本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。
矿物调理剂对丘陵红壤天目小香薯产量和酶生态化学计量特征的影响
doi: 10.11833/j.issn.2095-0756.20220487
Effects of mineral conditioner on the yield of sweet potato and ecoenzymatic stoichiometry in a hilly red soil
-
摘要:
目的 采用田间小区试验研究施用矿物调理剂对天目小香薯Ipomoea batatas产量、土壤微生物生物量、酶活性及生态化学计量特征的短期影响,探明影响土壤微生物养分限制的主要因素,为改善南方丘陵红壤肥力提供理论依据。 方法 设置空白对照(ck),以白云石、钾长石为主要原料制备的矿物调理剂3 t·hm−2(W1)和6 t·hm−2(W2)2个处理。于香薯收获期测定产量和地上部生物量、土壤化学性质及碳、氮、磷循环相关酶活性。 结果 与ck相比,矿物调理剂显著降低了土壤交换性酸(P<0.05),且W2处理显著提高了土壤pH、碱解氮和有效磷质量分数(P<0.05),但对天目小香薯产量无显著影响。相比ck,W1处理显著提高了土壤微生物生物量氮(MBN) 91.1%(P<0.05),W2处理提高了微生物生物量碳(MBC) 67.1%(P<0.05),且两者均显著提高了微生物生物量氮磷比(MBN/MBP)(P<0.05),分别提高了148.2%和131.8%。相比ck,W1和W2处理均显著降低了酸性磷酸酶活性(P<0.05),分别降低了31.9%和45.4%,且W2处理显著降低了亮氨酸氨基肽酶活性(52.4%,P<0.05)。但两者对β-葡萄糖苷酶、纤维二糖水解酶和β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)无显著影响。土壤酶生态化学计量特征分析发现:W2处理显著提高了酶化学计量的向量长度(19.7%,P<0.05),显著降低了向量角度(10.5%,P<0.05),表明施用高量矿物调理剂提高了MBC限制,而缓解了MBP限制。冗余分析表明:土壤pH、碱解氮、MBC、MBN是影响土壤酶活性及其化学计量特征的主要因子。 结论 施用矿物调理剂短期内可有效降低土壤酸度,增加速效养分含量,缓解土壤微生物磷限制,从而有助于降低南方丘陵红壤磷限制对作物生长的影响。图3表2参32 Abstract:Objective With a field survey, this study is aimed to investigate the responses of sweet potato (Ipomoea batatas) yield, soil microbial biomass, enzyme activity and stoichiometry to mineral conditioner application and determine the main factors affecting the status of soil microbial nutrient limitation so as to provide a theoretical basis for improving the fertility of hilly red soil in Southern China. Method With a non-amended control (ck), a mineral conditioner amendment which was prepared from a mixture of dolomite and potassium feldspar, was applied at 3 t·hm−2 (W1) and 6 t·hm−2 (W2), respectively. Result Compared with ck, the application of mineral conditioner significantly decreased soil exchangeable acid content(P<0.05); The W2 treatment significantly increased soil pH, available nitrogen (N) and available phosphorus (P) contents(P<0.05), but had no significant effect on the yield of sweet potato; Compared with ck, W1 and W2 significantly increased soil microbial biomass nitrogen (MBN) and carbon (MBC) (91.1% and 67.1%, respectively, P<0.05), while both of them increased the ratio of microbial biomass nitrogen/phosphorus ratio (MBN/MBP) (148.2% and 131.8%, respectively, P<0.05); Compared with ck, W1 and W2 significantly reduced the activity of acid phosphatase (by 31.9% and 45.4%, respectively, P<0.05), and W2 treatment significantly reduced the activity of leucine aminopeptidase (by 52.4%, P<0.05), but they had no significant effect on the activities of β-glucosidase, cellobiohydrolase and β-1,4-N-acetylglucosaminidase; Soil enzymatic stoichiometry showed that W2 significantly increased the vector length (by 19.7%, P<0.05) and reduced the vector angle (by 10.5%, P<0.05), indicating that the high amendment rate of mineral conditioner increased microbial C limitation and alleviated their P limitation. As was shown by redundant analysis, soil pH, available N, MBC and MBN were the main factors affecting soil enzyme activity and its stoichiometry. Conclusion The application of mineral conditioner can effectively reduce soil acidity, increase the available nutrient content, and alleviate soil microbial P limitation, thereby helping to potentially reduce the P limitation to crop growth in hilly red soils from Southern China. [Ch, 3 fig. 2 tab. 32 ref.] -
Key words:
- mineral conditioner /
- red soil /
- soil microorganisms /
- soil enzymes /
- Ipomoea batatas
-
表 1 不同处理土壤化学性质指标
Table 1. Soil chemical properties under different treatments
处理 pH SOC/
(g·kg−1)TP/
(g·kg−1)TN/
(g·kg−1)DOC/
(mg·kg−1)DN/
(mg·kg−1)AK/
(mg·kg−1)AP
(mg·kg−1)ck 5.42±0.06 b 6.90±1.34 a 0.60±0.07 a 0.77±0.01 ab 201.07±8.74 a 93.53±5.85 a 105.26±22.54 a 2.53±0.44 b W1 6.10±0.22 ab 8.86±1.92 a 0.63±0.11 a 0.84±0.03 a 216.33±15.28 a 91.53±5.05 a 79.49±12.94 a 2.92±0.10 ab W2 6.38±0.46 a 8.07±1.03 a 0.57±0.07 a 0.76±0.04 b 202.67±27.78 a 93.20±4.91 a 81.45±16.41 a 3.56±0.42 a 处理 AN /
(mg·kg−1)C/N C/P N/P 交换性酸/
(cmol·kg−1)交换性H+/
(cmol·kg−1)交换性Al3+/
(cmol·kg−1)ck 162.45±26.22 b 9.14±1.72 a 11.85±2.39 a 1.30±0.15 a 0.79±0.19 a 0.52±0.16 a 0.28±0.05 a W1 202.10±12.25 ab 9.97±2.08 a 13.04±0.74 a 1.36±0.24 a 0.34±0.15 b 0.22±0.08 b 0.12±0.07 b W2 240.86±20.28 a 10.80±1.02 a 14.97±3.41 a 1.37±0.21 a 0.26±0.06 b 0.16±0.01 b 0.11±0.07 b 说明:SOC为土壤有机碳;TP为全磷;TN为全氮;DOC为可溶性有机碳;DN为可溶性氮;AK为速效钾;AP为有效磷;AN为碱解氮; C/N表示SOC/TN;C/P表示SOC/TP;N/P表示TN/TP;同列不同小写字母表示不同处理间差异显著(P<0.05) 表 2 不同处理天目小香薯产量和地上部生物量
Table 2. Sweet potato yield and aboveground biomass under different treatments
处理 产量/(t·hm−2) 地上部生物量/(t·hm−2) 藤长/m 地上部/产量 ck 25.77±1.78 a 2.94±1.15 a 1.56±0.06 b 0.12±0.05 a W1 28.67±0.96 a 3.19±0.11 a 2.16±0.31 a 0.11±0.01 a W2 28.46±2.21 a 2.55±0.89 a 2.18±0.17 a 0.09±0.04 a 说明:同列不同小写字母表示不同处理间差异显著(P<0.05) -
[1] GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands [J]. Science, 2010, 327(5968): 1008 − 1010. doi: 10.1126/science.1182570 [2] 王小兵, 骆永明, 李振高, 等. 长期定位施肥对亚热带丘陵地区红壤旱地质量的影响Ⅰ. 酸度[J]. 土壤学报, 2011, 48(1): 98 − 102. doi: 10.11766/trxb200909280434 WANG Xiaobing, LUO Yongming, LI Zhengao, et al. Effect of long-term stationary fertilization on upland red soil quality in subtropical hilly regions Ⅰ. acidity [J]. Acta Pedologica Sinica, 2011, 48(1): 98 − 102. doi: 10.11766/trxb200909280434 [3] MOORHEAD D L, SINSABAUGH R L, HILL B H, et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics [J]. Soil Biology and Biochemistry, 2016, 93: 1 − 7. doi: 10.1016/j.soilbio.2015.10.019 [4] CUI Yongxing, BING Haijian, FANG Linchuan, et al. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems [J]. Plant and Soil, 2021, 458(1/2): 7 − 20. [5] SINSABAUGH R L, FOLLSTAD SHAH J J, HILL B H, et al. Ecoenzymatic stoichiometry of stream sediments with comparison to terrestrial soils [J]. Biogeochemistry, 2012, 111(1/3): 455 − 467. [6] SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 2009, 462(7274): 795 − 798. doi: 10.1038/nature08632 [7] 许淼平, 任成杰, 张伟, 等. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J]. 应用生态学报, 2018, 29(7): 2445 − 2454. doi: 10.13287/j.1001-9332.201807.041 XU Miaoping, REN Chengjie, ZHANG Wei, et al. Responses mechanism of C : N : P stoichiometry of soil microbial biomass and soil enzymes to climate change [J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2445 − 2454. doi: 10.13287/j.1001-9332.201807.041 [8] 顾建强, 马闪闪, 李立增, 等. 八种肥料对小番薯生长性状及产量的影响[J]. 南方农业, 2020, 14(31): 15 − 18. doi: 10.19415/j.cnki.1673-890x.2020.31.004 GU Jianqiang, MA Shanshan, LI Lizeng, et al. Effects of eight kinds of fertilizers on growth traits and yield of sweet potato [J]. South China Agriculture, 2020, 14(31): 15 − 18. doi: 10.19415/j.cnki.1673-890x.2020.31.004 [9] 龚玲婷, 石林, 蔡如梦. 矿物质调理剂对土壤养分含量及植物营养吸收的影响[J]. 土壤, 2019, 51(5): 916 − 922. doi: 10.13758/j.cnki.tr.2019.05.011 GONG Lingting, SHI Lin, CAI Rumeng. Effects of mineral conditioner on soil nutrient contents and nutrient absorption by lettuce [J]. Soils, 2019, 51(5): 916 − 922. doi: 10.13758/j.cnki.tr.2019.05.011 [10] SHI Renyong, LI Jiuyu, XU Renkou, et al. Ameliorating effects of individual and combined application of biomass ash, bone meal and alkaline slag on acid soils [J]. Soil and Tillage Research, 2016, 162: 41 − 45. doi: 10.1016/j.still.2016.04.017 [11] 蒙园园, 石林. 矿物质调理剂中铝的稳定性及其对酸性土壤的改良作用[J]. 土壤, 2017, 49(2): 345 − 349. doi: 10.13758/j.cnki.tr.2017.02.020 MENG Yuanyuan, SHI Lin. Stability of aluminum in mineral conditioners and amelioration on acid soil [J]. Soils, 2017, 49(2): 345 − 349. doi: 10.13758/j.cnki.tr.2017.02.020 [12] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU Rukun. Methods of Soil Agricultural Chemical Analysis [M]. Beijing: China Agricultural Science and Technology Press, 2000. [13] WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction : an automated procedure [J]. Soil Biology and Biochemistry, 1990, 22(8): 1167 − 1169. doi: 10.1016/0038-0717(90)90046-3 [14] MARTIN J K, CORRELL R L. Measurement of microbial biomass phosphorus in rhizosphere soil [J]. Plant and Soil, 1989, 113(2): 213 − 221. doi: 10.1007/BF02280183 [15] SAIYA-CORK K R, SINSABAUGH R L, ZAK D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil [J]. Soil Biology and Biochemistry, 2002, 34(6): 1309 − 1315. doi: 10.1016/S0038-0717(02)00074-3 [16] de VARGAS J P R, dos SANTOS D R, BASTOS M C, et al. Application forms and types of soil acidity corrective: changes in depth chemical attributes in long term period experiment [J]. Soil and Tillage Research, 2019, 185: 47 − 60. doi: 10.1016/j.still.2018.08.014 [17] 李昂, 王旭, 范洪黎. 4种土壤调理剂改良红壤铝毒害的效果研究[J]. 中国土壤与肥料, 2014(4): 7 − 11. doi: 10.11838/sfsc.20140402 LI Ang, WANG Xu, FAN Hongli. Effects of four soil conditioners on alleviating aluminum toxicity in acid red soil [J]. Soil and Fertilizer Sciences in China, 2014(4): 7 − 11. doi: 10.11838/sfsc.20140402 [18] LEHMANN J, da SILVA J P Jr, STEINER C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments [J]. Plant and Soil, 2003, 249(2): 343 − 357. doi: 10.1023/A:1022833116184 [19] LIU Jie, SCHULZ H, BRANDL S, et al. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions [J]. Journal of Plant Nutrition and Soil Science, 2012, 175(5): 698 − 707. doi: 10.1002/jpln.201100172 [20] CLEVELAND C C, TOWNSEND A R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere [J]. Proceedings of the National Academy of Sciences, 2006, 103(27): 10316 − 10321. doi: 10.1073/pnas.0600989103 [21] 包骏瑶, 赵颖志, 严淑娴, 等. 不同农林废弃物生物质炭对雷竹林酸化土壤的改良效果[J]. 浙江农林大学学报, 2018, 35(1): 43 − 50. doi: 10.11833/j.issn.2095-0756.2018.01.006 BAO Junyao, ZHAO Yingzhi, YAN Shuxian, et al. Soil amelioration with biochars pyrolzyed from different feedstocks of an acidic bamboo (Phyllostachys violascens) plantation [J]. Journal of Zhejiang A&F University, 2018, 35(1): 43 − 50. doi: 10.11833/j.issn.2095-0756.2018.01.006 [22] 李致博. 土壤酸化对养分淋失、微生物多样性及柑橘生长的影响[D]. 福州: 福建农林大学, 2020. LI Zhibo. Effects of Soil Acidification on Nutrient Leaching, Microbial Diversity and Citrus Growth [D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. [23] STEVENS C J, DISE N B, MOUNTFORD J W, et al. Impact of nitrogen deposition on the species richness of grasslands [J]. Science, 2004, 303(5665): 1876 − 1879. doi: 10.1126/science.1094678 [24] SUDING K N, COLLINS S L, GOUGH L, et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization [J]. Proceedings of the National Academy of Sciences, 2005, 102(12): 4387 − 4392. doi: 10.1073/pnas.0408648102 [25] CZIMCZIK C I, MASIELLO C A. Controls on black carbon storage in soils [J/OL]. Global Biogeochemical Cycles, 2007, 21(3), GB3005[2022-07-02]. doi: 10.1029/2006GB002798. [26] 喻岚晖, 王杰, 廖李容, 等. 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素[J]. 草地学报, 2020, 28(6): 1702 − 1710. YU Lanhui, WANG Jie, LIAO Lirong, et al. Soil microbial biomass, enzyme activities and ecological stoichiometric characteristics and influencing factors along degraded meadows on the Qinghai-Tibet Plateau [J]. Acta Agrestia Sinica, 2020, 28(6): 1702 − 1710. [27] 刘玉荣, 贾双勤, 强生军, 等. 钾肥在旱地马铃薯栽培技术中的应用研究[J]. 中国农机化学报, 2022, 43(2): 121 − 126. LIU Yurong, JIA Shuangqin, QIANG Shengjun, et al. Application of potassic fertilizer in potato cultivation in dryland [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 121 − 126. [28] SPEIR T W, COWLING J C. Phosphatase activities of pasture plants and soils: relationship with plant productivity and soil P fertility indices [J]. Biology and Fertility of Soils, 1991, 12(3): 189 − 194. doi: 10.1007/BF00337200 [29] ZHANG Wei, XU Yadong, GAO Dexin, et al. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China [J]. Soil Biology and Biochemistry, 2019, 134: 1 − 14. doi: 10.1016/j.soilbio.2019.03.017 [30] SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale [J]. Ecology Letters, 2008, 11(11): 1252 − 1264. doi: 10.1111/j.1461-0248.2008.01245.x [31] REED S C, VITOUSEK P M, CLEVELAND C C. Are patterns in nutrient limitation belowground consistent with those aboveground: results from a 4 million year chronosequence [J]. Biogeochemistry, 2011, 106(3): 323 − 336. doi: 10.1007/s10533-010-9522-6 [32] 曾泉鑫, 张秋芳, 林开淼, 等. 酶化学计量揭示5年氮添加加剧毛竹林土壤微生物碳磷限制[J]. 应用生态学报, 2021, 32(2): 521 − 528. doi: 10.13287/j.1001-9332.202102.038 ZENG Quanxin, ZHANG Qiufang, LIN Kaimiao, et al. Enzyme stoichiometry evidence revealed that five years nitrogen addition exacerbated the carbon and phosphorus limitation of soil microorganisms in a Phyllostachys pubescens forest [J]. Chinese Journal of Applied Ecology, 2021, 32(2): 521 − 528. doi: 10.13287/j.1001-9332.202102.038 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220487

计量
- 文章访问数: 16
- 被引次数: 0