留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同种源蒙古栎种子表型性状的多样性

任俊杰 庞新博 刘昭阳 李静雅 张婉莹 尹书乐 王利兵 李迎超

黄锦春, 万思琦, 陈扬, 等. 利用ISSR与SRAP分子标记分析金线莲种质资源遗传多样性[J]. 浙江农林大学学报, 2023, 40(1): 22-29. DOI: 10.11833/j.issn.2095-0756.20220473
引用本文: 任俊杰, 庞新博, 刘昭阳, 等. 不同种源蒙古栎种子表型性状的多样性[J]. 浙江农林大学学报, 2022, 39(6): 1221-1228. DOI: 10.11833/j.issn.2095-0756.20220133
HUANG Jinchun, WAN Siqi, CHEN Yang, et al. Genetic diversity of Anoectochilus roxburghii based on ISSR and SRAP molecular markers[J]. Journal of Zhejiang A&F University, 2023, 40(1): 22-29. DOI: 10.11833/j.issn.2095-0756.20220473
Citation: REN Junjie, PANG Xinbo, LIU Zhaoyang, et al. Diversity of phenotypic characters of Quercus mongolica seeds from different provenances[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1221-1228. DOI: 10.11833/j.issn.2095-0756.20220133

不同种源蒙古栎种子表型性状的多样性

DOI: 10.11833/j.issn.2095-0756.20220133
基金项目: 中央级公益性科研院所基本科研业务费专项(CAFYBB2018ZB001);“万人计划”青年拔尖人才项目资助
详细信息
    作者简介: 任俊杰(ORCID: 0000-0001-7955-5348),工程师,从事林木栽培、种质资源收集及评价研究。E-mail: 568929210@qq.com
    通信作者: 李迎超(ORCID: 0000-0002-2616-6928),助理研究员,博士,从事工厂化育苗研究。E-mail: 505464683@qq.com
  • 中图分类号: S792.186

Diversity of phenotypic characters of Quercus mongolica seeds from different provenances

  • 摘要:   目的  研究不同种源蒙古栎Quercus mongolica种子表型性状多样性,为蒙古栎种质资源收集、评价和利用提供科学依据。  方法  在中国蒙古栎天然分布区选取11个种源采集种子,分别测量种子的种长、种宽、种形指数、单粒重、千粒重5个表型性状。并利用SPSS软件对不同种源的蒙古栎种子进行性状差异性、相关性及主成分分析。  结果  ①不同种源蒙古栎种子的种长、种宽、种形指数、单粒重差异较大,各种源千粒重之间均存在显著差异(P<0.05);②不同种源蒙古栎种子的种长与种宽、单粒重、千粒重均存在极显著正相关(P<0.01);③不同种源海拔与种宽存在显著负相关(P<0.05),与单粒重、千粒重存在极显著负相关(P<0.01);④影响种子性状的因素按照重要性从高到低依次为单粒重、千粒重、无霜期、北纬;根据聚类分析结果,可将11个种源划分为4类,分别为Ⅰ、Ⅱ、Ⅲ和Ⅳ类,其中,黑龙江省黑河市、辽宁省本溪市、辽宁省抚顺市聚为Ⅰ类,单粒重和千粒重显著高于其他类别种源(P<0.05),为最优种源。  结论  蒙古栎种子表型性状随地理梯度变异明显,整体呈从东北—西南种源质量逐渐下降的趋势,单粒重和千粒重可以作为快速筛选种源优良与否的优先筛选指标。图1表5参37
  • 全球气候变化带来的一系列生态、经济、社会问题日益严重,引发了国际社会的高度重视。导致全球气候变暖的重要原因是二氧化碳(CO2)年排放量不断增加。目前除工业减排CO2外,植物固碳已成为解决这一问题的重要途径[1]。陆地碳汇是全球碳循环的基础,并正在被用来抵消人为CO2排放量的增加,其中森林生态系统作为陆地生态系统中最大的碳库,存储着整个陆地生态系统80%的地上碳和70%的土壤碳[23]。植硅体是植物根系吸收土壤溶液中的单硅酸[Si(OH)4],在蒸腾拉力的作用下沉积于细胞壁、细胞腔或细胞间隙内的非晶质二氧化硅颗粒物[4-6]。植硅体形成过程中会包裹一定量的有机碳,称为植硅体封存有机碳(phytolith-occluded organic carbon, PhytOC)[78],这部分被包裹的有机碳由于受到植硅体的保护而具有耐高温和高度抗氧化等特性,如果没有大的地质变迁,便能够在土壤以及沉积物中保存长达数千年甚至数万年之久,从而成为陆地土壤的长期固碳机制之一[9-11]。因此,植硅体封存的有机碳在减少大气CO2含量、缓解温室效应等方面具有重要的意义[1214]。已有研究主要集中于植硅体碳含量较高的富硅植物,例如水稻Oryza sativa[15]、黍Panicum miliaceum、Setaria italica[9]、小麦Triticum aestivum[2]、甘蔗Saccharum officinarum[3]等农作物、草地和湿地植物[16-17]、竹类[18-20]。马尾松Pinus massoniana是分布面积较广的一种森林类型,也是中国松科Pinaceae植物中用途最广的先锋树种。近年来,有学者研究发现:马尾松生态系统有着可观的植硅体碳储量,其叶片中植硅体封存有机碳含量高于同为针叶林的杉木Cunninghamia lanceolata甚至高于禾本科Poaceae植物[21-22]。植物生物量对植硅体碳储量也有着很大的影响[20, 23]。张振等[24]研究发现:马尾松树干生物量占到总生物量的77.2%,由此可知马尾松树干植硅体碳汇潜力不可忽视。同一植物不同器官植硅体封存有机碳含量不同[25],同一树种不同种源由于适应性和生理生态差异,植硅体封存有机碳储量也会产生差异。关于马尾松不同种源植硅体碳汇差异的研究鲜见报道,本研究对来自全国的20个马尾松种源树干进行采样分析,研究不同马尾松种源树干植硅体碳储量的差异,并聚类分析,筛选出马尾松树干植硅体碳封存潜力较强的种源,为中国马尾松林生态系统植硅体碳封存研究提供依据。

    研究区位于浙江省淳安县千岛湖东南湖区的姥山林场马尾松种源试验林(29°33′30″N,119°02′55″E),地处中亚热带地区,雨量充沛,四季分明,年平均气温为17.0 ℃,≥10 ℃的年积温为 5 410 ℃,年平均日照时数1 951 h,年降水量1 430 mm,无霜期263 d。姥山林场设置的试验地海拔150 m,坡度20°~30°,土壤为红壤土类的黄红壤亚类,土壤厚度80 cm以上,土壤有机质15.80 g·kg−1,碱解氮53.50 mg·kg−1,速效钾18.50 mg·kg−1,有效磷0.99 mg·kg−1,交换性钙128.00 mg·kg−1,交换性镁9.24 mg·kg−1

    1984年春,在姥山林场栽植了来自14个省区的49个马尾松种源1年生裸根苗,采用双列小区完全随机排列,重复8次(8株),株行距2 m×2 m,管理措施一致,用以筛选速生、优质的马尾松种源[26]。2017年12月对保存完好的20个马尾松种源植株进行调查、采样,通过每木测定,得到每个种源的平均木,随机选取3个小区,每个种源选取胸径与平均木相近的3株植株作为标准株,人工摘取标准株新鲜叶片于样品袋中,新鲜叶片带回实验室后用去离子水洗净,105 ℃杀青25 min,75 ℃下烘干48 h,再磨碎后于塑封袋保存。至2018年4月,再次砍伐20个种源胸径与平均木相近的3株标准株对马尾松进行树干取样,取得的树干圆盘带回实验室进行烘干磨碎处理,分析测定。

    所有植物样品的碳和氮采用Elementar Vario MAX CN碳氮元素分析仪测定;植物植硅体的提取采用微波消解法[27],为了大量提取植硅体而在此方法上有所改进,用浓硝酸和双氧水大量消煮前处理,再进行微波消解;而植硅体封存有机碳的测定同植物碳和氮的测定方法。土壤有机质采用重铬酸钾外加热法测定;碱解氮采用碱解法测定;有效磷采用Bray法测定;速效钾采用乙酸铵浸提,火焰光度法测定;交换性钙、镁采用EDTA滴定法测定[28]

    w植硅体=m植硅体/m样品,其中:w植硅体为植硅体质量分数(g·kg−1),m植硅体为植硅体质量(g),m样品为样品干质量(kg)。w有机碳=m有机碳/m植硅体,其中:w有机碳为植硅体封存有机碳质量分数(g·kg−1),m有机碳为植硅体有机碳质量(g),m植硅体为植硅体质量(kg)。所以,w植硅体碳=m有机碳/m样品,其中:w植硅体碳为植硅体碳质量分数(g·kg−1)。C植硅体碳=B树干×w植硅体碳,其中:C植硅体碳为标准株树干植硅体碳储量(g·株−1),B树干为树干生物量(kg·株−1)。3次重复,取平均值。数据处理用SPSS 18.0完成,用Duncan新复极差法检验不同处理的差异显著性,并用植硅体质量分数、植硅体封存有机碳质量分数等碳储指标对所有参试种源进行Q型聚类分析。

    表1显示:20个马尾松种源树干的总有机碳质量分数无显著差异,其变化范围为467.6~489.6 g·kg−1,而在不同种源中树干植硅体质量分数存在显著差异,表现为安徽太平32(0.845 g·kg−1)、贵州黄平122(0.702 g·kg−1)显著高于湖北通山84(0.465 g·kg−1)(P<0.05),而后者又显著高于广东乳源102(0.305 g·kg−1)(P<0.05)。不同马尾松种源树干植硅体封存有机碳质量分数的变化范围为126.8~210.2 g·kg−1,存在显著差异(P<0.05),树干植硅体封存有机碳质量分数以江西吉安63(210.2 g·kg−1)最高,显著高于福建邵武91(172.4 g·kg−1)(P<0.05),后者又显著高于浙江庆元54(126.8 g·kg−1)(P<0.05)。20个马尾松种源树干植硅体碳质量分数变化范围为0.049~0.128 g·kg−1,也存在显著差异(P<0.05)。树干植硅体碳质量分数以安徽太平32(0.128 g·kg−1)最高,显著高于贵州黎平124(0.076 g·kg−1)(P<0.05),后者又显著高于广东乳源102(0.049 g·kg−1)(P<0.05)。

    表 1  不同马尾松种源树干总有机碳、植硅体、植硅体封存有机碳和植硅体碳质量分数的比较
    Table 1  Comparison of the contents of total organic carbon(TOC), phytoliths, OC in phytoliths, and phytolith in dry matter in trunk of masson pine from different provenances
    种源号总有机碳/(g·kg−1)植硅体/(g·kg−1)植硅体封存有机碳/(g·kg−1)植硅体碳/(g·kg−1)
    河南桐柏21 489.6±22.6 a0.421±0.049 cdef188.9±16.8 abc0.073±0.020 cdef
    安徽太平32 485.9±5.4 a0.845±0.033 a148.0±15.9 de0.128±0.008 a
    安徽屯溪33 478.5±13.9 a0.368±0.075 def167.5±16.8 cd0.059±0.013 def
    浙江庆元54 484.0±14.3 a0.519±0.057 c126.8±11.8 e0.070±0.016 cdef
    浙江淳安56 474.1±9.9 a0.437±0.062 cdef148.4±14.2 de0.064±0.004 def
    江西吉安63 483.5±14.5 a0.380±0.094 cdef210.2±26.7 a0.070±0.009 cdef
    湖南安化72 488.7±4.8 a0.330±0.026 ef177.2±21.6 abcd0.058±0.006 def
    湖南资兴74 478.3±10.8 a0.405±0.075 cdef167.2±24.7 cd0.066±0.003 def
    湖北远安81 477.5±14.0 a0.388±0.079 cdef183.4±16.4 abcd0.067±0.006 cdef
    湖北通山84 475.5±3.4 a0.465±0.119 cde204.5±11.8 ab0.091±0.026 bc
    福建邵武91 475.8±13.6 a0.410±0.082 cdef172.4±10.0 bcd0.069±0.021 cdef
    福建永定95 467.6±8.2 a0.395±0.094 cdef147.6±22.1 de0.051±0.002 ef
    广东乳源102479.9±10.9 a0.305±0.074 f162.2±18.3 cd0.049±0.013 f
    广东信宜105476.5±10.2 a0.481±0.069 cd194.1±19.3 abc0.111±0.024 ab
    广西恭城111474.7±10.5 a0.396±0.036 cdef205.1±15.5 ab0.081±0.008 cd
    广西岑溪115472.9±5.0 a0.519±0.033 c205.7±5.5 ab0.107±0.010 ab
    贵州黄平122476.5±11.6 a0.702±0.103 b187.6±33.7 abc0.121±0.009 a
    贵州都匀123476.6±8.2 a0.364±0.002 def148.5±5.5 de0.054±0.002 ef
    贵州黎平124469.1±2.8 a0.465±0.119 cde187.0±27.6 abc0.076±0.001 cde
    四川南江131477.1±12.9 a0.335±0.043 ef190.3±19.2 abc0.059±0.010 def
      说明:表内的数据为平均值±标准差;同列不同字母表示不同种源间差异显著(P<0.05)
    下载: 导出CSV 
    | 显示表格

    表2可知:20个马尾松种源平均胸径和株高变化范围为分别17.1~32.3 cm和16.3~19.5 m。马尾松标准株树干生物量最高的是广西岑溪115(295.39 kg·株−1),最低为河南桐柏21(76.48 kg·株−1);马尾松标准株树干植硅体碳储量最高的是广西岑溪115(31.58 g·株−1),最低的是湖南安化72(4.83 g·株−1),前者是后者的6.54倍。

    表 2  不同马尾松种源标准株树干植硅体碳储量的比较
    Table 2  Comparison of PhytOC stock in trunk of masson pine plant from different provenances
    种源号胸径/
    cm
    株高/
    m
    树干生物量/
    (kg·株−1)
    标准株植硅体
    碳储量/(g·株−1)
    河南桐柏21 17.117.076.48 5.61
    安徽太平32 21.817.0124.8516.03
    安徽屯溪33 22.519.0143.76 8.54
    浙江庆元54 26.119.1195.1113.64
    浙江淳安56 21.118.3122.59 7.88
    江西吉安63 20.817.4114.65 8.08
    湖南安化72 18.016.5 82.77 4.83
    湖南资兴74 26.718.2197.1013.01
    湖北远安81 21.518.8129.52 8.70
    湖北通山84 22.518.5141.3312.93
    福建邵武91 27.219.2212.8714.60
    福建永定95 28.418.9229.4411.79
    广东乳源10228.819.5241.7811.94
    广东信宜10525.119.3182.0520.23
    广西恭城11129.319.3247.9420.08
    广西岑溪11532.318.6295.3931.58
    贵州黄平12222.318.4137.8616.68
    贵州都匀12319.617.2100.83 5.45
    贵州黎平12424.119.0164.7312.55
    四川南江13120.216.3103.33 6.12
      说明:树干生物量根据模型计算得到[29]
    下载: 导出CSV 
    | 显示表格

    图1相关性分析发现:不同马尾松种源树干植硅体质量分数与植硅体封存有机碳质量分数无相关关系,而植硅体质量分数与植硅体碳质量分数呈极显著的正相(R2=0.751 3,P<0.01)。20个马尾松种源的标准株树干植硅体碳储量与其树干生物量(R2=0.607 3,P<0.01)或树干植硅体碳质量分数(R2=0.438 8,P<0.01)之间均呈极显著正相关,而马尾松标准株的叶片与树干植硅体质量分数、植硅体碳储量无相关关系(图2)。

    图 1  不同马尾松种源植硅体质量分数与植硅体封存有机碳质量分数(A)、植硅体碳质量分数(B)之间的相关性
    Figure 1  Correlation between phytolith contents and OC in phytoliths(A), PhytOC contents in dry matter(B) of masson pine trunks
    图 2  不同马尾松种源标准株植硅体碳储量与树干生物量(A)、标准株植硅体碳储量与植硅体碳质量分数(B)、标准株叶片植硅体质量分数与树干植硅体质量分数(C)或标准株叶片植硅体碳储量与标准株树干植硅体碳储量(D)之间相关性
    Figure 2  Correlation between PhytOC stock and trunk biomass (A), PhytOC stock and PhytOC contents in dry matter (B), phytolith contents in the leaves and phytolith contents in the trunks (C), PhytOC stock of the leaves and PhytOC stock of the trunks (D)

    基于上述结果,利用马尾松总有机碳质量分数、树干植硅体质量分数、植硅体封存有机碳质量分数等指标的均值对20个马尾松种源进行Q聚类分析(图3)。以图中m线为阈值可以将20个种源划分为4类,第1类为湖北通山84、广西恭城111、江西吉安63以及广西岑溪115,此类马尾松种源总有机碳质量分数为472.9~483.5 g·kg−1,植硅体封存有机碳质量分数最高,为204.5~210.2 g·kg−1,植硅体碳质量分数也整体相对较高,为0.070~0.107 g·kg−1,标准株马尾松树干植硅体碳储量为8.08~31.58 g·株−1,其中广西岑溪115(31.58 g·株−1)标准株树干植硅体碳储量最高;第2类马尾松种源包括河南桐柏21、湖南安化72、广东信宜105等7个种源,此类马尾松种源总有机碳质量分数为469.1~489.6 g·kg−1,树干植硅体封存有机碳质量分数为177.2~194.1 g·kg−1,植硅体碳质量分数为0.058~0.121 g·kg−1,标准株马尾松树干植硅体碳储量为4.83~20.23 g·株−1;第3类为浙江淳安56、贵州都匀123、福建永定95、安徽太平32等8个种源,这类马尾松种源总有机碳质量分数为467.6~485.9 g·kg−1,树干植硅体封存有机碳质量分数为147.6~172.4 g·kg−1,植硅体碳质量分数为0.049~0.128 g·kg−1,标准株树干植硅体碳储量变动为5.45~16.03 g·株−1;浙江庆元54为第4类马尾松种源,树干植硅体碳封存能力最差,总有机碳质量分数为484.0 g·kg−1,植硅体封存有机碳质量分数为126.8 g·kg−1,植硅体碳质量分数为0.070 g·kg−1,标准株树干植硅体碳储量为13.64 g·株−1

    图 3  参试种源的Q型聚类分析树形图
    Figure 3  Dendrogram of hierarchical cluster analysis for tested provenances

    植硅体的形成与植物富集硅的能力有关,因此关于植硅体的研究大多集中于高富集硅植物叶片(禾本科)以及林下土壤中;植硅体的形成还与植物体自身蒸腾作用有关,而植物蒸腾作用主要发生在植物叶片表面[630-31],对地上部分其他器官的植硅体碳汇研究相对较少。以马尾松(非禾本科)为代表的针叶林,自身植硅体的形成受到叶片(针叶)蒸腾作用和植物自身富硅能力的限制,植物植硅体质量分数相对较少。

    分析发现:马尾松树干植硅体质量分数与植硅体封存有机碳质量分数之间无相关性,与前人研究结果一致[2, 9, 20, 32],说明植硅体封存有机碳质量分数并不是由植硅体质量分数决定的,而可能与植硅体自身固碳能力和固碳效率有关;马尾松树干的植硅体质量分数和植硅体碳质量分数呈极显著的正相关(R2=0.751 3,P<0.01),这与中国亚热带重要树种植硅体碳研究结果[21]和苦竹Pleioblastus amarus林碳汇的研究结果[25]一致。植硅体碳质量分数还受到其他多种因素的影响,SONG等[23]对不同森林类型植硅体碳封存研究发现:植物植硅体碳质量分数与硅质量分数存在相关性;LI等[33]研究发现:植物植硅体碳质量分数还与植物吸收利用二氧化碳的速率相关。

    标准株马尾松树干植硅体碳储量是由树干生物量和植硅体碳质量分数相乘得到的,20个马尾松种源的标准株树干植硅体碳储量与其树干生物量(R2=0.607 3,P<0.01)或植硅体碳质量分数(R2=0.438 8,P<0.01)之间均存在极显著正相关,说明标准株马尾松树干植硅体碳储量在一定程度上有随自身树干生物量和植硅体碳质量分数的增加而呈增加的趋势。而马尾松标准株的叶片与树干植硅体质量分数、植硅体碳储量无相关关系,这可能是植硅体自身固碳能力和固碳效率不同导致的。

    本研究20个马尾松种源叶片植硅体碳质量分数范围为0.165~0.520 g·kg−1,明显高于马尾松树干植硅体碳质量分数(0.049~0.128 g·kg−1),叶片生物量范围为7.53~18.90 kg·株−1,树干生物量范围为76.48~295.39 kg·株−1,计算结果显示标准株叶片植硅体碳储量范围为1.67~9.22 g·株−1,标准株树干植硅体碳储量范围为4.83~31.58 g·株−1,可见树干巨大的生物量对植硅体碳储量的影响较大。

    植硅体碳储量是评价植物生态系统现存植硅体碳封存潜力的一个重要指标,其大小不仅与植物种类有关,而且还与植物的种源有关。5种林分的凋落物植硅体碳储量比较发现:最大的毛竹Phyllostachys edulis林植硅体碳储量是最小的杉木林植硅体碳储量的6.8倍[34];8种散生竹地上部分植硅体碳储量研究发现:不同竹种间差异显著,最大的淡竹Phyllostachys glauca植硅体碳储量是最小的高节竹Phyllostachys prominens植硅体碳储量的10.8倍[35];本研究马尾松标准株树干植硅体碳储量最高的是广西岑溪115,最低的是湖南安化72,前者是后者的6.5倍。上述结果说明:植硅体碳储量在不同树种和种源之间存在着巨大差异,因而对同一种源森林生态系统来说,有可能通过选择高植硅体碳储量的林木来大大增加其植硅体碳的封存量。

    20个马尾松种源树干的植硅体质量分数、植硅体封存有机碳质量分数以及植硅体碳质量分数都有着显著的差异(P<0.05),其中树干植硅体质量分数最高的是安徽太平32(0.845 g·kg−1),最低的是广东乳源102(0.305 g·kg-1);树干植硅体封存有机碳质量分数最高的是江西吉安63(210.2 g·kg−1),最低的是浙江庆元54(126.8 g·kg−1);而植硅体碳质量分数最高的是安徽太平32(0.128 g·kg−1),最低的是广东乳源(0.049 g·kg−1)。由于生物量的差异,标准株树干植硅体碳储量最高的是广西岑溪115(31.58 g·株−1)。综合聚类分析,湖北通山84、广西恭城111、江西吉安63以及广西岑溪115为植硅体碳汇能力较强的种源,浙江庆元54植硅体碳汇能力最差。

  • 图  1  不同种源蒙古栎种子的聚类分析

    Figure  1  Cluster analysis for Q. mongolica seeds from different provenances

    表  1  不同种源蒙古栎主要生态因子

    Table  1.   Main ecological factors of Q. mongolica from different provenances

    种源编号种源地北纬(N)东经(E)海拔/m年均气温/℃年降水量/mm无霜期/d
    1黑龙江省黑河市  49°49′18″127°16′48″294−1.0525110
    2辽宁省抚顺市   41°56′33″125°14′24″6735.1863130
    3辽宁省本溪市   40°40′05″124°00′55″4876.5926170
    4河北省张家口市  39°53′36″114°57′17″1 5736.0400152
    5河北省承德市围场县42°10′21″117°15′31″1 3303.337080
    6河北省承德市兴隆县40°33′34″117°30′00″1 0927.6763130
    7河北省秦皇岛市  40°08′33″119°25′28″1 1108.9741180
    8北京市门头沟区  39°59′01″115°26′28″1 2706.4420150
    9吉林省延边市   43°11′32″129°32′20″3703.9580146
    10内蒙古赤峰市   42°06′57″118°19′36″1 1757.7559157
    11山东省泰安市   53°27′05″117°16′20″86813.0750200
    下载: 导出CSV

    表  2  不同种源蒙古栎种子表型性状差异性分析

    Table  2.   Difference analysis of seeds phenotypic characters in Q. mongolica from different provenances

    种源地种长/mm种宽/mm种形指数单粒重/g千粒重/g
    黑龙江省黑河市  20.94±0.38 a16.58±0.44 bc1.26±0.04 ab2.93±0.07 ab2 949.41±9.65 b
    辽宁省抚顺市   20.96±0.73 a17.80±0.71 a1.18±0.01 ab3.05±0.16 a3 027.39±7.74 a
    辽宁省本溪市   18.37±0.46 bc15.46±0.64 d1.20±0.02 ab2.83±0.02 b2 878.82±7.03 c
    河北省张家口市  16.47±0.51 de13.11±0.68 f1.26±0.10 ab1.82±0.10 e1 824.11±9.20 h
    河北省承德市围场县16.49±0.50 de13.94±0.23 ef1.17±0.12 ab1.41±0.07 f1 482.71±1.36 j
    河北省承德市兴隆县16.18±0.22 e14.01±0.49 ef1.15±0.01 abc1.79±0.07 e1 765.37±4.14 i
    河北省秦皇岛市  18.22±0.88 c14.29±0.23 e1.28±0.04 a2.07±0.06 d2 075.77±2.53 f
    北京市门头沟区  19.38±1.19 b16.02±0.97 cd1.21±0.10 ab2.31±0.11 c2 310.59±7.58 e
    吉林省延边市   19.39±0.23 b17.26±0.19 ab1.12±0.02 bcd2.45±0.07 c2 421.51±2.44 d
    内蒙古赤峰市   11.38±0.38 f11.07±0.81 g1.03±0.09 cd1.22±0.09 g1 244.40±5.51 k
    山东省泰安市   17.40±1.04 cd17.10±0.42 abc1.02±0.09 d1.92±0.03 de1 926.28±1.40 g
      说明:同列不同字母表示不同种源地之间差异显著(P<0.05)
    下载: 导出CSV

    表  3  不同种源蒙古栎种子表型性状的相关性

    Table  3.   Correlation of seeds phenotypic characters in Q. mongolica from different provenances

    性状种长种宽种形指数单粒重千粒重
    种长  1.000.88**0.520.88**0.88**
    种宽  1.000.060.79**0.78**
    种形指数1.000.400.41
    单粒重 1.001.00**
      说明:**表示极显著相关(P<0.01)
    下载: 导出CSV

    表  4  不同种源蒙古栎种子表型性状与生态因子之间的相关性

    Table  4.   Correlation between seeds phenotypic characters in Q. mongolica and ecological factors from different provenances

    生态因子种长种宽种形指数单粒重千粒重
    东经  0.560.580.060.72*0.72*
    北纬  0.180.44−0.410.130.13
    海拔  −0.57−0.67*0.07−0.75**−0.75**
    年均气温−0.41−0.15−0.50−0.40−0.41
    年降水量0.200.34−0.170.450.45
    无霜期 −0.130.05−0.290.01−0.01
      说明:*表示显著相关(P<0.05);**表示极显著相关(P<0.01)
    下载: 导出CSV

    表  5  不同种源蒙古栎种子相关特性的主成分分析

    Table  5.   Principal component analysis of seeds related characteristics in Q. mongolica from different provenances

    主成分特征向量特征值贡献率/%累计贡献率/%
    种长种宽种形指数单粒重千粒重东经北纬海拔年均气温年降水量无霜期
    10.380.370.130.410.410.360.12−0.37−0.210.18−0.045.3743.7843.78
    2−0.090.14−0.420.000.000.000.29−0.150.500.420.512.5222.9266.70
    30.16−0.040.470.190.18−0.24−0.550.260.260.280.321.3812.5779.27
    下载: 导出CSV
  • [1] 申艳梅, 郭平平, 刘淑玲, 等. 蒙古栎的加工利用研究进展[J]. 森林工程, 2014, 30(5): 58 − 60.

    SHEN Yanmei, GUO Pingping, LIU Shuling, et al. Review of advances in progress and utilization of Mongolian oak [J]. For Eng, 2014, 30(5): 58 − 60.
    [2] 河北植被编辑委员会, 河北省农业区划委员会办公室. 河北植被[M]. 北京: 科学出版社, 1996: 1 − 15.

    Hebei Vegetation Editorial Committee, Office of Hebei Agricultural Zoning Commission. Hebei Vegetation[M]. Beijing: Science Press, 1996: 1 − 15.
    [3] 孙佳庆. 珍贵树种大径级用材林培育技术研究[J]. 吉林林业科技, 2012, 41(6): 14 − 18.

    SUN Jiaqing. Study on the cultivation technique for arge sized timber of rare tree species [J]. J Jilin For Sci Technol, 2012, 41(6): 14 − 18.
    [4] 王荣芳, 张子言, 李德海. 酶解法对蒙古栎实壳提取物活性成分及抗氧化活性的影响[J/OL]. 北京林业大学学报, 2022[2022-05-09]. doi:10.12171/j.1000-1522.20210352.

    WANG Rongfang, ZHANG Ziyan, LI Dehai. Effects of extraction methods on extraction components and antioxidant activity of Quercus mongolica shell[J/OL]. J Beijing For Univ, 2022[2022-05-09]. doi: 10.12171/j.1000-1522.20210352.
    [5] 姚大地, 于海洪. 蒙古栎叶、果实成分分析[J]. 吉林林学院学报, 1998, 14(4): 205 − 207.

    YAO Dadi, YU Haihong. Analysis of composition of leave and fruits on Quercus mongolica [J]. J Jilin For Univ, 1998, 14(4): 205 − 207.
    [6] 李佳宁. 蒙古栎生殖生物学特性的初步研究[D]. 沈阳: 沈阳农业大学, 2020.

    LI Jianing. A Preliminary Study on the Characteristics of Reproductive Biology of Quercus mongolica[D]. Shenyang: Shenyang Agricultural University, 2020.
    [7] GREIPSSON S, DAVY A J. Seed mass and germination behaviour in populations of the dune-building grass Leymus arenarius [J]. Ann Bot, 1995, 76(5): 493 − 501.
    [8] 火艳, 招雪晴, 黄厚毅, 等. 观赏石榴表型遗传多样性分析[J]. 浙江农林大学学报, 2020, 37(5): 939 − 949.

    HUO Yan, ZHAO Xueqing, HUANG Houyi, et al. Phenotypic genetic diversity of ornamental pomegranate cultivars [J]. J Zhejiang A&F Univ, 2020, 37(5): 939 − 949.
    [9] 张振, 张含国, 周宇, 等. 红松多无性系群体的种实性状变异研究[J]. 北京林业大学学报, 2015, 37(2): 67 − 78.

    ZHANG Zhen, ZHANG Hanguo, ZHOU Yu, et al. Variation of seed characters in Korean pine (Pinus koraiensis) multiclonal populations [J]. J Beijing For Univ, 2015, 37(2): 67 − 78.
    [10] 颉刚刚, 欧阳丽婷, 谢军, 等. 新疆地区欧洲李叶片表型性状多样性及亲缘关系分析[J]. 植物资源与环境学报, 2018, 27(3): 72 − 78.

    XIE Ganggang, OUYANG Liting, XIE Jun, et al. Analyses on diversity of leaf phenotypic traits and genetic relationships of Prunus domestica in Xinjiang region [J]. J Plant Resour Environ, 2018, 27(3): 72 − 78.
    [11] 颜冰, 刘刚, 陈爱华, 等. 东北三省不同种源蒙古栎种子表型性状和淀粉含量对比分析[J]. 安徽农业科学, 2015, 43(30): 121 − 123.

    YAN Bing, LIU Gang, CHEN Aihua, et al. Quercus mongolica seeds’ character and starch content comparisons of different provenance in the three northeastern Provinces [J]. J Anhui Agric Sci, 2015, 43(30): 121 − 123.
    [12] 梁德洋, 蒋路平, 张秦徽, 等. 辽宁省11个蒙古栎种源及家系种子性状变异[J]. 东北林业大学学报, 2019, 47(11): 1 − 5.

    LIANG Deyang, JIANG Luping, ZHANG Qinhui, et al. Variance analysis of seed traits in provenances and families on Quercus mongolica [J]. J Northeast For Univ, 2019, 47(11): 1 − 5.
    [13] 李亚男, 李东胜, 许中旗, 等. 栎属不同种源树种的出苗及生长过程[J]. 西北林学院学报, 2014, 29(4): 139 − 144.

    LI Ya’nan, LI Dongsheng, XU Zhongqi, et al. The process of emergence and height growth of Quercus species in different provenances [J]. J Northwest For Univ, 2014, 29(4): 139 − 144.
    [14] 胡玉珠. 4个不同种源蒙古栎种实形态分析[J]. 吉林林业科技, 2020, 49(1): 1 − 3.

    HU Yuzhu. Morphological analysis of 4 different provenances of Quercus mongolica seeds [J]. J Jilin For Sci Technol, 2020, 49(1): 1 − 3.
    [15] 厉月桥. 木本能源植物蒙古栎与辽东栎资源调查与优良种质资源筛选[D]. 北京: 中国林业科学研究院, 2011: 17 − 20.

    LI Yueqiao. Resource Investigation and Superior Germplasm Resources Selection of Woody Energy Plants Quercus mongolica Fisch. and Quercus liaotungensis Koidz[D]. Beijing: Chinese Academy of Forestry, 2011: 17 − 20.
    [16] 包松莲, 李志国, 张建云, 等. 云南塔拉种子形态变异的初步研究[J]. 氨基酸和生物资源, 2011, 33(2): 17 − 19, 38.

    BAO Songlian, LI Zhiguo, ZHANG Jianyun, et al. A preliminary study on morphological variation of seeds of Tara in Yunnan [J]. Amino Acids Biotic Resour, 2011, 33(2): 17 − 19, 38.
    [17] DENWAR N N, AWUKU F J, DIERS B, et al. Genetic diversity, population structure and key phenotypic traits driving variation within soyabean (Glycine max) collection in Ghana [J]. Plant Breed, 2019, 138(5): 577 − 587.
    [18] 厉月桥, 李迎超, 吴志庄. 不同种源蒙古栎种子表型性状与淀粉含量的变异分析[J]. 林业科学研究, 2013, 26(4): 528 − 532.

    LI Yueqiao, LI Yingchao, WU Zhizhuang. Variation in phenotype characters and starch content of Quercus mongolica Fisch. seed from different provenances [J]. For Res, 2013, 26(4): 528 − 532.
    [19] 李迎超. 木本淀粉能源植物栓皮栎与麻栎资源调查及地理种源变异分析[D]. 北京: 中国林业科学研究院, 2013: 51 − 71.

    LI Yingchao. Resource Investigation and Provenance Analysis of Woody Starch Engergy Plant Quercus variabilis BL. and Quercus acutissima Carr.[D]. Beijing: Chinese Academy of Forestry, 2013: 51 − 71.
    [20] SIEFERT A, FRIDLEY J D, RITCHIE M E. Community functional responses to soil and climate at multiple spatial scales: when does intraspecific variation matter? [J/OL]. PLoS One, 2014, 9(10): e111189[2021-01-11]. doi: 10.1371/journal.pone.0111189.
    [21] 安海龙, 谢乾瑾, 刘超, 等. 水分胁迫和种源对黄柳叶功能性状的影响[J]. 林业科学, 2015, 51(10): 75 − 84.

    AN Hailong, XIE Qianjin, LIU Chao, et al. Effects of water stress and provenance on leaf functional traits of Salix gordejevii [J]. Sci Silv Sin, 2015, 51(10): 75 − 84.
    [22] ADLER P B, LAMBERS J H R. The influence of climate and species composition on the population dynamics of ten prairie forbs [J]. Ecology, 2008, 89(11): 3049 − 3060.
    [23] 梁小玉, 张新全. 不同海拔对宝兴鸭茅种子生产的影响初探[J]. 草业科学, 2007, 24(12): 64 − 66.

    LIANG Xiaoyu, ZHANG Xinquan. Effect of elevation on seed production of Dactlis glomerata cv. Baoxing [J]. Pratacult Sci, 2007, 24(12): 64 − 66.
    [24] 王志恒, 陈安平, 朴世龙, 等. 高黎贡山种子植物物种丰富度沿海拔梯度的变化[J]. 生物多样性, 2004, 12(1): 82 − 88.

    WANG Zhiheng, CHEN Anping, PIAO Shilong, et al. Pattern of species richness a long an altitudinal gradient on Gaoligong Mountains, Southwest China [J]. Biodiversity Sci, 2004, 12(1): 82 − 88.
    [25] 郭淑青, 齐威, 王玉林, 等. 青藏高原东缘海拔对植物种子大小的影响[J]. 草业学报, 2010, 19(1): 50 − 58.

    GUO Shuqing, QI Wei, WANG Yulin, et al. Effects of altitude on seed size on the eastern Qinghai-Tibetan Plateau [J]. Acta Pratacult Sin, 2010, 19(1): 50 − 58.
    [26] 李丹, 彭少麟. 3个不同海拔梯度马尾松种群的遗传多样性及其与生态因子的相关性[J]. 生态学报, 2001, 21(3): 415 − 440.

    LI Dan, PENG Shaolin. Genetic diversity in three Pinnus massoniana populations in different elevations and its relation with ecological factors [J]. Acta Ecol Sin, 2001, 21(3): 415 − 440.
    [27] PLUESS A R, SCHÜTZ W, STCKLIN J. Seed weight increases with altitude in the Swiss Alps between related species but not among populations of individual species [J]. Oecologia, 2005, 144(1): 55 − 61.
    [28] ARFT A M, WALKER M D, GUREVITCH J, et al. Responses of tundra plants to experimental warming: metal analysis of the international tundra experiment [J]. Ecol Monographs, 1999, 69(4): 491 − 511.
    [29] DIEMER M. Population stasis in a high-elevation herbaceous plant under moderate climate warming [J]. Basic Appl Ecol, 2002, 3(1): 77 − 83.
    [30] FITCH E A, WALCK J L, HIDAYATI S N. Agroecosystem management for rare species of Paysonia (Brassicaceae): integrating their seed ecology and life cycle with cropping regimens in a changing climate [J]. Am J Bot, 2007, 94(1): 101 − 110.
    [31] 李斌, 顾万春, 卢宝明. 白皮松天然群体种实性状表型多样性研究[J]. 生物多样性, 2002, 10(2): 181 − 188.

    LI Bin, GU Wanchun, LU Baoming. A study on phenotypic of seeds and cones characteristics in Pinus bungeana [J]. Biodiversity Sci, 2002, 10(2): 181 − 188.
    [32] 张清, 肖桂英, 李品荣, 等. 同一种源铁橡栎种子的形态特征及变异[J]. 黑龙江农业科学, 2019(8): 26 − 31.

    ZHANG Qing, XIAO Guiying, LI Pinrong, et al. Seed morphological characteristics and variation of Quercus cocciferoides from the same provence [J]. Heilongjiang Agric Sci, 2019(8): 26 − 31.
    [33] KENNEDY P G, HAUSMANN N J, WENK E H, et al. The importance of seed reserves for seedling performance: an integrated approach using morphological, physiological, and stable isotope techniques [J]. Oecologia, 2004, 141: 547 − 554.
    [34] LEBRIJA-TREJOS E, REICH P B, HERNNDEZ A, et al. Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest [J]. Ecol Lett, 2016, 19: 1071 − 1080.
    [35] 张俊, 尚家辉, 程广有, 等. 蒙古栎生长性状种内变异规律初步研究[J]. 北华大学学报(自然科学版), 2020, 21(4): 447 − 451.

    ZHANG Jun, SHANG Jiahui, CHENG Guangyou, et al. Preliminary study on intraspecific variation of growth traits of Quercus mongolica Fisch. [J]. J Beihua Univ Nat Sci, 2020, 21(4): 447 − 451.
    [36] 常恩福, 张清, 肖桂英, 等. 铁橡栎不同种源及家系种子的形态特征及变异[J]. 种子, 2020, 39(6): 53 − 58.

    CHANG Enfu, ZHANG Qing, XIAO Guiying, et al. Morphological characteristics and variation analysis of seeds from different provenances and families of Quercus cocciferoides [J]. Seed, 2020, 39(6): 53 − 58.
    [37] 李文文. 蒙古栎(Quercus mongolica Fisch. )种源变异及无性繁殖研究[D]. 北京: 中国林业科学研究院, 2010: 13 − 36.

    LI Wenwen. Study on Variation of Provence and Vegetative Propagation in Quercus mongolica Fisch.[D]. Beijing: Chinese Academy of Forestry, 2010: 13 − 36.
  • [1] 何水莲, 黄蓓, 李田园, 田敏.  无距虾脊兰根际土壤真菌与根系内生真菌多样性 . 浙江农林大学学报, 2023, 40(6): 1158-1166. doi: 10.11833/j.issn.2095-0756.20230179
    [2] 陈晓蕾, 邵伟丽, 厉思源, 刘志高, 马红玲, 申亚梅, 董彬, 张超.  6个铁线莲品种杂交F1代表型性状遗传分析 . 浙江农林大学学报, 2023, 40(1): 72-80. doi: 10.11833/j.issn.2095-0756.20220214
    [3] 谢立红, 黄庆阳, 曹宏杰, 杨帆, 王继丰, 王建波, 倪红伟.  五大连池火山蒙古栎种群结构及动态特征 . 浙江农林大学学报, 2022, 39(5): 960-970. doi: 10.11833/j.issn.2095-0756.20210785
    [4] 曹春婧, 何建龙, 王占军, 魏淑花.  宁夏不同区域欧李园昆虫群落多样性 . 浙江农林大学学报, 2021, 38(6): 1253-1260. doi: 10.11833/j.issn.2095-0756.20200774
    [5] 刘政, 李颖, 朱培, 褚旭东, 何国庆, 孙勇.  浙江省长兴县湿地维管植物多样性及区系 . 浙江农林大学学报, 2020, 37(3): 465-471. doi: 10.11833/j.issn.2095-0756.20190436
    [6] 余望寅, 姚冠, 扎西拉姆, 普琼, 刘京晶, 周湘.  2种栽培环境对铁皮石斛内生细菌多样性的影响 . 浙江农林大学学报, 2020, 37(2): 284-290. doi: 10.11833/j.issn.2095-0756.2020.02.012
    [7] 左政, 郑小贤.  不同干扰等级下常绿阔叶次生林林分结构及树种多样性 . 浙江农林大学学报, 2019, 36(1): 21-30. doi: 10.11833/j.issn.2095-0756.2019.01.004
    [8] 覃敏, 尹光天, 杨锦昌, 李荣生, 邹文涛.  米老排不同种源的表型性状变异分析 . 浙江农林大学学报, 2017, 34(1): 112-119. doi: 10.11833/j.issn.2095-0756.2017.01.016
    [9] 刘益曦, 张豪, 朱圣潮.  温州蕨类植物多样性与地理分布 . 浙江农林大学学报, 2016, 33(5): 778-783. doi: 10.11833/j.issn.2095-0756.2016.05.008
    [10] 缪福俊, 蒋宏, 王宏虬, 原晓龙, 陈剑, 杨宇明, 王娟.  黄花杓兰菌根真菌rDNA ITS的多样性 . 浙江农林大学学报, 2015, 32(5): 815-820. doi: 10.11833/j.issn.2095-0756.2015.05.024
    [11] 刘佳敏, 张慧, 黄秀凤, 徐华潮.  浙江3个自然保护区昆虫多样性及森林健康评价 . 浙江农林大学学报, 2013, 30(5): 719-723. doi: 10.11833/j.issn.2095-0756.2013.05.013
    [12] 尤龙辉, 叶功富, 陈增鸿, 白永会, 朱美琴.  公路建设对木麻黄生长及林下植被物种多样性的影响 . 浙江农林大学学报, 2013, 30(1): 38-47. doi: 10.11833/j.issn.2095-0756.2013.01.006
    [13] 刘青华, 周志春, 张开明, 兰永兆, 吴吉富, 聂国勤.  施用磷肥对马尾松种源生长和木材基本密度的影响 . 浙江农林大学学报, 2012, 29(2): 185-191. doi: 10.11833/j.issn.2095-0756.2012.02.006
    [14] 吴尚英, 张洋, 刘爱荣, 徐同.  红树林植物红海榄和秋茄的内生真菌多样性 . 浙江农林大学学报, 2010, 27(4): 489-493. doi: 10.11833/j.issn.2095-0756.2010.04.002
    [15] 孟和, 姜真杰, 张国盛.  内蒙古臭柏不同分布区生长与生态因子的关联分析 . 浙江农林大学学报, 2010, 27(1): 51-56. doi: 10.11833/j.issn.2095-0756.2010.01.008
    [16] 林磊, 周志春, 范辉华, 金国庆, 陈柳英, 王月生.  木荷生长与形质地理变异和木制工艺材种源选择 . 浙江农林大学学报, 2009, 26(5): 625-632.
    [17] 黄耀华, 郑蓉, 邵继锋, 方伟.  4个绿竹地理种源的抗寒性 . 浙江农林大学学报, 2009, 26(2): 188-195.
    [18] 韦新良.  乡村森林生态适宜性定量评价技术研究 . 浙江农林大学学报, 2009, 26(1): 1-6.
    [19] 刘永红, 杨培华, 韩创举, 樊军锋, 李新会, 李安平, 杨世荣.  油松不同种源种实性状的变异分析 . 浙江农林大学学报, 2008, 25(2): 163-168.
    [20] 高小辉, 何小勇, 何林.  浙西南野生观赏树木资源多样性 . 浙江农林大学学报, 2001, 18(4): 389-393.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220133

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/6/1221

图(1) / 表(5)
计量
  • 文章访问数:  596
  • HTML全文浏览量:  86
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 修回日期:  2022-05-11
  • 录用日期:  2022-05-26
  • 网络出版日期:  2023-06-05
  • 刊出日期:  2022-12-20

不同种源蒙古栎种子表型性状的多样性

doi: 10.11833/j.issn.2095-0756.20220133
    基金项目:  中央级公益性科研院所基本科研业务费专项(CAFYBB2018ZB001);“万人计划”青年拔尖人才项目资助
    作者简介:

    任俊杰(ORCID: 0000-0001-7955-5348),工程师,从事林木栽培、种质资源收集及评价研究。E-mail: 568929210@qq.com

    通信作者: 李迎超(ORCID: 0000-0002-2616-6928),助理研究员,博士,从事工厂化育苗研究。E-mail: 505464683@qq.com
  • 中图分类号: S792.186

摘要:   目的  研究不同种源蒙古栎Quercus mongolica种子表型性状多样性,为蒙古栎种质资源收集、评价和利用提供科学依据。  方法  在中国蒙古栎天然分布区选取11个种源采集种子,分别测量种子的种长、种宽、种形指数、单粒重、千粒重5个表型性状。并利用SPSS软件对不同种源的蒙古栎种子进行性状差异性、相关性及主成分分析。  结果  ①不同种源蒙古栎种子的种长、种宽、种形指数、单粒重差异较大,各种源千粒重之间均存在显著差异(P<0.05);②不同种源蒙古栎种子的种长与种宽、单粒重、千粒重均存在极显著正相关(P<0.01);③不同种源海拔与种宽存在显著负相关(P<0.05),与单粒重、千粒重存在极显著负相关(P<0.01);④影响种子性状的因素按照重要性从高到低依次为单粒重、千粒重、无霜期、北纬;根据聚类分析结果,可将11个种源划分为4类,分别为Ⅰ、Ⅱ、Ⅲ和Ⅳ类,其中,黑龙江省黑河市、辽宁省本溪市、辽宁省抚顺市聚为Ⅰ类,单粒重和千粒重显著高于其他类别种源(P<0.05),为最优种源。  结论  蒙古栎种子表型性状随地理梯度变异明显,整体呈从东北—西南种源质量逐渐下降的趋势,单粒重和千粒重可以作为快速筛选种源优良与否的优先筛选指标。图1表5参37

English Abstract

黄锦春, 万思琦, 陈扬, 等. 利用ISSR与SRAP分子标记分析金线莲种质资源遗传多样性[J]. 浙江农林大学学报, 2023, 40(1): 22-29. DOI: 10.11833/j.issn.2095-0756.20220473
引用本文: 任俊杰, 庞新博, 刘昭阳, 等. 不同种源蒙古栎种子表型性状的多样性[J]. 浙江农林大学学报, 2022, 39(6): 1221-1228. DOI: 10.11833/j.issn.2095-0756.20220133
HUANG Jinchun, WAN Siqi, CHEN Yang, et al. Genetic diversity of Anoectochilus roxburghii based on ISSR and SRAP molecular markers[J]. Journal of Zhejiang A&F University, 2023, 40(1): 22-29. DOI: 10.11833/j.issn.2095-0756.20220473
Citation: REN Junjie, PANG Xinbo, LIU Zhaoyang, et al. Diversity of phenotypic characters of Quercus mongolica seeds from different provenances[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1221-1228. DOI: 10.11833/j.issn.2095-0756.20220133
  • 蒙古栎Quercus mongolica为壳斗科Fagaceae栎属Quercus植物,广泛分布于寒温带、温带和暖温带地区[1]。距今2 000~7 000 a,以栎为主的栎类阔叶林和草甸是河北省平原地区的原生植被[2]。蒙古栎是重要的用材[3]、柞蚕[1, 4]、染料、栲胶[5]、食品、药用[6]、酿酒原料和景观树种,也是营造防风林、水源涵养林及防火林的优良树种,具有十分重要的经济、文化和生态功能。到目前为止,蒙古栎大多数处于野生状态,良种水平较为低下,良种选育研究仅限于对天然群体变异选种或以用材等为目的的种源试验研究阶段,而以结实为目的的良种选育研究尚未开始。因此,加强良种选育工作,提高蒙古栎的良种化水平迫在眉睫。

    种子表型性状作为重要的经济性状[7],是遗传多样性的重要基础[8]。因此,对种子遗传变异进行分析显得尤为重要[9]。通过表型性状分析种质资源的遗传多样性直观易行,能够快速了解植物的遗传变异水平[10]。目前,针对东北三省(黑龙江省、辽宁省、吉林省)[11-12]及其他个别地区[13-14]蒙古栎不同种源的苗木生长情况、种子性状的分析研究较多,但对于全国蒙古栎不同种源的种子特性及环境因子的分析较少。本研究对全国蒙古栎天然分布区进行调查收集,了解现有蒙古栎的自然分布状况,采集种子作为种质资源保存,并对各种源收集的蒙古栎种子进行表型性状测定和统计分析,以期为蒙古栎种质资源收集、杂交育种及品种改良提供基础数据。

    • 于2020年8—11月蒙古栎种子成熟期,在全国蒙古栎天然分布区调查并收集8省12个种源的蒙古栎种质资源,种源确定依据河北省洪崖山国有林场2018—2019年的全国蒙古栎种质资源踏查结果,结合厉月桥[15]关于蒙古栎分布的研究,选择蒙古栎主要天然分布区且具有优良林分的蒙古栎天然林,所选种源基本涵盖了蒙古栎主要天然分布区,可代表全国蒙古栎分布情况。所选采种林分为当地分布的天然林分,林龄>30 a,每个种源选取30株以上采种母树,母树间距50 m以上,收集的种子均已成熟饱满,无病虫害。蒙古栎不同种源的主要生态因子见表1

      表 1  不同种源蒙古栎主要生态因子

      Table 1.  Main ecological factors of Q. mongolica from different provenances

      种源编号种源地北纬(N)东经(E)海拔/m年均气温/℃年降水量/mm无霜期/d
      1黑龙江省黑河市  49°49′18″127°16′48″294−1.0525110
      2辽宁省抚顺市   41°56′33″125°14′24″6735.1863130
      3辽宁省本溪市   40°40′05″124°00′55″4876.5926170
      4河北省张家口市  39°53′36″114°57′17″1 5736.0400152
      5河北省承德市围场县42°10′21″117°15′31″1 3303.337080
      6河北省承德市兴隆县40°33′34″117°30′00″1 0927.6763130
      7河北省秦皇岛市  40°08′33″119°25′28″1 1108.9741180
      8北京市门头沟区  39°59′01″115°26′28″1 2706.4420150
      9吉林省延边市   43°11′32″129°32′20″3703.9580146
      10内蒙古赤峰市   42°06′57″118°19′36″1 1757.7559157
      11山东省泰安市   53°27′05″117°16′20″86813.0750200
    • 8—9月,选取健壮植株,挂牌标记,拍摄植株照片,进行蒙古栎种质资源踏查,并准确记录采种地的经纬度、海拔及年均气温等;9—11月,收集挂牌标记且具代表性的蒙古栎植株种子。

    • 分别对每个种源所采集的蒙古栎单株种子等量混合后,采用四分法随机选取300粒种子进行种长、种宽及种子单粒重、千粒重的测定,用电子游标卡尺进行蒙古栎种宽和种长的测定,精确到0.01 mm,用电子天平进行种子单粒重的测定,用百粒法测量种子千粒重,精确到0.01 g。

    • 用Excel对测量的基础数据进行整理和统计;种形指数为种子的宽(直径)和长(纵径)之比[16];运用SPSS 11.5进行方差分析、相关分析(Pearson相关)、主成分分析;同时运用SPSS 11.5将原始数据进行标准化转换,采用欧式距离法进行聚类分析。

    • 表2所示:不同种源蒙古栎种长、种宽差异较大,种长为11.38~20.96 mm,种宽为11.07~17.80 mm。其中辽宁省抚顺市蒙古栎种子的种长和种宽最长,均值分别为20.96、17.80 mm,其种宽、单粒重显著高于其他地区(P<0.05);内蒙古赤峰市最低,种长和种宽均值分别为11.38、11.07 mm,显著低于其他地区(P<0.05)。河北省承德市围场县与兴隆县蒙古栎种子的种长、种宽无显著差异。种形指数均存在一定差异,但差异较小,其中河北省秦皇岛市最高,山东省泰安市最低,均值分别为1.28、1.02。

      表 2  不同种源蒙古栎种子表型性状差异性分析

      Table 2.  Difference analysis of seeds phenotypic characters in Q. mongolica from different provenances

      种源地种长/mm种宽/mm种形指数单粒重/g千粒重/g
      黑龙江省黑河市  20.94±0.38 a16.58±0.44 bc1.26±0.04 ab2.93±0.07 ab2 949.41±9.65 b
      辽宁省抚顺市   20.96±0.73 a17.80±0.71 a1.18±0.01 ab3.05±0.16 a3 027.39±7.74 a
      辽宁省本溪市   18.37±0.46 bc15.46±0.64 d1.20±0.02 ab2.83±0.02 b2 878.82±7.03 c
      河北省张家口市  16.47±0.51 de13.11±0.68 f1.26±0.10 ab1.82±0.10 e1 824.11±9.20 h
      河北省承德市围场县16.49±0.50 de13.94±0.23 ef1.17±0.12 ab1.41±0.07 f1 482.71±1.36 j
      河北省承德市兴隆县16.18±0.22 e14.01±0.49 ef1.15±0.01 abc1.79±0.07 e1 765.37±4.14 i
      河北省秦皇岛市  18.22±0.88 c14.29±0.23 e1.28±0.04 a2.07±0.06 d2 075.77±2.53 f
      北京市门头沟区  19.38±1.19 b16.02±0.97 cd1.21±0.10 ab2.31±0.11 c2 310.59±7.58 e
      吉林省延边市   19.39±0.23 b17.26±0.19 ab1.12±0.02 bcd2.45±0.07 c2 421.51±2.44 d
      内蒙古赤峰市   11.38±0.38 f11.07±0.81 g1.03±0.09 cd1.22±0.09 g1 244.40±5.51 k
      山东省泰安市   17.40±1.04 cd17.10±0.42 abc1.02±0.09 d1.92±0.03 de1 926.28±1.40 g
        说明:同列不同字母表示不同种源地之间差异显著(P<0.05)

      单粒重和千粒重差异较大,其中各种源千粒重之间均存在显著差异(P<0.05),最高为辽宁省抚顺市(3 027.39 g),最低为内蒙古赤峰市(1 244.40 g),可以看出千粒重的变异幅度较大。

    • 表3所示:不同种源蒙古栎种子表型性状存在一定的相关性。其中蒙古栎种子的种长、种宽、单粒重、千粒重相互之间均存在极显著正相关(P<0.01),即种长越长,种宽越宽,单粒重和千粒重随着种长、种宽的增大而增加,表明这4个表型性状是相互影响的。种形指数与种长、种宽、单粒重和千粒重的相关性呈不显著正相关。

      表 3  不同种源蒙古栎种子表型性状的相关性

      Table 3.  Correlation of seeds phenotypic characters in Q. mongolica from different provenances

      性状种长种宽种形指数单粒重千粒重
      种长  1.000.88**0.520.88**0.88**
      种宽  1.000.060.79**0.78**
      种形指数1.000.400.41
      单粒重 1.001.00**
        说明:**表示极显著相关(P<0.01)
    • 从不同种源蒙古栎种子表型性状与生态因子之间的相关性分析(表4)可知:海拔与种宽呈显著负相关(P<0.05),与单粒重、千粒重呈极显著负相关(P<0.01),相关系数达−0.67、−0.75、−0.75,即海拔越高,种宽、单粒重和千粒重越小。东经与千粒重、单粒重呈显著正相关(P<0.05),相关系数均达0.72,即随着经度的增加,单粒重、千粒重增大。无霜期与单粒重呈正相关,即无霜期越长,单粒重越大。种长、种形指数与生态因子之间也存在一定的相关性,但差异不显著,说明蒙古栎种子表型性状的差异与种源生态环境因子有一定的相关性,即存在地理变异特性。

      表 4  不同种源蒙古栎种子表型性状与生态因子之间的相关性

      Table 4.  Correlation between seeds phenotypic characters in Q. mongolica and ecological factors from different provenances

      生态因子种长种宽种形指数单粒重千粒重
      东经  0.560.580.060.72*0.72*
      北纬  0.180.44−0.410.130.13
      海拔  −0.57−0.67*0.07−0.75**−0.75**
      年均气温−0.41−0.15−0.50−0.40−0.41
      年降水量0.200.34−0.170.450.45
      无霜期 −0.130.05−0.290.01−0.01
        说明:*表示显著相关(P<0.05);**表示极显著相关(P<0.01)
    • 以11个种源间蒙古栎种子相关特性为样本,将种子5个表型性状和6个生态因子数据进行主成分分析。由表5可知:特征值大于1有3个主成分,贡献率分别为43.78%、22.92%、12.57%,累计贡献率达79.27%。其中,第1主成分特征值为5.37,对应的特征向量千粒重和单粒重最大,均为0.41。可以把第1主成分称为种子质量因子。第2主成分特征值为2.52,对应的特征向量无霜期最大,为0.51,可以把第2主成分称为环境因子;第3主成分特征值为1.38,对应的特征向量北纬最小,可以把第3主成分称为地理因子。综上可知,影响蒙古栎种子特性的因素从大到小为单粒重、千粒重、无霜期、北纬。

      表 5  不同种源蒙古栎种子相关特性的主成分分析

      Table 5.  Principal component analysis of seeds related characteristics in Q. mongolica from different provenances

      主成分特征向量特征值贡献率/%累计贡献率/%
      种长种宽种形指数单粒重千粒重东经北纬海拔年均气温年降水量无霜期
      10.380.370.130.410.410.360.12−0.37−0.210.18−0.045.3743.7843.78
      2−0.090.14−0.420.000.000.000.29−0.150.500.420.512.5222.9266.70
      30.16−0.040.470.190.18−0.24−0.550.260.260.280.321.3812.5779.27
    • 由聚类分析结果(图1)可以看出:根据单粒重和千粒重,不同种源蒙古栎共分为4类,分别为Ⅰ、Ⅱ、Ⅲ和Ⅳ类种群,其中黑龙江省黑河市、辽宁省本溪市、辽宁省抚顺市为Ⅰ类,种子的单粒重和千粒重远高于所有种源的均值,为最优种源;北京市门头沟区、吉林省延边市为Ⅱ类,单粒重和千粒重略高于均值;河北省张家口市、河北省承德市兴隆县、山东省泰安市、河北省秦皇岛市为Ⅲ类,单粒重和千粒重略低于均值;河北省承德市围场县、内蒙古赤峰市为Ⅳ类,单粒重和千粒重最小。从聚类分析结果看,蒙古栎种子表型性状表现出了一定的区域性,天然种源基本上分布于东北部地区,Ⅰ类分布于东部偏冷地区,Ⅱ类分布于东部和北部地区,Ⅲ类分布于中部地区(华北和华东),Ⅳ类分布于北部地区,表现出从东北向西南的走向,种源质量逐渐降低,这与相关性分析结果相吻合。

      图  1  不同种源蒙古栎种子的聚类分析

      Figure 1.  Cluster analysis for Q. mongolica seeds from different provenances

    • 种质资源的调查和评价是研究品种起源、演化和驯化的基础,对优异资源筛选、品种选育具有重要意义[17]。本研究通过对蒙古栎种子5种表型性状的测定和分析,得出不同种源蒙古栎种实表型性状之间存在差异,其中种长、千粒重均存在显著差异(P<0.05),这与厉月桥等[18]对蒙古栎、李迎超[19]对栓皮栎Q. variabilis、麻栎Q. acutissima的研究结果一致,且种长与种宽、单粒重、千粒重之间均存在极显著正相关(P<0.01),表明蒙古栎种质资源丰富,各生长性状在种源间存在较大的遗传改良潜力。

      植物与其生存环境的关系一直是关注的热点[20],处于不同生态环境的同种物种,经过长期对当地生境的适应,发生了地理变异,形成了不同的地理种源[21]。蒙古栎地理分布较为广泛,生存环境存在较大差异。气候条件,如气温、水分等对植物的有性繁殖有着重要的影响[22],海拔等对种子、果实的品质也具有影响[23-27],而气候条件的波动及其他环境条件的改变会影响物种更新和种群动态[28-30]。本研究表明:蒙古栎不同种源种子表型特征与生态因子之间均存在相关性,其中海拔与种宽存在显著负相关,这与厉月桥等[18]对蒙古栎研究结果相同,单粒重和千粒重受分布区海拔的影响存在垂直变异,说明蒙古栎具有广泛的适应性,随着环境条件的变化,出现遗传变异。这与李斌等[31]对白皮松Pinus bungeana及张清等[32]对铁橡栎Quercus cocciferoides的研究结果一致,即变异越大,适应环境的能力就越强。单粒重与东经存在显著正相关,随着经度的降低,单粒重和千粒重逐渐降低,种形指数无显著变化,种源质量相对降低,可能由于种子储藏营养物质的量直接影响幼苗建植,大种子有利于幼苗建植早期根系的发育和生物量的积累[33],从而具有更强的生长势、逆境耐受能力和对资源的竞争能力[34]。种子的形状与种长和年均气温的相关性较大,说明蒙古栎种子形状受自身遗传物质控制,同时也受周边环境因子的影响,存在地理变异,由于长期生长在生态条件明显不同的地区,蒙古栎种源间可能产生遗传分化,这与相关的研究结果[15, 35]一致。

    • 本研究表明:影响种子特性的因素按照重要性从大到小依次为单粒重、千粒重、无霜期、北纬。主成分分析表明:贡献率最大的第1主成分表征的特征向量为单粒重和千粒重,因此可将单粒重和千粒重作为快速筛选种源优良与否的优先筛选指标,这与常恩福等[36]对铁橡栎的研究结果一致。第2、3主成分主要为环境因子和地理因子,这与常恩福等[36]、张清等[32]的研究结果存在差异。常恩福等[36]研究表明:第2、3、4主成分是种形指数、纬度和海拔,即形状因子和生态环境因子;张清等[32]研究表明:第2主成分为种形指数,可能与树种特性及分布范围存在一定关系。

      根据种子性状的综合聚类分析结果,将11个种源按单粒重和千粒重聚为4类,地理分布相近的种源并没有聚在一起,说明了种源间表型性状变异不具有连续性。Ⅰ类种群中,黑河同辽宁地理位置距离较大,但聚为同一类群,可能由于其经度相似,经度和千粒重、单粒重呈显著正相关有关,这与李文文[37]对蒙古栎种源变异的研究结果一致。Ⅱ类和Ⅲ类种群中,河北和山东相隔距离较大,可能由于同一类群在不同种源之间地形起伏较大,形成了一定程度上的地理隔离,从而造成同一类群的种源,地理距离反而较大,这与李文文[37]的研究结果一致。Ⅲ类种群除山东泰安外,均位于河北地区,地理距离相对集中,且与Ⅳ类种群相隔地理距离较小,单粒重和千粒重均低于均值,种源质量相对较差。

      其中Ⅰ类种群在种源质量方面优于Ⅱ、Ⅲ和Ⅳ类,Ⅰ类分布区均为蒙古栎集中分布区[15],同时根据蒙古栎适生分布区的研究可知:不同种源间地理梯度变异明显,呈东北—西南走向,这与李斌等[31]对白皮松的研究结果相同。

      只通过5种表型性状特征确定各种源之间的表型差异存在一定的局限性,因此,还需进一步连续多年收集测定或继续开展分子水平方面的研究,深入分析蒙古栎不同种源之间的遗传变异。

参考文献 (37)

目录

/

返回文章
返回