,无异常音,赋值为3;轻微异常音,赋值为2;异常音较大,赋值为1。④树干完整度(x4):树干表皮无腐朽损伤,赋值为4;损伤度≤1/3,赋值为3;腐朽损伤度为1/3~≤1/2时,赋值为2;损伤度>1/2,赋值为1。其中,损伤度=树干表皮最大损伤宽度/树干周长。⑤基部空洞程度(x5):树干基部空洞深度占树干基部直径的比例,用钢钎测量。目测无空洞,赋值为4;存在空洞情况,空洞程度≤1/3,赋值为3;空洞程度为1/3~≤1/2时,赋值为2,损伤度>1/2,赋值为1。⑥根部腐朽程度(x6):用钢钎测量。如钢钎无法插入,则无腐朽,赋值为4;插入深度≤5 cm,为轻度,赋值为3;插入深度为5~≤20 cm时,则为中度,赋值为2;深度>20 cm,则为重度腐朽,赋值为1。⑦修枝愈合率(x7):伤口愈合良好的修枝数量占修枝总量的比例。⑧修枝留茬(x8):无修枝留茬,赋值为4;留茬数为1 个即为轻度,赋值为3;留茬数为2~3个即为中度,赋值为2;留茬数为3个以上即为重度,赋值为1。⑨病虫害情况(x9):该指标结合叶片病虫害受害率、树干部病虫害受害率、异色叶比例3个方面进行考量。叶片病虫害受害率=受害叶片数量/叶总量;树干部病虫害受害率=受害宽度/周长;异色叶比例=异常叶色数量/叶总量,其中受害宽度指寄生物危害、病害及虫害等致树干部位受到损伤的最大宽度,周长指受害部位所在位置的枝干周长。无病虫害、无叶色异常、无羽化孔和排粪孔,赋值为4;存在排粪孔或1个羽化孔,叶色异常≤30%,叶片或树干部受害率≤1/3,满足其中任意1项为轻度,赋值为3;存在2~5个羽化孔、叶色异常为30%~≤50%、叶片或树干部受害率为1/3~≤1/2时,满足其中任意1项为中度,赋值为2;存在5个及以上羽化孔,叶色异常比例>50%,叶片或树干部受害率>1/2,满足其中任意1项为重度,赋值为1。⑩环境影响(x10):生长空间充足无遮荫,有防踩铺装且透水性良好,无根系裸露,赋值为4;生长空间稍狭,有防踩铺装但透水性差或存在轻微根系裸露现象,赋值为3;阻碍交通、生长空间受限、无防踩铺装或存在1/3~≤1/2根系裸露,赋值为2;生长空间严重受限(距离建筑物≤1 m)、基部晃动或>1/2根系裸露,赋值为1。⑪冠穴比(x11):$\mathrm{冠}\mathrm{穴}\mathrm{比}={\mathrm{{\text{π}} }\;{\left(\dfrac{1}{4}\displaystyle \sum\limits _{i=1}^{4}{{W_{{\rm{C}}_i}}}\right)}^{2}}/{A_{{\rm{TP}}}}$。⑫冠高比(x12):$\mathrm{冠}\mathrm{高}\mathrm{比}= {\dfrac{1}{2}\displaystyle \sum\limits _{i=1}^{4}{W_{{\rm{C}}_i}}}/{H}$,其中:${W_{{\rm{C}}_i}} $表示东、西、南、北4个方向的冠幅之和,ATP表示树池面积,H表示树高。

    • 本研究所选取的评价指标均为正向指标。将12个指标数据进行归一化处理[20];采用主成分分析法计算相关系数矩阵、特征值和方差贡献率,得到因子载荷矩阵,提取特征值大于1且累计方差贡献率70%以上n个主成分F,得出主成分的表达式yi;再根据主成分的方差贡献率计算权重,从而得到主成分综合健康得分表达式Z;对健康综合得分进行K-means聚类分析,评定树木健康等级,结果共分为健康、亚健康、不健康及濒死4个层次;然后采用判别分析对评价结果进行验证。

    • BP神经网络是基于误差反向传播算法的多层前馈式神经网络(multiple-layer feedforward network),由输入层、隐藏层和输出层构成,其基本思想是学习过程由信号的正向传播与误差的反向传播2个过程组成,不断调整各层神经元的权值及阈值,进行误差校正,使训练的网络达到最优[21],具有较强的非线性适应性和多维函数映射能力[20,22]

      基于MATLAB R2019b工具箱nftool环境设计了1个3层BP神经网络,将归一化后的指标数据及评价结果类别分别作为输入层及输出层。根据经验公式[20],计算隐含层单元数,后通过试错法[21]对比,确定最终隐含层数量。采用均方误差(EMS)与相关系数(R)对模型性能进行评估[23]

    • 采用SPSS 26和MATLAB R2019b分别进行数据统计分析及构建神经网络模型,利用单因素方差分析(one-way ANOVA)和DUNCAN进行多重比较。

    • 样本数据通过KMO (K>0.5)和Bartlett (P<0.05)球形检验,对数据进行主成分分析,选择特征根值>1的前6个主成分作为洋白蜡行道树健康评价的综合指标。结果如表2

      表 2  主成分特征根及方差贡献率

      Table 2.  Principal component characteristic root and variance contribution rates

      主成分特征根方差贡献率(wi)/%累计方差贡献率(W)/%主成分特征根方差贡献率(wi)/%累计方差贡献率(W)/%
      F11.95216.26416.264F41.1379.47752.449
      F21.71214.26730.531F51.1029.17961.629
      F31.49312.44142.972F61.0088.39670.025
        说明:F1~F6为前6个主成分。i=1, 2, 3
    • 根据表3,构建前6个主成分与洋白蜡行道树综合指标之间的线性关系yi

      表 3  因子载荷矩阵

      Table 3.  Factor load matrix

      指标主成分指标主成分
      F1F2F3F4F5F6F1F2F3F4F5F6
      x10.492−0.3120.211−0.1680.3510.291x70.781−0.156−0.3980.091−0.1800.019
      x20.4090.1090.047−0.3250.6360.148x80.722−0.280−0.3700.169−0.2600.045
      x30.3280.5330.369−0.206−0.3000.031x90.2720.3190.110−0.3200.222−0.401
      x40.2940.5340.234−0.174−0.4260.002x10−0.1160.0660.2630.062−0.1040.816
      x50.1610.0600.3370.6960.258−0.164x11−0.0410.675−0.4730.0430.2190.111
      x60.2900.3640.3570.5180.108−0.012x12−0.1360.482−0.6440.1770.1250.177
      $$ {y}_{1} = 0.352{x}_{1} + 0.293{x}_{2} + 0.235{x}_{3} + 0.210{x}_{4} + 0.115{x}_{5} + 0.208{x}_{6} + 0.559{x}_{7} + 0.517{x}_{8}+0.195{x}_{9}-0.083{x}_{10}-0.029{x}_{11}-0.097{x}_{12} ;$$
      $$ {y}_{2} = -0.238{x}_{1} + 0.083{x}_{2} + 0.407{x}_{3} + 0.408{x}_{4} + 0.046{x}_{5} + 0.278{x}_{6} - 0.119{x}_{7} - 0.214{x0}_{8} + 0.244{x}_{9} + 0.050{x}_{10} + 0.516{x}_{11} + 0.368{x}_{12} ;$$
      $$ {y}_{3}=0.173{x}_{1} + 0.038{x}_{2} + 0.302{x}_{3} + 0.192{x}_{4} + 0.276{x}_{5} + 0.292{x}_{6} - 0.326{x}_{7} - 0.303{x}_{8}+0.090{x}_{9}+0.215{x}_{10}-0.387{x}_{11}-0.527{x}_{12} ;$$
      $$ {y}_{4} = -0.158{x}_{1} - 0.305{x}_{2} - 0.193{x}_{3} - 0.163{x}_{4} + 0.653{x}_{5} + 0.486{x}_{6} + 0.085{x}_{7} + 0.158{x}_{8} - 0.300{x}_{9} + 0.058{x}_{10}+0.040{x}_{11}+0.166{x}_{12}; $$
      $$ {y}_{5}=0.334{x}_{1} + 0.606{x}_{2} - 0.286{x}_{3} - 0.406{x}_{4} + 0.246{x}_{5} + 0.103{x}_{6} - 0.171{x}_{7} - 0.248{x}_{8} + 0.211{x}_{9} - 0.099{x}_{10}+0.209{x}_{11}+0.119{x}_{12}; $$
      $$ {y}_{6}=0.290{x}_{1} + 0.147{x}_{2} + 0.031{x}_{3} + 0.002{x}_{4} - 0.163{x}_{5} - 0.012{x}_{6} + 0.019{x}_{7} + 0.045{x}_{8} - 0.399{x}_{9} + 0.813{x}_{10}+0.111{x}_{11}+0.176{x}_{12}。 $$

      基于以上,按照公式$ Z=({w}_{1}{y}_{1}+{w}_{2}{y}_{2}+{w}_{3}{y}_{3}+\dots +{w}_{n}{y}_{n})/W $,可得最终模型为:$ Z=(16.264{y}_{1}+ 14.267{y}_{2}+ 12.441{y}_{3}+9.477{y}_{4}+9.179{y}_{5}+8.396{y}_{6})/70.025 $

    • 采用K-means聚类和判别分析分别进行分类和准确性检验,由表4可见:研究区域有洋白蜡健康树341株;亚健康树359株;不健康树146株;濒死树24株。线性判别结果可知:K-means分类结果不存在任何分类争议,正确率达100%。

      表 4  基于K-means聚类分析的健康判别结果

      Table 4.  Health discrimination results based on K-means clustering analysis    

      健康等级线性判别分析
      健康/株亚健康/株不健康/株濒死/株总计/株
      健康 341000341
      亚健康035900359
      不健康001460146
      濒死 0002424
      总计 34135914624870
    • 结果表明:健康的洋白蜡有341株,占比39.20%,平均得分为1.0222;亚健康的洋白蜡有359株,占比41.26%,平均得分为0.9374;不健康的洋白蜡有146株,占比16.78%,平均得分为0.8377;濒死的洋白蜡有24株,占比2.76%,平均得分为0.6064。每条道路的洋白蜡健康状况见表5。洋白蜡行道树总体平均得分为0.9448,在该评价系统中属于亚健康等级,核心区洋白蜡行道树健康状况整体呈中上等水平,约19%的树木健康状况较差,亟需进一步加强管理。

      表 5  11条道路洋白蜡的健康状况

      Table 5.  Health condition of F. pennsylvanica in 11 roads

      道路名称健康树亚健康树不健康树濒死树总数/株
      数量/株比例/%数量/株比例/%数量/株比例/%数量/株比例/%
      南礼士路二条35.402239.301933.901221.4056
      南纬路   2147.701840.90511.4000.0044
      燕京北街  5163.002632.1044.9000.0081
      史家胡同  1016.703456.701321.7035.0060
      西兴隆街  3852.802940.3045.6011.4072
      崇文门西大街2030.304162.1046.1011.5066
      青年沟路  6932.407937.106028.2052.30213
      先农坛西路 1841.902251.2037.0000.0043
      二七剧场路 2440.002236.701321.7011.7060
      南花市大街 4669.701725.8034.5000.0066
      德胜门内大街4137.604945.001816.5010.90109
      总数    34139.2035941.2614616.78242.76870
    • 将归一化后的12个指标数据作为输入层;将4个评价结果,即健康、亚健康、不健康和濒死,分别与(1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1)一一对应,作为期望输出。隐含层通过试错法最终确定为10个。确定的网络拓扑结构为“12-10-4”(图1)。

      图  1  BP神经网络模型的拓扑结构

      Figure 1.  Topological structure of BP neural network model

      训练及验证样本从样本数据中随机选取,且无交集。用于训练、验证及测试的样本数分别为608、131及131个。图2为神经网络EMS的曲线图。由图2可知:当训练步数增加时,模型误差曲线逐渐逼近误差的最优值。当模型迭代18次时,验证误差达到0.0104,网络训练稳定且迅速收敛,说明该模型能够满足需求。

      图  2  BP神经网络模型的误差下降曲线图

      Figure 2.  Error decline curve of BP neural network model

      图3表示4个数据集的期望值及预测值之间的比较情况。当验证误差为0.0104时,建立的神经网络模型中的训练集、验证集、测试集与总体数据的相关系数分别为0.9997、0.9720、0.9976及0.9953,均大于0.9500,表明建立的BP神经网络模型对于训练集、验证集、测试集和总体样本都有很好的逼近能力,能较好地反映洋白蜡行道树12个评价指标与健康评价等级之间关系,故BP神经网络预测模型在洋白蜡健康状况评价中有较好的适用性。

      图  3  期望值和预测值的相关系数

      Figure 3.  Correlation coefficient between measured and predicted values

    • 研究区域洋白蜡行道树胸径平均值为31.88 cm,约68.20%的洋白蜡树胸径集中分布在20~40 cm,总体呈现左偏正态分布的趋势。单因素方差分析(表6)可知:胸径对洋白蜡行道树的健康状况影响达显著水平(P<0.05)。当胸径≥10~<60 cm时,呈现随着胸径增加,综合健康评分随之下降的趋势,但在胸径≥60~<70 cm时,健康综合得分达最大值,且显著高于胸径≥30~<60 cm区间内的3个水平(P<0.05)。

      表 6  胸径对洋白蜡健康状况的影响

      Table 6.  Effects of DBH on the health status of F. pennsylvanica

      胸径/cm样本量健康综合得分
      平均值±标准差极小值极大值标准误
      ≥10~<20820.96±0.07 ab0.711.150.01
      ≥20~<303540.96±0.08 ab0.391.150.00
      ≥30~<402410.93±0.11 a0.451.100.01
      ≥40~<501320.93±0.09 a0.451.070.01
      ≥50~<60540.92±0.10 a0.471.080.01
      ≥60~<7070.99±0.06 b0.881.060.02
        说明:不同字母表示不同胸径间差异显著(P<0.05)

      调查区域内树高平均值为11.78 m。由表7可知:洋白蜡树高大多数≥6~<18 m,占比95.75%,其他范围分布较少;洋白蜡健康综合得分与树高间的关系整体呈正相关,但并未达到显著水平。

      表 7  树高对洋白蜡健康状况的影响

      Table 7.  Effects of tree height on the health status of F. pennsylvanica

      树高/m样本量健康综合得分
      平均值±标准差极小值极大值标准误
      ≥0~<680.89±0.12 a0.641.000.04
      ≥6~<124940.94±0.10 a0.451.150.00
      ≥12~<183390.95±0.09 a0.391.150.00
      ≥18~<24290.95±0.05 a0.841.050.01
        说明:不同字母表示不同树高间差异显著(P<0.05)
    • 不规范的修枝方法会导致树体留茬,而留茬处往往易腐烂进而导致分枝处更大面积腐烂等,如不及时清除,腐烂可蔓延至主干木质部,威胁行道树的健康。由表8可知:存在修枝留茬的洋白蜡行道树占比56.90%,留茬数多为1~3个,3个以上的相对较少。修枝留茬现象对于健康综合得分影响显著(P<0.05),无留茬的洋白蜡健康得分显著高于存在留茬的得分,但留茬数量对行道树健康综合得分无显著影响。

      表 8  修枝留茬对洋白蜡健康状况的影响

      Table 8.  Effects of pruning stubble on the health status of F. pennsylvanica

      修枝留茬/个
      样本量健康综合得分
      平均值±标准差极小值极大值标准误
      03750.97±0.08 b0.581.150.00
      12150.94±0.10 a0.391.080.01
      2~31800.92±0.11 a0.451.100.01
      >31000.92±0.08 a0.561.060.01
        说明:不同字母表示不同修枝留茬数间差异显著(P<0.05)

      调查区域内,88.16%的树池有防踩实措施,主要包括毛毡子、梅花砖、塑料篦子+塑料+石子等模式。不同铺装材料的透水性差异较大,影响土壤的水分、养分循环及树体的吸收,从而影响树木健康状况。由表9可知:防踩铺装的铺设及材料透水性显著影响洋白蜡健康状况(P<0.05),采用透水性强的铺装材料的洋白蜡行道树的健康综合得分最高,显著高于无铺装和透水性差的铺装。

      表 9  树池防踩铺装情况对洋白蜡健康状况的影响     

      Table 9.  Effects of anti-stepping paving condition on the health status of F. pennsylvanica

      防踩铺装样本量健康综合得分
      平均值±标准差极小值极大值标准误
      无铺装   1030.88±0.12 a0.451.050.01
      透水性强铺装7480.95±0.09 b0.391.150.00
      透水性差铺装190.91±0.10 a0.621.030.02
        说明:不同字母表示不同防踩铺装间差异显著(P<0.05)
    • 株距限制着行道树生长范围,过小会导致树木地上和地下生长空间压缩,限制树木树冠及根系伸展,加剧土壤营养资源的争夺,进而导致生长所需矿质养分不足。调查区域内,株距平均值为5.38 m,最大值25.00 m,最小值1.50 m。株距对洋白蜡的健康状况存在显著影响(P<0.05),株距≥0~<5 m时,洋白蜡健康得分为最低,显著低于其他株距范围;当株距≥5 m时,洋白蜡健康得分并不会随着株距增加而产生显著的变化(表10)。

      表 10  株距对洋白蜡健康状况的影响

      Table 10.  Effects of plant spacing on the health status of F. pennsylvanica    

      株距/m样本量健康综合得分
      平均值±标准差极小值极大值标准误
      ≥0~<5680.90±0.11 a0.451.090.01
      ≥5~<107500.95±0.09 b0.391.150.00
      ≥10520.94±0.09 b0.661.050.01
        说明:不同字母表示不同株距间差异显著(P<0.05)

      行道树树池是城市道路绿化景观的节点。树池面积过小会导致土壤透水透气不良,树木根系伸展和生长状况不佳;过大的树池又会占用过多城市道路硬质地面,对行人行车造成妨碍。表11可知:调查区域内树池面积大多为≥1~<2 m2,占比88.74%,且在此树池面积下生长的洋白蜡行道树具有最高的健康综合得分,与其余树池面积下的洋白蜡健康得分差异显著(P<0.05)。

      表 11  树池面积对洋白蜡健康状况的影响

      Table 11.  Effects of tree pool area on the health status of F. pennsylvanica    

      树池面积/m2样本量健康综合得分
      平均值±标准差极小值极大值标准误
      ≥0~<190.90±0.10 a0.640.990.03
      ≥1~<27720.95±0.09 b0.391.150.00
      ≥2890.90±0.11 a0.451.040.01
        说明:不同字母表示不同树池面积间差异显著(P<0.05)

      车道数以及车道走向对于洋白蜡健康状况均有显著的影响(P<0.05)。表12可知:洋白蜡健康得分随车道数的增加呈先上升后下降的趋势,当车道数为2条时,洋白蜡的健康状况最佳,显著高于车道数为1条时的健康得分,而与车道数为3条时差异不大;车道走向决定了行道树接受日照的情况,车道为南北走向时,洋白蜡健康状况显著优于东西走向(P<0.05)(表13)。

      表 12  单向车道数对洋白蜡健康状况的影响

      Table 12.  Effects of the number of unidirectional traffic lanes on the health status of F. pennsylvanica

      单向车
      道数/条
      样本量健康综合得分
      平均值±标准差极小值极大值标准误
      15850.93±0.10 a0.391.120.00
      22190.97±0.07 b0.641.150.00
      3660.95±0.06 ab0.701.070.01
        说明:不同字母表示不同单向车道数间差异显著(P<0.05)

      表 13  车道走向对洋白蜡健康状况的影响

      Table 13.  Effects of directions of traffic lanes on the health status of F. pennsylvanica

      车道走向样本量健康综合得分
      平均值±标准差极小值极大值标准误
      东西5920.94±0.10 a0.391.150.00
      南北2780.96±0.07 b0.641.150.00
        说明:不同字母表示不同车道走向间差异显著(P<0.05)
    • 本研究采用主成分分析计算北京市核心区洋白蜡行道树的健康综合得分,采用聚类分析进行结果分类,采用判别分析法进行结果验证,分类结果与实际生长状况基本一致。将行道树健康状况评价指标和分类结果构建的拓扑结构为“12-10-4”的BP神经网络预测模型,结果表明:训练集和测试集均方误差均小于0.0104,且训练集、测试集及总集相关系数均>0.990 0,说明BP神经网络模型能准确地反映洋白蜡行道树12个评价指标与健康评价类别的关系。与传统树木健康评价方法相比,该方法避免了庞杂的计算,从而实现对同一地区洋白蜡行道树健康状况的快速、准确评价。

      本研究所选指标覆盖了行道树的树冠、树干及根部的健康状况以及行道树的生长环境条件及管护情况等因素,并引入“冠穴比”及“冠高比”2个指标,将各定性指标进行分级、量化分析,研究结果表明:在所调查的870株洋白蜡中,健康、亚健康、不健康及濒死单株分别占39.20%、41.26%、16.78%及2.76%。可以看出:多数洋白蜡生长状况良好,极少部分洋白蜡生长状况堪忧,处于濒死状态,亟需处理。这一结果与邵鹏[6]、余韵[18]的研究结果基本一致。同时,本研究得到的健康评价结果与洋白蜡实际生长状况一致,表明本研究建立的健康评价模型在北京市核心区洋白蜡行道树健康评价中有很好的适用性。

    • 树木的健康状况与年龄紧密相关[10]。本研究结果表明:洋白蜡胸径为60~<70 cm时,健康状况最好。这可能是由于胸径在此范围的洋白蜡树龄较大,栽植时间长,生长状况稳定的缘故;当胸径为10~<60 cm,呈现随胸径增加,洋白蜡健康得分随之下降的趋势,这与李佳慧等[10]对北京市核心区国槐Sophora japonica行道树的评价结果基本一致。城市行道树受人为活动影响较大。调查发现:约87%的洋白蜡存在不同程度的枯枝状况,约27%的洋白蜡存在由车辆剐蹭、修枝等造成的树皮损伤,约57%的洋白蜡存在由修枝不当造成的不同程度的修枝留茬。建议规范行道树修枝技术,及时去除枯枝并合理处理受损部位。行道树树池防踩铺装材料的不同影响着植物吸收水分及养分的过程。北京核心区树池铺装材料多采用透水砖、石子、毛毡子、铁篦子等。研究结果表明:在铺装材料透水性强树池中生长的洋白蜡,健康状况显著优于不铺装及铺装透水性差条件下的洋白蜡。这一结果与赵丹等[24]、李佳慧等[10]的研究结果基本一致。

      行道树位于道路两侧。城市下垫面性质的改变,压缩了行道树生长的环境空间,阻碍了土壤水分的移动与循环,限制了行道树的生长[25]。株距、树池面积一定程度上决定了行道树的生长及管护空间,而车道数及车道走向决定着道路宽度及树体生长位置,影响着树体接受日照情况[6, 18]。本研究发现:株距、树池面积、车道数及走向都显著影响着行道树的健康状况,当保持洋白蜡行道树株距≥5 m、树池面积≥1~<2 m2、车道数为2条且车道为南北走向时,洋白蜡健康状况较为理想。当株距≥5 m时,随着距离继续增大,洋白蜡的健康状况不再发生显著的变化。随着树池面积和车道数增加,洋白蜡健康得分均呈现先上升后下降的趋势。这可能是随着生长范围及道路宽度的增加,生长空间及光照情况已不再是限制行道树健康的主要因素,而人为踩踏、车辆剐蹭等其他因素影响逐渐占据主导地位。当树池面积<2 m2时,树池的防踩铺装率为91.29%,树池面积≥2 m2时,防踩铺装率仅为60.67%。树池的防踩铺装率下降往往会导致人为踩踏的增加,导致土壤板结,影响行道树生长。这可能是导致树池面积增大但洋白蜡健康状况却显著下降的原因之一。本研究发现:车道走向对行道树健康状况影响显著,南北走向车道上的洋白蜡健康状况显著优于东西走向的洋白蜡。这是由于车道走向决定着树体的生长方位和接受日照情况。车道为东西走向时,南侧及北侧行道树受日照时间差异较大,北侧行道树接受日照时间相比南侧更长,而车道为南北走向时,东西两侧行道树接受日照角度及日照时间基本相同[18, 26],因此整体生长状况更好。道路状况往往还受到周边建筑物密度及高度、道路硬质铺装、车流量等多方面影响,因此仍需进一步探究。

参考文献 (26)

目录

/

返回文章
返回