留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

龙葵UNUSUAL FLORAL ORGANSSnUFO2基因C端序列的保守性对花发育的影响

周佳圆 钟玉 努尔阿斯娅·伊马木 崔敏龙 朴春兰

李莉, 庞天虹, 付建新, 等. 桂花番茄红素β-环化酶基因LCYB上游B2亚组ERF转录因子的筛选和鉴定[J]. 浙江农林大学学报, 2025, 42(1): 86−93 doi:  10.11833/j.issn.2095-0756.20240316
引用本文: 周佳圆, 钟玉, 努尔阿斯娅·伊马木, 等. 龙葵UNUSUAL FLORAL ORGANSSnUFO2基因C端序列的保守性对花发育的影响[J]. 浙江农林大学学报, 2023, 40(1): 38-44. DOI: 10.11833/j.issn.2095-0756.20220217
LI Li, PANG Tianhong, FU Jianxin, et al. Screening and identification of ERF transcription factors of B2 subgroup involved in regulating lycopene β-cyclase gene LCYB in Osmanthus fragrans[J]. Journal of Zhejiang A&F University, 2025, 42(1): 86−93 doi:  10.11833/j.issn.2095-0756.20240316
Citation: ZHOU Jiayuan, ZHONG Yu, Nurasiya Imam, et al. Effect of conservation of C-terminal sequence of Solanum nigrum UNUSUAL FLORAL ORGANS family SnUFO2 on flower development[J]. Journal of Zhejiang A&F University, 2023, 40(1): 38-44. DOI: 10.11833/j.issn.2095-0756.20220217

龙葵UNUSUAL FLORAL ORGANSSnUFO2基因C端序列的保守性对花发育的影响

DOI: 10.11833/j.issn.2095-0756.20220217
基金项目: 宁夏回族自治区重点研发计划重大项目(2019BFG02011)
详细信息
    作者简介: 周佳圆(ORCID: 0000-0001-9291-4659),从事花器官发育研究。E-mail: 357611773@qq.com
    通信作者: 朴春兰(ORCID: 0000-0001-9593-8023),助理研究员,从事生物技术和分子育种研究。E-mail: chunlan_piao@zafu.edu.cn
  • 中图分类号: Q75;S641

Effect of conservation of C-terminal sequence of Solanum nigrum UNUSUAL FLORAL ORGANS family SnUFO2 on flower development

  • 摘要:   目的  UNUSUAL FLORAL ORGANS (UFO)基因属于F-box基因家族,是重要的花器官特征基因。UFO基因N端能与Skp1类基因结合形成Skp1-Cullin1-F-box (SCF)复合体,参与泛素化过程并降解C端结合的靶蛋白。为了探究C端序列对龙葵Solanum nigrum花发育的影响,本研究克隆了一个C末端缺失的SnUFO2*基因并构建其表达载体转入龙葵植株中,观察转基因龙葵植株花器官变化,从而深入探讨UFO基因完整的C末端序列在龙葵花发育中的重要作用。  方法  利用生物信息学分析软件对SnUFO2*和全长的SnUFO2比较分析,采用实时荧光定量PCR(RT-qPCR)对SnUFO2*基因在野生型龙葵植株根、茎、叶、花苞中进行表达分析;通过超表达载体的构建、转基因植株表型的观察及石蜡切片技术验证SnUFO2基因的功能。  结果  SnUFO2*基因ORF长度为1302 bp,编码433个氨基酸,与龙葵中完整的SnUFO2基因相比,其C末端缺失了23个氨基酸。RT-qPCR结果显示:SnUFO2*基因在野生型植株的花苞中特异性表达。对转基因植株的表型观察发现:35S:: SnUFO2*转基因龙葵植株的花瓣向萼片转化。石蜡切片分析发现:转基因龙葵植株雄蕊缺失,雌蕊处有不确定的分生组织产生。  结论  35S:: SnUFO2*转基因龙葵植株花瓣、雄蕊和心皮发育异常。C端结构缺失可能降低了SnUFO2蛋白特异性识别靶蛋白的能力,说明该基因完整的C末端对龙葵花器官发育至关重要。图5表1参23
  • 桂花Osmanthus fragrans为木犀科Oleaceae木犀属Osmanthus,是中国十大传统名花之一,也是园林造景常用植物。根据开花时间不同,桂花可以分为秋桂和四季桂;根据花色差异,秋桂又可以分为丹桂、金桂和银桂。已有研究分析了桂花不同花色品种呈色物质成分,证实类胡萝卜素的种类及其质量分数是决定桂花花色的最主要因素[12]。目前,桂花类胡萝卜素的定性定量及其代谢途径中相关催化酶基因已被陆续分离得到[35]。桂花不同花色品种花瓣所含的类胡萝卜素中,β-胡萝卜素相对含量最高[1]。桂花番茄红素β-环化酶OfLCYB具备使番茄红素两端环化转化为β-胡萝卜素的能力,且OfLCYB对番茄红素的底物亲和性强于其他番茄红素环化酶,是桂花类胡萝卜素代谢途径中的关键催化酶[67]。沈子又等[8]分离得到了OfLCYB基因启动子,发现其启动子序列均包含有TATA-box、CAAT-box响应元件及水杨酸、赤霉素、脱落酸等激素响应元件等,但目前有关桂花OfLCYB基因上游转录因子的筛选及鉴定鲜见报道。

    已有研究认为:ERF[9]、MYB[10]、NAC[11]等转录因子参与调控植物类胡萝卜素代谢。AP2/ERF转录因子家族具有众多的家族成员。根据AP2/ERF结构域的数目和序列特征,AP2/ERF家族转录因子分为AP2、ERF、CBF/DREB、RAV和Soloist这5个亚组,其中ERF类转录因子仅含有1个AP2/ERF结构域。ERF转录因子通过结合下游靶基因的GCC (GCCGCC)或DRE (CCGAC)序列[12]调节基因的表达,参与调节植物生长发育、生物或非生物胁迫应答、调控果实成熟等。此外,在拟南芥Arabidopsis thaliana[9]、番茄Solanum lycopersicum[13]和苹果Malus domestica[14]中还发现B2亚组的ERF转录因子具有调控植物类胡萝卜素合成的功能。拟南芥B2亚组ERF转录因子包括At3g16770.1(AtERF72/AtRAP2.3)、At1g72360.2 (AtERF73)、At1g53910.1 (AtERF74/AtRAP2.2)等5个成员。AtRAP2.2蛋白可以结合到拟南芥AtPSY启动子和AtPDS启动子的ATCTA元件上,从而调控相关基因的表达[15]。在苹果MdPSY1和MdPSY2基因启动子中也存在多个ATCTA顺式作用元件,能被AtRAP2.3的同源基因蛋白AP2D15强烈激活表达[14]。在黄龙胆Gentiana lutea[16]中,GlLCYBGlLCYEGlZEPGlPDSGlZDSGlBCH基因的启动子上均存在ATCTA作用元件,说明ATCTA元件广泛存在于类胡萝卜素合成基因启动子上,表明B2亚组的ERF转录因子可能对一系列类胡萝卜素代谢基因具有调控作用。

    本研究以桂花丹桂品种‘堰虹桂’O. fragrans ‘Yanhong Gui’为材料,首先对OfLCYB基因启动子的ATCTA顺式作用元件进行分析,再对桂花B2亚组的ERF转录因子基因进行序列分析和表达分析,利用酵母单杂交技术筛选和鉴定与OfLCYB互作的关键B2亚组的OfERF转录因子,不仅可以扩展桂花花色研究领域,同时为揭示桂花类胡萝卜素代谢的调控网络提供理论依据,为桂花品种培育和种质创新提供新的思路。

    选择浙江农林大学桂花资源圃生长状况良好的地栽桂花品种‘堰虹桂’为材料,分别采集‘堰虹桂’的新鲜嫩叶以及顶壳期(S1)、铃梗期(S2)、初花期(S3)、盛开期(S4)的花瓣样品[17],每个样品3次生物学重复,取样时间均为10:00。上述叶片与花瓣样品快速采集后放入液氮冷冻,随后保存于−80 ℃超低温冰箱,供后续使用。

    1.2.1   OfLCYB启动子序列分析、克隆及OfLCYB基因表达分析

    根据诺禾致源的Ultraclean plant DNA purification Kit试剂盒操作说明提取‘堰虹桂’的嫩叶鲜样DNA。借助PlantCARE数据库(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)分析启动子顺式作用元件。根据OfLCYB的启动子序列信息[8]设计引物,以‘堰虹桂’嫩叶DNA为模板扩增得到其启动子。以‘堰虹桂’不同时期的花瓣cDNA为模板,以OfLCYB基因序列设计表达引物,以桂花OfACT基因[18]为内参基因,按照TB Green® Premix Ex TM TapⅡ说明进行实时荧光定量聚合酶链式反应(RT-qPCR)分析。引物序列见表1。利用参照基因的2−ΔΔCt法计算目的基因的相对表达量。

    表 1  PCR引物序列
    Table 1  PCR primer sequences
    引物名称 引物序列(5′→3′)
    LCYB-PRO-GW-F ggggacaagtttgtacaaaaaagcaggcttcCTGCTTCTTGTTGTTGTACG
    LCYB-PRO-GW-R ggggaccactttgtacaagaaagctgggtcCAATTTTGGCATGTTCTTAG
    OfLCYB-qF GAAAGGAGACGCCAAAGGGAG
    OfLCYB-qR GGAAGAAATAGCCGAGATGATAAGA
      说明:小写字母表示部分attB序列。
    下载: 导出CSV 
    | 显示表格
    1.2.2   B2亚组OfERFs生物信息学分析

    使用天根公司RNA perp Pure Plant Kit试剂盒,根据产品说明提取‘堰虹桂’不同时期的花瓣RNA。随后用紫外分光光度计和质量分数为1%琼脂糖凝胶电泳检测总RNA浓度和质量。按照PrimeScriptTM RT Master Mix说明书将检验合格的盛花期RNA进行反转录。

    应用Prot-Param在线软件 (http://web.expasy.org/protparam/) 预测所编码蛋白的分子量、理论等电点、不稳定系数等;采用MEGAX软件中的邻位相邻法(NJ)进行同源聚类,建立系统发育树,并采用Bootstrap法(重复1 000次) 评估检测系统进化树。运用DNAMAN 7.0对4个OfERF基因推测所得的序列进行多序列比对分析。

    1.2.3   B2亚组OfERFs表达分析

    以‘堰虹桂’不同时期的花瓣cDNA为模板,以筛选得到的桂花B2亚组OfERFs序列设计引物,以桂花OfACT为内参基因。分析方法参照1.2.1。引物序列见表2

    表 2  OfERFs基因RT-qPCR引物序列
    Table 2  RT-qPCR primer sequences of OfERFs
    引物名称 引物序列(5′→3′) 引物名称 引物序列(5′→3′)
    OfERF73a-qF CTGAAGAGAAACCGCCAACAA OfERF72a-qR GGGTAGTAAACTTCTTGTTGCTGCGTA
    OfERF73a-qR TTAACGCCATCAGAAGACACAAGT OfERF72b-qF CAAATATCCTATGTTCAGAGG
    OfERF73b-qF AATTGGGATGCCGCCTCA OfERF72b-qR ATAGCATACCATAACATACCA
    OfERF73b-qR TTAAATCCCACCAAACATAGCACT OfACT-qF CCCAAGGCAAACAGAGAAAAAAT
    OfERF72a-qF CCAACCCCACCGGCTC OfACT-qR ACCCCATCACCAGAATCAAGAA
    下载: 导出CSV 
    | 显示表格
    1.2.4   OfERFs与OfLCYB启动子酵母互作验证

    通过Gateway方法构建pAbAi-OfLCYB-pro载体,之后利用限制性内切酶BstB I线性化质粒pAbAi-OfLCYB-pro、阳性对照p53-AbAi以及阴性对照pAbAi载体。按照Yeastmaker™ Yeast Transformation System 2 User Manual产品说明制备酵母感受态,并将线性化的质粒转入感受态细胞中,涂布于尿嘧啶缺陷培养基(SD/-Ura)酵母板筛选培养基上,28 ℃倒置培养2~3 d。挑取单菌落扩大培养,提取酵母DNA。以粗提酵母DNA为模板,进行PCR检验。用质量分数为0.9% 的无菌氯化钠溶液稀释菌液,D(600)=0.002时,均匀涂布于金担子素A (AbA)不同浓度的SD/-Ura固体培养基上,倒置于28 ℃培养箱内培养2~3 d,以检测AbAr基因本底表达水平。将pGADT7-OfERF72a、pGADT7-OfERF72b、pGADT7-OfERF73a、pGADT7-OfERF73b和pGADT7-53、pGADT7分别转入诱饵菌株pAbAi-OfLCYB-pro和阳性对照p53-AbAi、阴性对照pAbAi的酵母感受态细胞,悬浮液均匀涂布于SD/-Leu缺陷培养基上,倒置于30 ℃培养箱内培养3~5 d,再将长出的单菌落分别在亮氨酸缺陷培养基(SD/-Leu)与含300 μg·L−1的亮氨酸缺陷培养基[SD/-Leu/AbA(300 μg·L−1)]点斑检测其互作情况。

    图1可见:桂花OfLCYB基因启动子序列含有2个ATCTA顺式作用元件。

    图 1  OfLCYB启动子的ATCTA顺式作用元件分析
    Figure 1  Analysis of ATCTA cis-acting elements of the OfLCYB promoter

    通过荧光定量检测‘堰虹桂’不同发育时期花瓣中OfLCYB的表达水平(图2),发现OfLCYB的表达量从顶壳期到盛开期逐渐升高,在盛开期表达量最高。

    图 2  OfLCYB在‘堰虹桂’不同花期的表达
    Figure 2  Expression of OfLCYB at different flowering stages in O. fragrans ‘Yanhong Gui’

    通过对桂花转录组数据库分析,筛选获得4个B2亚组ERF有关的Unigene序列。利用MEGAX软件对4个桂花OfERFs氨基酸全长和拟南芥ERF家族的122个成员的氨基酸序列构建系统进化树,结果显示:4个桂花OfERFs与5个拟南芥ERF序列聚集在B2亚组(图3)。其中CL2088.Contig2和CL2088.Contig3聚为一小支,与拟南芥At3g16770.1 (AtERF72)的关系最为接近,将CL2088.Contig2和CL2088.Contig3分别命名为OfERF72a和OfERF72b。此外,CL550.Contig3、Unigene4342与拟南芥At1g72360.2 (AtERF73)关系较近,将CL550.Contig3和Unigene4342分别命名为OfERF73a和OfERF73b。

    图 3  桂花B2亚组OfERFs系统发育分析
    Figure 3  Phylogenetic analysis of OfERFs in subgroup B2 of O. fragrans

    多序列比对分析发现(图4) :4个OfERF基因均包含1个AP2保守结构域。4个OfERFs蛋白序列的基本理化性质(表3)分析发现:OfERF72a基因的氨基酸数量为232个,分子量为26 144 Da;OfERF72b基因的氨基酸数量为228个,分子量为25 841 Da;OfERF73a基因的氨基酸数量为386个,分子量为43 632 Da;OfERF73b基因的氨基酸数量为375个,分子量为41 607 Da。4个OfERF的理论等电点为4.63~5.33,均属于偏酸性蛋白质;总平均亲水指数均为负值,都属于亲水性蛋白。OfERF72aOfERF72bOfERF73a不稳定系数分别为43.67、54.42、43.21,判断为不稳定的蛋白质;OfERF73b不稳定系数为38.40,判断为稳定的蛋白质。

    图 4  B2亚组OfERFs氨基酸序列比对分析
    Figure 4  Amino acid multiple sequence alignment analysis of OfERFs of subgroup B2
    表 3  B2亚组OfERFs基本理化性质分析
    Table 3  Analysis of basic physicochemical properties OfERFs of subgroup B2
    基因名称 氨基酸数量/个 分子量/Da 理论等电点 不稳定系数 总平均亲水指数
    OfERF72a 232 26 144 5.33 43.67 −0.744
    OfERF72b 228 25 841 5.30 54.42 −0.796
    OfERF73a 386 43 632 4.63 43.21 −0.739
    OfERF73b 375 41 607 5.01 38.40 −0.710
    下载: 导出CSV 
    | 显示表格

    利用RT-qPCR技术分析‘堰虹桂’不同发育时期花瓣中OfERF72aOfERF72bOfERF73aOfERF73b相对表达量(图5)发现:从顶壳期到盛开期,OfERF72aOfERF72b的相对表达量基本呈现逐渐下降的趋势,OfERF73a的相对表达量在顶壳期、铃梗期与盛花期之间差异较小,在初花期相对表达量略有下降。OfERF73b的相对表达量在顶壳期、铃梗期较高,随后在初花期相对表达量显著下降(P<0.05)。

    图 5  B2亚组OfERF在‘堰虹桂’不同花期的表达
    Figure 5  Expression of OfERF genes of subgroup B2 at different flowering stages in O. fragrans ‘Yanhong Gui’

    为了验证OfERFsOfLCYB之间的关系,用y表示OfERFs的相对表达量取以10为底的对数,用x表示OfLCYB相对表达量取以10为底的对数进行相关性分析(图6)。其中,OfERF72a直线回归方程为y= − 0.987 6x − 0.010 0,决定系数(R2)为0.933 6,P=0.033 8;OfERF72b直线回归方程为y= − 1.208 0x − 0.077 9,R2=0.941 6,P=0.029 6。OfLCYB的表达水平与OfERF72aOfERF72b呈显著负相关。

    图 6  OfERFsOfLCYB相对表达量的相关性分析
    Figure 6  Correlation analysis of relative expression levels of OfERFs with OfLCYB

    为了探究B2亚组OfERFs与OfLCYB启动子之间是否存在物理互作,同时将阴性对照pAbAi+pGADT7、阳性对照p53-AbAi+pGADT7-Rec-p53以及实验组pAbAi-OfLCYB-Pro+AD-OfERF分别接种于SD/-Leu与SD/-Leu/AbA (300 μg·L−1)的酵母培养基上,于30 ℃倒置培养3~5 d。结果发现(图7):在SD/-Leu培养基上,酵母均能正常生长,而在SD/-Leu/AbA (300 μg·L−1)培养基上,只有阳性对照与pAbAi-OfLCYB-Pro+AD-OfERF72b正常生长,其余酵母菌均不能生长,表明OfERF72b可以与OfLCYB启动子物理结合。

    图 7  OfERF蛋白与OfLCYB启动子互作验证
    Figure 7  Verification of physical interaction between OfERF proteins and OfLCYB promoter

    本研究得到4个桂花‘堰虹桂’B2亚组的OfERFs基因,编码区长度为687~1 161 bp,编码228~386个氨基酸残基。拟南芥B2亚组ERF At1g53910.1、At1g72360.2、At2g47520.1、At3g14230.1以及At3g16770.1分别编码358、262、171、397和248个氨基酸残基[15]。牡丹Paeonia suffruticosa ERF家族中B2亚组基因PsERF1编码区长度为1 158 bp,编码385个氨基酸残基[19]。在番木瓜Carica papaya中,属于B2亚组的基因CpERF4、CpERF6、CpERF9则分别编码431、253、234个氨基酸残基[20]。而在番茄ERF中,其B2亚组的SlERF6、SlERF.E.1、SlERF90、SlERF91、SlERF.A.3分别编码255、260、386、1 454和372个氨基酸残基[21]。由此可以发现:同一物种B2亚组ERF基因编码不同长度的氨基酸序列,推测其不同成员的功能存在差异。

    对4个桂花OfERFs基因的氨基酸序列进行系统进化分析,发现OfERFs与拟南芥B2亚组ERF聚集在一起,说明它们的同源性较高。其中2个基因与At3g16770.1 (AtERF72/AtRAP2.3)聚为一支,2个基因与At1g72360.2 (AtERF73/AtRAP2.2)聚为另一小支。据此将4个OfERFs基因分别命名OfERF72aOfERF72b、OfERF73aOfERF73b。桂花OfERF72与OfERF73均存在2个拷贝,说明桂花OfERF基因家族成员在进化和扩张过程中与基因重复事件有着紧密联系。在拟南芥中,AtERF72能够与缺铁反应基因IRT1、HA2和CLH1的启动子区域结合,负调控拟南芥的缺铁响应。与野生型植株相比,AtERF72突变体中铁和镁质量分数显著增加[22]。AtRAP2.3的同源基因SlERF6被证实是番茄中类胡萝卜素合成的负调控因子[13]。此外,在苹果中也有研究证明:AtRAP2.3的同源基因AP2D15可以负调控苹果PSY1和PSY2基因启动子序列中的ATCTA顺式作用元件[14]。拟南芥AtRAP2.2可以结合到拟南芥AtPSY启动子和AtPDS启动子的ATCTA元件上调控基因的表达,过表达AtRAP2.2后导致植物体内类胡萝卜素降低[15]

    桂花花瓣中主要类胡萝卜素为β-胡萝卜素,其生物合成由OfLCYB直接催化生成,是桂花花瓣中类胡萝卜素代谢的重要催化酶[23]OfLCYB基因启动子中存在2个ATCTA顺式作用元件,推测其响应B2亚组ERF转录因子的调控。AtRAP2.2蛋白可以结合到拟南芥AtPSY启动子和AtPDS启动子的ATCTA元件上,从而调控相关基因的表达[15]。在苹果MdPSY1和MdPSY2基因启动子中也存在多个ATCTA顺式作用元件,能被AtRAP2.3的同源基因蛋白AP2D15强烈激活表达[14]。进一步研究发现:OfERF72aOfERF72b的表达趋势与OfLCYB基因呈显著负相关。酵母单杂交结果表明:OfERF72b与OfLCYB启动子存在物理结合,表明B2亚组的OfERF72b可能通过结合OfLCYB基因启动子ATCTA顺式作用元件调控其表达。ATCTA元件也存在于桂花OfPSY[24]OfCCD1[25]等其他类胡萝卜素代谢基因的启动子上,其是否响应B2亚组的ERF转录因子的调控需要进一步研究。

    本研究基于桂花‘堰虹桂’转录组数据筛选了4个OfERF基因,OfERF72aOfERF72b基因表达量均随着开花进程逐渐下降,与OfLCYB基因的表达量显著负相关。OfLCYB基因启动子含有2个ATCTA顺式作用元件,OfERF72b与OfLCYB启动子之间存在互作,表明OfERF72b可能参与调控OfLCYB的表达。

  • 图  1  SnUFO2*系统发育树分析及Motif分析

    Figure  1  SnUFO2* phylogenetic tree analysis and Motif analysis

    图  2  龙葵SnUFO2*氨基酸序列比对

    Figure  2  Amino acid sequence alignment of S. nigrum SnUFO2*

    图  3  野生型龙葵中SnUFO2*不同组织部位表达量分析

    Figure  3  Expression analysis of SnUFO2* in different tissues of wild-type S. nigrum

    图  4  35S::SnUFO2* 转基因植株表型图

    Figure  4  Phenotypic map of 35S::SnUFO2* transgenic plants

    图  5  野生型及35S::SnUFO2*转基因株系花苞石蜡切片

    Figure  5  Paraffin sections of flower buds of wild-type and 35S::SnUFO2 * transgenic lines

    表  1  基因克隆及RT-qPCR引物列表

    Table  1.   Gene cloning and RT-qPCR primer list

    引物名称上游引物(5′→3′)下游引物(5′→3′)
    SnUFO2 AAGGATCCATGGAAGCTTTTCATCATCCC AAGAGCTCTCAGTTGAAAGACTGAAAGGG
    qSnUFO2 GCTGTGGCTGGTGATAACTTG CGGCATACGGGCAATTTCTT
    SnAPRT GAGATGCATGTAGGTGCTGTGCAA GGCCCTTCAATTCTGGCAACTCAA
      说明:下划线处为酶切位点,分别为BamHⅠ和Sac
    下载: 导出CSV
  • [1] CHO L H, YOON J, AN G. The control of flowering time by environmental factors [J]. The Plant Journal, 2017, 90(4): 708 − 719.
    [2] 杨传平, 刘桂丰, 魏志刚. 高等植物成花基因的研究[J]. 遗传, 2002, 24(3): 379 − 384.

    YANG Chuanping, LIU Guifeng, WEI Zhigang. Studies of flowering genes of plants [J]. Hereditas, 2002, 24(3): 379 − 384.
    [3] ABD-HAMID N A, AHMAD-FAUZI M I, ZAINAL Z, et al. Diverse and dynamic roles of F-box proteins in plant biology[J/OL]. Planta, 2020, 251(3): 68[2022-01-20]. doi: 10.1007/s00425-020-03356-8.
    [4] XU Guixia, MA Hong, NEI M, et al. Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification [J]. Proceedings of the National Academy of Sciences, 2009, 106(3): 835 − 840.
    [5] MO Fulei, ZHANG Nian, QIU Youwen, et al. Molecular characterization, gene evolution and expression analysis of the F-box gene family in tomato (Solanum lycopersicum)[J/OL]. Genes, 2021, 12(3): 417[2022-01-20]. doi: 10.3390/genes12030417.
    [6] ZHANG Shulin, TIAN Zailong, LI Haipeng, et al. Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L. [J/OL]. BMC Genomics, 2019, 20(1): 993[2022-01-20]. doi: 10.1186/s12864-019-6280-2.
    [7] LEVIN J Z, MEYEROWITZ E M. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development [J]. Plant Cell, 1995, 7(5): 529 − 548.
    [8] LEE I, WOLFE D S, NILSSON O, et al. A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS [J]. Current Biology, 1997, 7(2): 95 − 104.
    [9] SAMACH A, KLENZ J E, KOHALMI S E, et al. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem[J]. The Plant Journal, 1999, 20(4): 433 − 445.
    [10] RISSEEUW E, VENGLAT P, XIANG Daoquan, et al. An activated form of UFO alters leaf development and produces ectopic floral and inflorescence meristems[J/OL]. PLoS One, 2013, 8(12): e83807[2022-09-23]. doi: 10.1371/journal.pone.0083807.
    [11] ZHAO Dazhong, YU Qilu, CHEN Min, et al. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis[J]. Development, 2001, 128(14): 2735 − 2746.
    [12] CHAE E, TAN Q K, HILL T A, et al. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development [J]. Development, 2008, 135(7): 1235 − 1245.
    [13] DURFEE T, ROE J L, SESSIONS R A, et al. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2003, 100(14): 8571 − 8576.
    [14] ZHANG Shulu, SANDAL N, POLOWICK P L, et al. PROLIFERATING FLORAL ORGANS (PFO), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein[J]. The Plant Journal, 2003, 33(4): 607 − 619.
    [15] TAYLOR S, HOFER J, MURFET I. STAMINA PISTILLOIDA, the pea ortholog of FIM and UFO, is required for normal development of flowers, inflorescences, and leaves[J]. Plant Cell, 2001, 13(1): 31 − 46.
    [16] 孙皎, 倪彦博, 冯舒, 等. 不同栽培条件对龙葵生物碱积累的影响[J]. 北方园艺, 2017(13): 157 − 160.

    SUN Jiao, NI Yanbo, FENG Shu, et al. Effect of different cultivation conditions on accumulation of alkaloids of Solalum nigrum [J]. Northern Horticutlure, 2017(13): 157 − 160.
    [17] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis Version 7.0 for bigger datasets [J]. Molecular Biology and Evolution, 2016, 33(7): 1870 − 1874.
    [18] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194 − 1202.
    [19] 祁宏英, 姚美玲, 徐洪国. 龙葵花芽分化形态解剖学研究[J]. 北方园艺, 2017(9): 135 − 138.

    QI Hongying, YAO Meiling, XU Hongguo. Anatomical and morphological characteristics of development of flower bud differentiation in Solanum nigrum L. [J]. Northern Horticulture, 2017(9): 135 − 138.
    [20] SOUER E, REBOCHO A B, BLIEK M, et al. Patterning of inflorescences and flowers by the F-box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of Petunia [J]. Plant Cell, 2008, 20(8): 2033 − 2048.
    [21] NI Weimin, XIE Daoxin, HOBBIE L, et al. Regulation of flower development in Arabidopsis by SCF complexes [J]. Plant Physiology, 2004, 134(4): 1574 − 1585.
    [22] CHEN Yue, WEN Haifan, PAN Jian, et al. CsUFO is involved in the formation of flowers and tendrils in cucumber [J]. Theoretical and Applied Genetics, 2021, 134(7): 2141 − 2150.
    [23] SIMON R, CARPENTER R, DOYLE S, et al. Fimbriata controls flower development by mediating between meristem and organ identity genes [J]. Cell, 1994, 78(1): 99 − 107.
  • [1] 郑正权, 赵梦婧, 高燕会.  换锦花LsMYB7基因克隆与功能研究 . 浙江农林大学学报, 2024, 41(3): 586-596. doi: 10.11833/j.issn.2095-0756.20230368
    [2] 尚林雪, 王群, 张国哲, 赵雨, 顾翠花.  紫薇LiCMB1基因的克隆及表达特性分析 . 浙江农林大学学报, 2023, 40(2): 330-337. doi: 10.11833/j.issn.2095-0756.20220333
    [3] 郭雅琨, 赵岩秋, 杜娟, 卢孟柱.  DNA拓扑异构酶基因PagTOP2b对银腺杨‘84K’生长发育的影响 . 浙江农林大学学报, 2022, 39(6): 1155-1162. doi: 10.11833/j.issn.2095-0756.20220372
    [4] 郝燕敏, 陈柯俐, 冯丽君, 李菲菲, 崔敏龙, 朴春兰.  欧洲千里光SvAPETALA1基因的克隆及功能分析 . 浙江农林大学学报, 2022, 39(4): 821-829. doi: 10.11833/j.issn.2095-0756.20210651
    [5] 帅敏敏, 张启香, 黄有军.  光周期途径成花关键基因CONSTANS的进化机制 . 浙江农林大学学报, 2019, 36(1): 7-13. doi: 10.11833/j.issn.2095-0756.2019.01.002
    [6] 胡肖肖, 段玉侠, 金荷仙, 唐宇力, 庄晓林.  4个杜鹃花品种的耐荫性 . 浙江农林大学学报, 2018, 35(1): 88-95. doi: 10.11833/j.issn.2095-0756.2018.01.012
    [7] 程占超, 侯丹, 马艳军, 高健.  毛竹生长素反应因子基因的生物信息学分析及差异表达 . 浙江农林大学学报, 2017, 34(4): 574-580. doi: 10.11833/j.issn.2095-0756.2017.04.002
    [8] 赵传慧, 周厚君, 童再康, 林二培, 黄华宏, 牛明月.  光皮桦成花相关MADS-box基因BlMADS1的克隆与表达 . 浙江农林大学学报, 2015, 32(2): 221-228. doi: 10.11833/j.issn.2095-0756.2015.02.008
    [9] 侯传明, 郑雅文, 王正加, 徐英武.  山核桃MADS-like基因的克隆与分析 . 浙江农林大学学报, 2015, 32(1): 33-39. doi: 10.11833/j.issn.2095-0756.2015.01.005
    [10] 杜明利, 高群英, 高岩, 张汝民.  外来物种大花金鸡菊不同器官成分的气质联用(GC-MS)分析 . 浙江农林大学学报, 2012, 29(2): 313-318. doi: 10.11833/j.issn.2095-0756.2012.02.024
    [11] 田敏, 龚茂江, 徐小雁, 王彩霞.  兰科植物花发育的基因调控研究进展 . 浙江农林大学学报, 2011, 28(3): 494-499. doi: 10.11833/j.issn.2095-0756.2011.03.023
    [12] 李玉发, 房伟民, 陈发棣, 石常磊.  日光温室多头切花菊品质模拟 . 浙江农林大学学报, 2010, 27(3): 404-409. doi: 10.11833/j.issn.2095-0756.2010.03.014
    [13] 曾燕如, 黎章矩.  油茶花期气候对花后坐果的影响 . 浙江农林大学学报, 2010, 27(3): 323-328. doi: 10.11833/j.issn.2095-0756.2010.03.001
    [14] 裴海燕, 方伟, 林新春, 桂仁意, 黄丽春.  花叶花秆绿竹的试管快繁研究 . 浙江农林大学学报, 2010, 27(1): 149-154. doi: 10.11833/j.issn.2095-0756.2010.01.024
    [15] 黄有军, 周丽, 陈芳芳, 周秦, 黄坚钦, 黄敏仁, 王明庥.  山核桃成花过程基因表达的cDNA-AFLP分析 . 浙江农林大学学报, 2009, 26(3): 297-301.
    [16] 陈懿涵, 桂仁意, 林新春, 杨海芸, 黄丽春.  花秆绿竹试管快速繁殖 . 浙江农林大学学报, 2008, 25(3): 397-400.
    [17] 姜贝贝, 房伟民, 陈发棣, 顾俊杰.  氮磷钾配比对切花菊‘神马’生长发育的影响 . 浙江农林大学学报, 2008, 25(6): 692-697.
    [18] 周媛, 姚崇怀, 王彩云.  桂花切花品种筛选 . 浙江农林大学学报, 2006, 23(6): 660-663.
    [19] 金则新, 李钧敏.  七子花总黄酮含量及成分分析 . 浙江农林大学学报, 2003, 20(4): 357-359.
    [20] 管康林, 严逸伦, 郑钢.  杉木发育生理研究 . 浙江农林大学学报, 1994, 11(2): 105-115.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220217

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/1/38

图(5) / 表(1)
计量
  • 文章访问数:  732
  • HTML全文浏览量:  156
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 修回日期:  2022-09-23
  • 录用日期:  2022-10-10
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2023-01-17

龙葵UNUSUAL FLORAL ORGANSSnUFO2基因C端序列的保守性对花发育的影响

doi: 10.11833/j.issn.2095-0756.20220217
    基金项目:  宁夏回族自治区重点研发计划重大项目(2019BFG02011)
    作者简介:

    周佳圆(ORCID: 0000-0001-9291-4659),从事花器官发育研究。E-mail: 357611773@qq.com

    通信作者: 朴春兰(ORCID: 0000-0001-9593-8023),助理研究员,从事生物技术和分子育种研究。E-mail: chunlan_piao@zafu.edu.cn
  • 中图分类号: Q75;S641

摘要:   目的  UNUSUAL FLORAL ORGANS (UFO)基因属于F-box基因家族,是重要的花器官特征基因。UFO基因N端能与Skp1类基因结合形成Skp1-Cullin1-F-box (SCF)复合体,参与泛素化过程并降解C端结合的靶蛋白。为了探究C端序列对龙葵Solanum nigrum花发育的影响,本研究克隆了一个C末端缺失的SnUFO2*基因并构建其表达载体转入龙葵植株中,观察转基因龙葵植株花器官变化,从而深入探讨UFO基因完整的C末端序列在龙葵花发育中的重要作用。  方法  利用生物信息学分析软件对SnUFO2*和全长的SnUFO2比较分析,采用实时荧光定量PCR(RT-qPCR)对SnUFO2*基因在野生型龙葵植株根、茎、叶、花苞中进行表达分析;通过超表达载体的构建、转基因植株表型的观察及石蜡切片技术验证SnUFO2基因的功能。  结果  SnUFO2*基因ORF长度为1302 bp,编码433个氨基酸,与龙葵中完整的SnUFO2基因相比,其C末端缺失了23个氨基酸。RT-qPCR结果显示:SnUFO2*基因在野生型植株的花苞中特异性表达。对转基因植株的表型观察发现:35S:: SnUFO2*转基因龙葵植株的花瓣向萼片转化。石蜡切片分析发现:转基因龙葵植株雄蕊缺失,雌蕊处有不确定的分生组织产生。  结论  35S:: SnUFO2*转基因龙葵植株花瓣、雄蕊和心皮发育异常。C端结构缺失可能降低了SnUFO2蛋白特异性识别靶蛋白的能力,说明该基因完整的C末端对龙葵花器官发育至关重要。图5表1参23

English Abstract

李莉, 庞天虹, 付建新, 等. 桂花番茄红素β-环化酶基因LCYB上游B2亚组ERF转录因子的筛选和鉴定[J]. 浙江农林大学学报, 2025, 42(1): 86−93 doi:  10.11833/j.issn.2095-0756.20240316
引用本文: 周佳圆, 钟玉, 努尔阿斯娅·伊马木, 等. 龙葵UNUSUAL FLORAL ORGANSSnUFO2基因C端序列的保守性对花发育的影响[J]. 浙江农林大学学报, 2023, 40(1): 38-44. DOI: 10.11833/j.issn.2095-0756.20220217
LI Li, PANG Tianhong, FU Jianxin, et al. Screening and identification of ERF transcription factors of B2 subgroup involved in regulating lycopene β-cyclase gene LCYB in Osmanthus fragrans[J]. Journal of Zhejiang A&F University, 2025, 42(1): 86−93 doi:  10.11833/j.issn.2095-0756.20240316
Citation: ZHOU Jiayuan, ZHONG Yu, Nurasiya Imam, et al. Effect of conservation of C-terminal sequence of Solanum nigrum UNUSUAL FLORAL ORGANS family SnUFO2 on flower development[J]. Journal of Zhejiang A&F University, 2023, 40(1): 38-44. DOI: 10.11833/j.issn.2095-0756.20220217
  • 花发育是植物完成生命周期的关键过程。植物从营养生长到生殖生长的转变是对环境因素和遗传因素的双重响应,为了确保子代的正常繁殖,高等植物必须在最适的环境条件下开花[1]。花发育分为成花诱导、成花启动及花器官发育共3个阶段[1]。植物通过外界环境和内源激素变化感受到开花信号,刺激茎顶端分生组织(shoot apical meristem,SAM)转变为花序分生组织 (inflorescence meristem,IM),随后花序分生组织在花分生组织特征基因(floral meristem identity gene)和花器官特征基因 (floral organ identity gene)的作用下形成一朵完整的花[2]。F-box蛋白是植物中最大的蛋白质超家族之一,N端存在F-box结构域,该结构域由40~60个氨基酸残基组成,能和Skp1、Cullinl (CUL1)/Cdc53和Rbxl/Rocl/Hrtl结合形成Skp1-Cullin1-F-box (SCF)复合体参与泛素化过程;C端为底物结合区域,存在不同的结构域,包括Kelch、LRR、FBD结构域等,F-box蛋白的C端决定了底物识别的特异性,根据结合底物的不同,F-box蛋白发挥不同的作用[3-5]。可见,F-box蛋白形成的SCF复合体能参与植物生命周期的各个方面,如种子萌发、花发育、自交不亲和性、生物胁迫和非生物胁迫以及光形态建成等[3, 6]

    UNUSUAL FLORAL ORGANS (UFO)基因是与花发育相关的F-box基因,是重要的花分生组织特征基因和花器官特征基因,依赖于LEAFY (LFY)基因发挥作用,并与LFY基因共同促进ABC模型中B类基因的表达,从而调控花瓣和雄蕊的发育[7-12]。除了LFY基因,UFO还能与ASK1结合形成 SCFUFO复合体对花瓣和雄蕊发育造成影响,ufoask1突变体都表现为花瓣和雄蕊发育不良[11]。在拟南芥Arabidopsis thalianaUFO基因C末端区域是花瓣发育所必需的,而在百脉根Lotus japonicus和豌豆Pisum sativum中,UFO同源基因PROLIFERATING FLORAL ORGANS (PFO)和STAMINA PISTILLOIDA(STP)基因C端序列的缺失不仅对花瓣发育有影响,还对花分生组织确定性造成影响,形成次生花序[13-15]

    龙葵Solanum nigrum是茄科Solanaceae茄属Solanum的1年生草本植物,花序结构为聚伞花序[16]。目前对茄科的研究集中在番茄S. lycopersicum等经济作物上,在其他茄科植物中关于花发育的研究较为欠缺。龙葵生长周期短、植株矮小、遗传转化效率高且便于实验室栽培,是理想的研究材料。通过对龙葵花发育的研究可以丰富茄科植物花发育的研究内容,探讨UFO基因在不同物种的调控机制,为UFO基因在茄科花发育的调控方面提供理论支持。

    • 以野生型植株及其转基因植株为材料,在室温25 ℃及光周期16 h/8 h的条件下栽培,备用。

    • 根据龙葵转录组数据筛选出SnUFO2基因序列,设计上下游引物并利用在线网站NEBcutter (http://tools.neb.com/NEBcutter/index.php3)添加酶切位点BamHⅠ和SacⅠ以及保护碱基(表1)。引物序列送杭州有康生物科技有限公司合成。

      表 1  基因克隆及RT-qPCR引物列表

      Table 1.  Gene cloning and RT-qPCR primer list

      引物名称上游引物(5′→3′)下游引物(5′→3′)
      SnUFO2 AAGGATCCATGGAAGCTTTTCATCATCCC AAGAGCTCTCAGTTGAAAGACTGAAAGGG
      qSnUFO2 GCTGTGGCTGGTGATAACTTG CGGCATACGGGCAATTTCTT
      SnAPRT GAGATGCATGTAGGTGCTGTGCAA GGCCCTTCAATTCTGGCAACTCAA
        说明:下划线处为酶切位点,分别为BamHⅠ和Sac

      利用RNA提取试剂盒(普洛麦格生物产品有限公司,上海)提取盛花期野生型龙葵植株相同生长时期花苞的RNA,使用EasyScript®First-Strand cDNA Synthesis SuperMix反转录试剂盒(全式金生物技术有限公司,北京)获得cDNA,以其为模板克隆SnUFO2基因。PCR反应程序:97 ℃预变性3 min;95 ℃变性40 s,60 ℃退火40 s,72 ℃延伸1 min,35个循环;72 ℃总延伸10 min。PCR产物进行琼脂糖凝胶电泳检测片段大小,并纯化回收目的片段。目的片段连接到pEASY Blunt simple (全式金生物技术有限公司,北京)载体后,转入大肠埃希菌Escherichia coli DH5α 感受态中(唯地生物技术有限公司,上海)。通过菌落PCR筛选阳性单菌落,摇菌送杭州擎科生物有限公司测序。测序返回数据拼接后与转录组测序序列进行比对,获得2条目的基因序列。

    • 通过在线网站Pfam (http://pfam.xfam.org/)蛋白质家族数据库进行结构域分析。将克隆得到的2条SnUFO2序列在美国国家生物信息中心(NCBI)上通过Blastx进行同源基因检索。利用MEGA7[17]进行氨基酸序列比对和系统进化树构建。进化树构建采用邻接法,Bootstrap检验1 000次。将筛选到的不同物种中UFO基因和龙葵中2条SnUFO2序列输入在线网站MEME Suite (https://meme-suite.org/meme/),选择合适的Motif数量后导出结果,并用TBtools[18]软件美化。

    • 于野生型龙葵植株盛花期取样,分别采集植株不同部位,包括根、茎、叶和花苞并提取RNA,以反转录后的cDNA为模板,进行实时荧光定量PCR反应。内参基因为龙葵的APRT基因,SnAPRTSnUFO2*定量引物如表1所示。根据RT-qPCR试剂盒TransStart® Tip Green qPCR SuperMix(全式金生物技术有限公司,北京)说明书设置反应体系:cDNA 1 μL ,上下游引物(10 μmol·L−1)各0.2 μL,2×TransStart® Tip Green qPCR SuperMix 5 μL,双蒸水补足至10 μL。反应条件:95 ℃预变性30 s;95 ℃变性5 s,60 ℃退火15 s,72 ℃延伸10 s,共反应45个循环。数据计算方法采用$2^{ - \Delta \Delta C_t}$法计算相对表达量。

    • 利用BamHⅠ和SacⅠ(赛默飞世尔科技公司,上海)将目的片段和pBI121载体进行双酶切,纯化回收后在16 ℃下过夜连接,并转入大肠埃希菌感受态。菌落经PCR验证后,提取阳性重组质粒,通过单双酶切验证超表达载体。

    • SDS法提取转化苗基因组DNA,以野生型龙葵为对照,通过PCR检测阳性转基因植株。通过尼康相机(COOLPIX P7100)拍照记录转基因植株和花序表型变化,Leica体视显微镜(M165FC)拍照记录转基因植株花表型变化。

    • 采用海氏铁矾-苏木精染色法[19],在野生型与转基因植株盛花期取2.5 mm左右的花苞置于FAA固定液中固定,依次经50%、60%、70%、80%、90%、95%、100%体积分数的乙醇脱水,再依次经体积梯度比1∶2、1∶1、2∶1的二甲苯无水乙醇混合液和纯二甲苯透明后,浸蜡3 d,使石蜡缓慢进入材料中,将材料包埋至蜡块中。使用Leica转轮式切片机(RM2235)切片,用苏木精染色后封片。

    • 以野生型龙葵盛花期花苞的cDNA为模板,克隆得到2条SnUFO2序列,都含有F-box结构域。一条序列与转录组测序结果一致,为龙葵中SnUFO2基因,编码456个氨基酸;另一条序列为短截版的SnUFO2基因,该基因在1 294~1 295 bp处有1个碱基G的插入,导致翻译提前终止,编码433个氨基酸,记为SnUFO2*。将SnUFO2*基因、全长SnUFO2基因和不同物种中UFO的同源基因构建系统进化树。SnUFO2*、SnUFO2基因和番茄、辣椒Capsicum annuum和矮牵牛Petunia × hybrida中的UFO基因在同一进化分支,同源关系较近,而与水稻Oryza sativa,拟南芥中的UFO基因同源关系较远(图1A)。

      图  1  SnUFO2*系统发育树分析及Motif分析

      Figure 1.  SnUFO2* phylogenetic tree analysis and Motif analysis

      利用MEME软件对SnUFO2*和SnUFO2蛋白进行Motif预测发现,这些蛋白相似性极高,预测到高度相似的Motif可能行使UFO蛋白最保守的功能(图1B)。SnUFO2*与其他UFO蛋白相比,Motif 8的缺失可能导致该基因的功能与其他物种中UFO基因的功能存在差异。通过氨基酸序列比对发现:SnUFO2*C末端比SnUFO2基因少了23个氨基酸,这段序列在茄科物种中高度保守,可能影响龙葵正常的花发育进程(图2)。

      图  2  龙葵SnUFO2*氨基酸序列比对

      Figure 2.  Amino acid sequence alignment of S. nigrum SnUFO2*

    • UFO基因是重要的花器官特征基因,在花发育初期发挥作用。为了探究SnUFO2*基因在龙葵营养器官及生殖器官中的表达水平,提取盛花期的根、茎、叶和花苞进行RT-qPCR分析。以龙葵APRT为内参基因,RT-qPCR结果表明:SnUFO2*在根、茎、叶中的表达量低,在花苞中相对表达量较高,推测SnUFO2*基因可能主要参与花器官发育(图3)。

      图  3  野生型龙葵中SnUFO2*不同组织部位表达量分析

      Figure 3.  Expression analysis of SnUFO2* in different tissues of wild-type S. nigrum

    • 为探究龙葵C末端缺失的SnUFO2*基因对龙葵花发育的影响,构建了SnUFO2*的表达载体,将其转入龙葵植株中,经含有卡那霉素抗性的培养基筛选后,获得40个T0代独立抗性株系,经PCR鉴定共获得31个转基因阳性株系。选择表型明显的不同株系转基因植株进行分析,转基因植株的根、茎和叶等未观察到明显变化(图4A),而花器官发育异常:野生型龙葵花盛开后,花瓣呈白色,花瓣基部相连,雄蕊紧靠雌蕊生长于花中心(图4C);弱表型转基因SnUFO2-30株系的花部分花瓣中部形成绿色条纹状组织,偶尔形成萼片状花瓣,花瓣基部裂口变大,雄蕊花药未紧靠雌蕊,杂乱分布于四周(图4B和C);强表型SnUFO2-10株系的花瓣完全萼片化,这类花最终不能形成正常的果实和种子(图4A~C)。

      图  4  35S::SnUFO2* 转基因植株表型图

      Figure 4.  Phenotypic map of 35S::SnUFO2* transgenic plants

    • 为了进一步确定转基因植株花内部结构及其细胞变化,通过对野生型和SnUFO2-10转基因植株的花苞进行石蜡切片表明:野生型株系的花苞由外到内依次存在萼片、花瓣、雄蕊和雌蕊;SnUFO2-10株系花苞生成萼片状花瓣,雄蕊缺失,心皮发育异常,没有花柱和柱头产生,偶尔在发育中的心皮两侧观察到胚珠的产生(图5)。

      图  5  野生型及35S::SnUFO2*转基因株系花苞石蜡切片

      Figure 5.  Paraffin sections of flower buds of wild-type and 35S::SnUFO2 * transgenic lines

    • 本研究克隆了1条短截版的SnUFO2基因,探究C端序列的完整性对龙葵花发育的影响。生物信息学分析发现:SnUFO2*基因属于F-box基因家族,且C末端缺失的序列可能具有保守的功能。F-box蛋白家族通常以SCF复合体的形式参与植物各项生命活动。过往研究认为F-box蛋白的N端与SKP1类基因结合,形成SCF复合体,而C端与靶蛋白结合,通过泛素链引导至26S蛋白酶体从而降解结合蛋白[3]。基于C端序列在F-box基因中的重要作用推测,SnUFO2* C末端23个保守的氨基酸缺失可能会影响泛素化过程。

      UFO及其同源基因已被证明在植物花发育过程中发挥作用[7-15]。通过RT-qPCR分析发现:SnUFO2*基因在龙葵的根、茎和叶中表达水平较低,而在花苞中表达量较高,推测该基因和其他UFO基因一样在花发育过程中发挥作用。于是构建SnUFO2*超表达载体并将其转入龙葵中。在矮牵牛中过表达DOUBLE TOP(DOT)基因会导致植株矮化,形成一朵单花[20]。然而形态学观察发现:35S::SnUFO2*转基因植株未出现矮化表型,根、茎和叶也无明显变化,但是花器官发生明显变化,萼片内侧的花瓣、雄蕊和雌蕊都被萼片状的器官代替。这与C末端缺失的UFO基因突变体表型相似,在拟南芥ufo-2突变体中,UFO基因翻译提前终止,编码262个氨基酸,产生了强烈的表型变化:生成萼片状花瓣、花丝及心皮状结构[21]。在豌豆突变体,stp-4中,STP基因只编码了252个氨基酸,导致豌豆花缺少花瓣和雄蕊,且有次生花产生[15]。黄瓜Cucumis sativus ufo突变体中,其花瓣的位置产生了叶状器官,雄蕊发育不正常[22]。以上研究表明:UFO基因的C末端对该基因的功能具有重要作用,虽然不同C末端缺失突变体表型不完全相同,但这可能与该基因短截的位点不同有关,也可能与物种特性有关。

      花发育是一个受多基因调控的复杂生理过程,需要相关花分生组织特征基因和花器官特征基因的共同作用。SnUFO2-10花苞的石蜡切片结果显示:在4轮花器官形成过程中,除最外轮萼片部分形成正常外,花瓣萼片化,花分生组织不确定导致内轮不断产生增殖的萼片状器官。缺少C末端的 ufo突变体的共同特征为花瓣和雄蕊的缺失或是畸形发育,例如拟南芥ufo-2花瓣萼片化及雄蕊数量减少,豌豆stp突变体表现为花瓣向萼片转化[15, 21]。其次是心皮发育异常或花分生组织的不确定性,例如金鱼草fimbriata620 (fim620)突变体产生的侧生花及花的萼片数目不确定和百脉根 pfo突变体产生的不断增殖的萼片状器官[14, 23]。这些表型的出现与花器官特征基因中的B类和C类基因有关,因此推测UFO基因C端序列的缺失对该基因的功能造成影响,从而直接或间接影响B类和C类基因的正常表达。过往研究表明:SCFUFO可能促进LFY基因的转录活性,且UFO基因能与LFY共同促进B、C类基因的表达[11-12, 20-21]。我们认为:SnUFO2*可能通过SCF复合体的形式,影响LFY基因的表达进而促进相关花同源异型基因的表达,然而SnUFO2*基因C末端序列的缺失影响了SCF复合体的功能,从而影响4轮花器官的正常发育。转基因植株形成的萼片状花与lfy突变体表型相似,间接证明了这种猜想[11]

      综上所述,不仅是UFO基因的F-box结构域对其功能具有重要作用,C端序列的完整性对基因功能也极其重要。之后的研究中,观察全长SnUFO2转基因植株表型的变化,尤其是花器官发育变化,对深入探究UFO基因的功能是必要的。

参考文献 (23)

目录

/

返回文章
返回