留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杨树人工林土壤丛枝菌根真菌群落对氮添加的季节性动态响应

彭思利 张鑫 武仁杰 蔡延江 邢玮 葛之葳 毛岭峰

彭思利, 张鑫, 武仁杰, 蔡延江, 邢玮, 葛之葳, 毛岭峰. 杨树人工林土壤丛枝菌根真菌群落对氮添加的季节性动态响应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220640
引用本文: 彭思利, 张鑫, 武仁杰, 蔡延江, 邢玮, 葛之葳, 毛岭峰. 杨树人工林土壤丛枝菌根真菌群落对氮添加的季节性动态响应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220640
PENG Sili, ZHANG Xin, WU Renjie, CAI Yanjiang, XING Wei, GE Zhiwei, MAO Lingfeng. Seasonal dynamic responses of soil arbuscular mycorrhizal fungal community to nitrogen additions in a poplar plantation[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220640
Citation: PENG Sili, ZHANG Xin, WU Renjie, CAI Yanjiang, XING Wei, GE Zhiwei, MAO Lingfeng. Seasonal dynamic responses of soil arbuscular mycorrhizal fungal community to nitrogen additions in a poplar plantation[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220640

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

杨树人工林土壤丛枝菌根真菌群落对氮添加的季节性动态响应

doi: 10.11833/j.issn.2095-0756.20220640
基金项目: 江苏省2022年度碳达峰碳中和科技创新专项资金项目(BE2022305);江苏省科技厅社会发展面上项目(BE2022792);江苏省林业科技创新与推广项目(LYKJ〔2021〕25);国家自然科学基金资助项目(41601254,32271712)
详细信息
    作者简介: 彭思利(ORCID: 0000-0001-8118-9287),从事土壤生态学研究,E-mail: pengsili@njfu.edu.cn
    通信作者: 毛岭峰(ORCID: 0000-0002-2884-135X),教授,博士生导师,从事森林生态学研究。E-mail: maolingfeng2008@163.com
  • 中图分类号: S718.5

Seasonal dynamic responses of soil arbuscular mycorrhizal fungal community to nitrogen additions in a poplar plantation

  • 摘要:   目的  探究杨树Populus spp.人工林土壤丛枝菌根(arbuscular mycorrhizal,AM)真菌群落结构和多样性对氮添加的季节动态响应及其驱动因素。  方法  以江苏省东台林场杨树为对象,研究5种氮添加水平(0、5、10、15和30 g·m−2·a−1)处理6 a后土壤理化性质、AM真菌群落结构和多样性随季节的动态变化,并分析了AM真菌群落特征与土壤环境因子的关系。  结果  ①高通量测序共获得AM真菌有效序列1307513条,196个分类操作单元(OTU)分属于4目8科10属,其中球囊霉属Glomus和多胞囊霉属Diversispora相对丰度之和平均达99.3%;②氮添加处理对AM真菌多样性指数影响不显著,但随着氮添加水平的增加多胞囊霉属的相对丰度逐渐降低,其中高氮(30 g ·m−2·a−1)处理球囊霉属的相对丰度显著( P <0.05)高于低氮处理(5和10 g·m−2·a−1);③季节对AM真菌群落结构(基于OTUs,r=0.695)及Chao指数、Simpson指数均有显著影响,且秋季和春季的AM真菌多样性指数均显著高于夏季(P<0.01);④冗余分析结果表明:土壤pH、总磷和总氮等9个环境因子对AM真菌群落组成变化的解释量为57.6%(P=0.001),其中AM真菌群落组成与土壤温度的相关性最大(R2=0.766),另外群落组成和多样性指数均与pH、总磷、总碳和铵态氮有显著相关关系(P<0.05)。  结论  氮添加下,杨树人工林土壤AM真菌群落具有季节性响应,土壤温度、pH、总磷、总碳和铵态氮是影响AM真菌群落动态变化的主要驱动因素。图2表4参34
  • 图  1  不同处理AM真菌群落组成(基于OTUs) NMDS排序图

    Figure  1  Non-metric multidimensional scaling (NMDS) of soil AM fungal community compositions (based on the presence of OTUs) with different treatments

    图  2  AM真菌群落组成与土壤理化性质的冗余分析

    Figure  2  RDA for soil AM fungal community compositions and soil physicochemical properties

    表  1  供试土壤理化性质

    Table  1.   Soil physicochemical properties in the poplar plantations

    季节氮添加pH总氮/
    (g·kg−1)
    总磷/
    (mg·kg−1)
    总碳/
    (g·kg−1)
    碳氮比速效磷/
    (mg·kg−1)
    铵态氮/
    (mg·kg−1)
    硝态氮/
    (mg·kg−1)
    湿度/%温度/℃
    夏季N08.29±0.07 ab1.73±0.06 b923±6 a18.1±1.4 a10.5±1.1 a36.8±11.6 a5.98±0.56 b2.48±0.48 d20.1±0.2 a20.2±0.1 a
    N18.19±0.02 b1.83±0.12 b893±17 a16.4±1.6 ab9.0±1.5 ab37.2±22.7 a7.45±0.24 a7.85±0.54 b20.5±0.5 a20.2±0.2 a
    N28.31±0.03 a2.27±0.15 a878±10 a17.4±1.3 ab7.7±0.6 b28.4±3.9 a6.20±0.38 b4.06±0.33 c21.0±0.6 a20.2±0.3 a
    N38.20±0.07 ab1.97±0.40 ab893±13 a15.0±1.7 b7.7±0.8 b43.3±3.3 a7.41±0.49 a3.61±0.21 c21.0±0.5 a20.2±0.1 a
    N47.99±0.08 c1.97±0.06 ab884±50 a15.4±0.4 b7.8±0.4 b44.5±1.0 a7.42±0.50 a25.25±0.41 a20.6±0.5 a20.2±0.1 a
    秋季N08.65±0.02 a2.13±0.45 a778±23 a17.4±1.2 b8.5±2.4 a13.8±5.7 a5.43±0.42 a12.38±0.97 b17.7±0.2 a17.3±0.2 a
    N18.55±0.03 b2.40±0.50 a808±25 a17.2±0.7 b7.4±1.4 a18.4±4.8 a5.56±0.21 a2.50±0.49 c17.7±0.6 a17.3±0.3 a
    N28.43±0.02 c2.40±0.46 a772±64 a15.2±1.0 c6.5±1.4 a13.4±1.5 a5.28±0.40 a10.52±1.52 c17.9±0.7 a17.3±0.1 a
    N38.55±0.04 b3.33±1.64 a806±23 a17.9±0.4 b6.2±2.7 a13.6±6.7 a3.95±0.30 b10.80±1.98 c17.8±0.8 a17.3±0.2 a
    N48.37±0.03 d3.63±1.40 a792±22 a19.7±1.2 a5.9±2.0 a13.9±1.8 a5.45±0.20 a58.91±2.09 a17.6±0.5 a17.3±0.4 a
    冬季N08.46±0.03 bc1.33±0.21 a757±8 a16.5±1.8 a12.4±0.7 a19.0±3.6 a8.86±0.61 a11.83±0.09 b33.9±0.2 a5.5±0.1 a
    N18.51±0.03 ab1.37±0.25 a705±6 bc17.1±1.4 a12.7±1.5 a19.2±1.7 a8.14±0.19 b11.86±0.41 b33.9±0.4 a5.5±0.1 a
    N28.55±0.04 a1.40±0.10 a693±22 c16.4±0.5 a11.8±0.8 a19.4±3.6 a7.46±0.19 c11.83±0.19 b33.8±0.2 a5.5±0.1 a
    N38.42±0.05 c1.43±0.15 a727±9 b15.2±1.0 a10.6±0.4 a20.6±4.8 a7.75±0.05 bc11.66±0.73 b34.0±0.2 a5.5±0.0 a
    N48.46±0.04 bc1.47±0.21 a708±9 bc14.9±0.8 a10.4±1.9 a22.1±5.6 a6.73±0.23 d14.72±0.19 a34.0±0.4 a5.6±0.1 a
    春季N08.54±0.06 bc1.40±0.00 bc647±10 a17.1±0.2 b12.2±0.1 ab21.8±4.3 a5.65±0.08 b1.10±0.24 a27.9±0.4 a14.6±0.1 a
    N18.62±0.01 a1.50±0.20 b558±147 a19.6±0.2 a13.2±1.9 a25.5±7.9 a7.47±0.79 a1.19±0.08 a27.8±0.6 a14.6±0.2 a
    N28.57±0.03 ab1.17±0.06 c639±12 a16.9±0.6 b14.5±0.5 a22.4±3.2 a5.17±0.14 b1.06±0.14 a27.7±0.6 a14.6±0.2 a
    N38.50±0.01 c1.50±0.17 b668±11 a18.6±1.2 ab12.6±2.4 a21.2±3.5 a5.51±0.22 b1.11±0.41 a27.3±0.5 a14.6±0.1 a
    N48.60±0.02 ab1.83±0.15 a673±1 a18.1±1.7 ab9.9±0.2 b19.8±2.5 a6.96±0.25 a1.53±0.07 a27.9±0.9 a14.6±0.1 a
    氮添加**nsnsns**ns****nsns
    季节********************
    氮添加×季节**nsns**nsns****nsns
      说明:表中数值为3个重复的平均值±标准差。同列不同小写字母表示同一季节下氮添加处理间差异显著(P<0.05)。ns表示差异不显著,*表示差异达5%显著水平,**表示差异达1%显著水平。
    下载: 导出CSV

    表  2  AM真菌群落丰富度和多样性指数

    Table  2.   Soil AM fungal community richness and diversity index

    处理Chao指数Shannon指数
    夏季秋季冬季春季夏季秋季冬季春季
    N0 90.1±2.6 a 105.0±10.7 a 68.5±2.2 a 94.9±16.2 a 2.58±0.23 a 3.20±0.04 a 2.78±0.36 a 3.12±0.10 a
    N1 76.0±11.7 a 98.4±14.8 a 78.4±3.9 a 93.8±7.5 a 2.63±0.51 a 3.22±0.08 a 3.00±0.06 a 2.86±0.05 c
    N2 73.5±11.3 a 89.3±11.4 a 77.2±15.9 a 77.3±5.5 a 2.65±0.58 a 2.84±0.80 a 2.88±0.25 a 2.90±0.15 bc
    N3 71.5±20.0 a 97.9±3.5 a 68.6±13.4 a 82.2±10.2 a 2.45±0.24 a 3.16±0.05 a 2.70±0.12 a 3.04±0.16 abc
    N4 74.3±19.6 a 101.4±18.6 a 67.2±2.7 a 91.7±4.9 a 2.24±0.40 a 2.92±0.48 a 2.83±0.21 a 3.10±0.05 ab
    氮添加 ns ns
    季节 ** **
    氮添加×季节 ns ns
      说明:表中数值为3个重复的平均值±标准差。同列不同小写字母表示同一季节下氮添加处理间差异显著(P<0.05)。ns表示差异不显著,*表示差异达5%显著水平,**表示差异达1%显著水平。
    下载: 导出CSV

    表  3  优势AM真菌(相对丰度≥0.05%)的相对丰度

    Table  3.   Relative abundances of the AM fungal groups (relative abundance ≥0.05%)

    季节氮添加优势AM真菌相对丰度/%
    球囊霉属
    Glomus
    多胞囊霉属
    Diversispora
    盾巨孢囊霉属
    Scutellospora
    球囊菌纲
    Glomeromycetes
    (未分类)
    多样孢囊霉科
    Diversisporaceae
    (未分类)
    原囊霉属
    Archaeospora
    其他
    夏季N089.6±4.9 a10.0±4.9 b0.090±0.078 a0.000±0.000 c0.027±0.029 a0.067±0.090 a0.157±0.271 a
    N176.3±5.7 b23.3±5.8 a0.223±0.387 a0.007±0.012 c0.133±0.154 a0.000±0.000 a0.000±0.000 a
    N285.8±6.3 a13.5±5.9 b0.550±0.470 a0.003±0.006 c0.043±0.006 a0.000±0.000 a0.030±0.052a
    N385.9±2.5 a13.3±2.9 b0.643±0.772 a0.080±0.070 b0.003±0.006 a0.040±0.069 a0.000±0.000 a
    N490.9±2.3 a8.8±2.3 b0.000±0.000 a0.213±0.025 a0.070±0.082 a0.053±0.051 a0.000±0.000 a
    秋季N088.9±0.4 a10.1±1.1 b0.757±1.25 a0.060±0.010 a0.030±0.026 a0.000±0.000 a0.123±0.205 a
    N174.7±8.6 b24.6±8.7 a0.100±0.173 a0.340±0.150 a0.160±0.156 a0.090±0.123 a0.090±0.147 a
    N291.1±5.9 a6.3±2.9 b1.763±2.470 a0.790±1.340 a0.057±0.029 a0.000±0.000 a0.000±0.000 a
    N389.1±3.2 a10.6±3.1 b0.063±0.110 a0.027±0.038 a0.123±0.021 a0.013±0.023 a0.007±0.006 a
    N489.9±0.9 a9.1±1.2 b0.070±0.113 a0.730±0.729 a0.127±0.110 a0.000±0.000 a0.033±0.049 a
    冬季N091.6±1.7 bc7.82±1.80 a0.233±0.404 a0.060±0.026 b0.000±0.000 a0.010±0.017 b0.317±0.107 a
    N195.7±1.2 ab4.25±1.21 bc0.000±0.000 a0.020±0.020 b0.007±0.006 a0.000±0.000 b0.010±0.017 b
    N293.1±2.7 b6.79±2.59 ab0.000±0.000 a0.077±0.098 b0.007±0.012 a0.057±0.049 a0.013±0.023 b
    N397.3±0.7 a1.88±0.26 c0.000±0.000 a0.793±0.435 a0.000±0.000 a0.000±0.000 b0.000±0.000 b
    N496.7±1.2 a3.29±1.18 bc0.000±0.000 a0.043±0.059 b0.007±0.012 a0.003±0.006 b0.000±0.000 b
    春季N083.0±1.5 ab16.4±1.4 ab0.127±0.219 a0.037±0.032 a0.190±0.329 a0.020±0.026 a0.173±0.300 a
    N183.6±5.6 ab15.7±5.3 ab0.203±0.352 a0.263±0.040 a0.057±0.051 a0.023±0.032 a0.137±0.237 a
    N274.0±2.0 b24.3±2.8 a0.893±1.030 a0.357±0.592 a0.067±0.076 a0.453±0.777 a0.000±0.000 a
    N382.6±9.5 ab16.2±8.5 ab0.000±0.000 a0.593±0.370 a0.537±0.657 a0.013±0.006 a0.010±0.017 a
    N488.1±4.6 a11.2±3.9 b0.430±0.745 a0.107±0.032 a0.060±0.072 a0.153±0.129 a0.000±0.000 a
    氮添加   ****nsnsnsns**
    季节    ****nsnsnsnsns
    氮添加×季节****nsnsnsnsns
      说明:表中数值为3个重复的平均值±标准差。同列不同小写字母表示同一季节下氮添加处理间差异显著(P<0.05)。ns表示差异不显著,*表示差异达5%显著水平,**表示差异达1%显著水平。
    下载: 导出CSV

    表  4  AM真菌群落Chao指数和Shannon指数与土壤理化性质间的相关分析(n=60)

    Table  4.   Correlation coefficients between AM fungal community Chao and Shannon indexes and soil physicochemical properties (n=60)

    指数pH总氮总磷总碳碳氮比速效磷铵态氮硝态氮湿度温度
    Chao指数 0.344** −0.090 −0.291* 0.505** 0.316* −0.190 −0.511** 0.110 −0.449** 0.325*
    Shannon指数 0.596** −0.396** −0.548** 0.271* 0.020 0.110 −0.390** −0.096 0.016 −0.149
      说明:*P<0.05; **P<0.01。
    下载: 导出CSV
  • [1] LIU Xuejun, ZHANG Ying, HAN Wenxuan, et al. Enhanced nitrogen deposition over China [J]. Nature, 2013, 494(7438): 459 − 462.
    [2] LIU Xuejun, DUAN Lei, MO Jiangming, et al. Nitrogen deposition and its ecological impact in China: an overview [J]. Environmental Pollution, 2011, 159(10): 2251 − 2264.
    [3] BOBBINK R, HICKS K, GALLOWAY J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis [J]. Ecological Applications, 2010, 20(1): 30 − 59.
    [4] STEVENS C J, DISE N B, MOUNTFORD J O, et al. Impact of nitrogen deposition on the species richness of grasslands [J]. Science, 2004, 303(5665): 1876 − 1879.
    [5] 李晓林, 冯固. 丛枝菌根生态生理[M]. 北京: 华文出版社, 2001: 1 − 358.

    LI Xiaolin, FENG Gu. Arbuscular Mycorrhizal Ecology and Physiology[M]. Beijing: Huawen Press, 2001: 1 − 358.
    [6] SMITH S E, READ D J. Mycorrhizal Symbiosis [M]. 3rd ed. New York: Academic Press, 2008: 1 − 89.
    [7] COTTON T E A. Arbuscular mycorrhizal fungal communities and global change: an uncertain future[J/OL]. FEMS Microbiology Ecology, 2018, 94(11): fiy179[2022-08-20]. doi:  10.1093/femsec/fiy179.
    [8] EGERTON-WARBURTON L M, JOHNSON N C, ALLEN E B. Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands [J]. Ecological Monographs, 2007, 77(4): 527 − 544.
    [9] van DIEPEN L T A, LILLESKOV E A, PREGITZER K S, et al. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests [J]. Ecosystems, 2010, 13(5): 683 − 695.
    [10] WILLIAMS A, MANOHARAN L, ROSENSTOCK N P, et al. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange [J]. New Phytologist, 2017, 213(2): 874 − 885.
    [11] MUELLER R C, BOHANNAN B J. Shifts in the phylogenetic structure of arbuscular mycorrhizal fungi in response to experimental nitrogen and carbon dioxide additions [J]. Oecologia, 2015, 179(1): 175 − 185.
    [12] HAN Yunfeng, FENG Jiguang, HAN Mengguang, et al. Responses of arbuscular mycorrhizal fungi to nitrogen addition: a meta-analysis [J]. Global Change Biology, 2020, 26(12): 7229 − 7241.
    [13] DUMBRELL A J, ASHTON P D, AZIZ N, et al. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing [J]. New Phytologist, 2011, 190(3): 794 − 804.
    [14] NEVILLE J, TESSIER J L, MORRISON I, et al. Soil depth distribution of ecto- and arbuscular mycorrhizal fungi associated with Populus tremuloides within a 3-year-old boreal forest clear-cut [J]. Applied Soil Ecology, 2002, 19(3): 209 − 216.
    [15] 方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报, 2008, 19(10): 2308 − 2316. doi:  10.13287/j.1001-9332.2008.0396

    FANG Shengzuo. Silviculture of poplar plantation in China: a review [J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2308 − 2316. doi:  10.13287/j.1001-9332.2008.0396
    [16] BIAN Haixue, GENG Qinghong, XIAO Hanran, et al. Fine root biomass mediates soil fauna community in response to nitrogen addition in poplar plantations (Populus deltoids) on the east coast of China[J/OL]. Forests, 2019, 10(2): 1 − 16[2022-08-20]. doi:  10.3390/f10020122.
    [17] YU Xingye, ZHU Yunjia, WANG Bo, et al. Effects of nitrogen addition on rhizospheric soil microbial communities of poplar plantations at different ages[J/OL]. Forest Ecology and Management, 2021, 494: 119328[2022-08-20]. doi:  10.1016/j.foreco.2021.119328.
    [18] 葛之葳, 彭塞, 许凯, 等. 短期氮添加对杨树人工林表层土壤可溶性有机碳的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(6): 23 − 27.

    GE Zhiwei, PENG Sai, XU Kai, et al. Effects of short term nitrogen addition on dissolved organic carbon in topsoil of poplar plantation [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(6): 23 − 27.
    [19] 郑丹楠, 王雪松, 谢绍东, 等. 2010年中国大气氮沉降特征分析[J]. 中国环境科学, 2014, 34(5): 1089 − 1097.

    ZHENG Dannan, WANG Xuesong, XIE Shaodong, et al. Simulation of atmospheric nitrogen deposition in China in 2010 [J]. China Environmental Science, 2014, 34(5): 1089 − 1097.
    [20] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 146 − 185.

    LU Rukun. Chemical Analyzing Method on Soil Agriculture[M]. Beijing: China Agriculture Science and Technology Press, 2000: 146 − 185.
    [21] LEE J, LEE S, YOUNG J P W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi [J]. FEMS Microbiology Ecology, 2008, 65(2): 339 − 349.
    [22] van GEEL M, BUSSCHAERT P, HONNAY O, et al. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing [J]. Journal of Microbiological Methods, 2014, 106: 93 − 100.
    [23] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology, 2009, 75(23): 7537 − 7541.
    [24] 王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录[J]. 菌物学报, 2017, 36(7): 820 − 850. doi:  10.13346/j.mycosystema.170078

    WANG Youshan, LIU Runjin. A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota [J]. Mycosystema, 2017, 36(7): 820 − 850. doi:  10.13346/j.mycosystema.170078
    [25] MAITRA P, ZHENG Yong, WANG Yonglong, et al. Phosphorus fertilization rather than nitrogen fertilization, growing season and plant successional stage structures arbuscular mycorrhizal fungal community in a subtropical forest [J]. Biology and Fertility of Soils, 2021, 57(5): 685 − 697.
    [26] 朱亮, 郭可馨, 蓝丽英, 等. 亚高山森林类型转换对土壤丛枝菌根真菌多样性的影响[J]. 生态学杂志, 2020, 39(12): 3943 − 3951. doi:  10.13292/j.1000-4890.202012.004

    ZHU Liang, GUO Kexin, LAN Liying, et al. Effects of the conversion of forest types on diversity of arbuscular mycorrhizal fungi in subalpine soil [J]. Chinese Journal of Ecology, 2020, 39(12): 3943 − 3951. doi:  10.13292/j.1000-4890.202012.004
    [27] TRESEDER K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies [J]. New Phytologist, 2004, 164(2): 347 − 355.
    [28] 蔺吉祥, 杨雨衡, 王英男, 等. 氮沉降对植物-丛枝菌根共生体影响的研究进展[J]. 草原与草坪, 2015, 35(3): 88 − 94. doi:  10.3969/j.issn.1009-5500.2015.03.018

    LIN Jixiang, YANG Yuheng, WANG Yingnan, et al. Research progress on effects of nitrogen deposition on symbiont of plant-arbuscular mycorrhizal [J]. Grassland and Turf, 2015, 35(3): 88 − 94. doi:  10.3969/j.issn.1009-5500.2015.03.018
    [29] TRESEDER K K, ALLEN E B, EGERTON-WARBURTON L M, et al. Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: a trait-based predictive framework [J]. Journal of Ecology, 2018, 106(2): 480 − 489.
    [30] CAMENZIND T, HEMPEL S, HOMEIER J, et al. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest [J]. Global Change Biology, 2014, 20(12): 3646 − 3659.
    [31] van DIEPEN L T A, LILLESKOV E A, PREGITZER K S. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests [J]. Molecular Ecology, 2011, 20(4): 799 − 811.
    [32] WEBER S E, DIEZ J M, ANDREWS L V, et al. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers [J]. Fungal Ecology, 2019, 40: 62 − 71.
    [33] MANDYAM K, JUMPPONEN A. Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment [J]. Mycorrhiza, 2008, 18(3): 145 − 155.
    [34] XIAO Dan, HE Xunyang, ZHANG Wei, et al. Diazotroph and arbuscular mycorrhizal fungal diversity and community composition responses to karst and non-karst soils [J/OL]. Applied Soil Ecology, 2022, 170: 104227[2022-08-20]. doi:  10.1016/j.apsoil.2021.104227.
  • [1] 张川英, 李婷婷, 龚笑飞, 潘江炎, 龚征宇, 潘军, 焦洁洁, 吴初平.  遂昌乌溪江流域山蜡梅生境群落特征与物种多样性 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20220570
    [2] 曹春婧, 何建龙, 王占军, 魏淑花.  宁夏不同区域欧李园昆虫群落多样性 . 浙江农林大学学报, 2021, 38(6): 1253-1260. doi: 10.11833/j.issn.2095-0756.20200774
    [3] 罗熳丽, 段均华, 姚恒, 卢昌泰, 肖玖金, 张健.  稻草不同还田量对土壤动物群落结构的影响 . 浙江农林大学学报, 2020, 37(1): 85-92. doi: 10.11833/j.issn.2095-0756.2020.01.011
    [4] 朱荣玮, 葛之葳, 阮宏华, 徐瑾, 彭思利.  外源氮输入下土壤有机碳与土壤微生物生物量碳分形特征 . 浙江农林大学学报, 2019, 36(4): 656-663. doi: 10.11833/j.issn.2095-0756.2019.04.004
    [5] 陈飞龙, 黄凤生, 夏俊勇, 王义平.  不同经营模式下山核桃林昆虫群落结构 . 浙江农林大学学报, 2019, 36(3): 429-436. doi: 10.11833/j.issn.2095-0756.2019.03.001
    [6] 吴世斌, 库伟鹏, 周小荣, 纪美芬, 吴家森.  浙江文成珍稀植物多脉铁木群落结构及物种多样性 . 浙江农林大学学报, 2019, 36(1): 31-37. doi: 10.11833/j.issn.2095-0756.2019.01.005
    [7] 王颖颖, 赵冰, 李莹.  丛枝菌根真菌对杜鹃花耐热性的影响 . 浙江农林大学学报, 2019, 36(4): 733-740. doi: 10.11833/j.issn.2095-0756.2019.04.013
    [8] 屈明华, 俞元春, 李生, 张金池.  丛枝菌根真菌对矿质养分活化作用研究进展 . 浙江农林大学学报, 2019, 36(2): 394-405. doi: 10.11833/j.issn.2095-0756.2019.02.022
    [9] 左政, 郑小贤.  不同干扰等级下常绿阔叶次生林林分结构及树种多样性 . 浙江农林大学学报, 2019, 36(1): 21-30. doi: 10.11833/j.issn.2095-0756.2019.01.004
    [10] 孙鹏跃, 徐福利, 王渭玲, 王玲玲, 牛瑞龙, 高星, 白小芳.  华北落叶松人工林地土壤养分与土壤酶的季节变化及关系 . 浙江农林大学学报, 2016, 33(6): 944-952. doi: 10.11833/j.issn.2095-0756.2016.06.004
    [11] 缪福俊, 蒋宏, 王宏虬, 原晓龙, 陈剑, 杨宇明, 王娟.  黄花杓兰菌根真菌rDNA ITS的多样性 . 浙江农林大学学报, 2015, 32(5): 815-820. doi: 10.11833/j.issn.2095-0756.2015.05.024
    [12] 王丽敏, 缪心栋, 严彩霞, 马凯, 马丹丹, 李根有.  浙江省小花花椒群落结构与物种多样性 . 浙江农林大学学报, 2013, 30(2): 215-219. doi: 10.11833/j.issn.2095-0756.2013.02.009
    [13] 余运威, 应叶青, 任丽萍, 胡加付, 赵阿勇.  浙江临安竹林土壤动物群落结构特征及多样性 . 浙江农林大学学报, 2012, 29(4): 581-587. doi: 10.11833/j.issn.2095-0756.2012.04.015
    [14] 魏琦, 楼炉焕, 冷建红, 包其敏, 钟潮亮, 沈年华.  毛枝连蕊茶群落结构与物种多样性 . 浙江农林大学学报, 2011, 28(4): 634-639. doi: 10.11833/j.issn.2095-0756.2011.04.018
    [15] 吴尚英, 张洋, 刘爱荣, 徐同.  红树林植物红海榄和秋茄的内生真菌多样性 . 浙江农林大学学报, 2010, 27(4): 489-493. doi: 10.11833/j.issn.2095-0756.2010.04.002
    [16] 沈年华, 万志洲, 汤庚国, 王春, 程红梅.  紫金山栓皮栎群落结构及物种多样性 . 浙江农林大学学报, 2009, 26(5): 696-700.
    [17] 何莹, 韦新良, 蔡霞, 李可追, 王珍.  生态景观林群落结构定量分析 . 浙江农林大学学报, 2007, 24(6): 711-718.
    [18] 李贵祥, 施海静, 孟广涛, 方向京, 柴勇, 和丽萍, 张正海, 杨永祥.  云南松原始林群落结构特征及物种多样性分析 . 浙江农林大学学报, 2007, 24(4): 396-400.
    [19] 蒋宗垲.  福建柏与杉木人工林细根氮磷养分现存量的动态变化 . 浙江农林大学学报, 2007, 24(1): 33-38.
    [20] 高志勤, 傅懋毅.  不同毛竹林土壤碳氮养分的季节变化特征 . 浙江农林大学学报, 2006, 23(3): 248-254.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220640

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023//1

计量
  • 文章访问数:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2023-04-10
  • 录用日期:  2023-04-10

杨树人工林土壤丛枝菌根真菌群落对氮添加的季节性动态响应

doi: 10.11833/j.issn.2095-0756.20220640
    基金项目:  江苏省2022年度碳达峰碳中和科技创新专项资金项目(BE2022305);江苏省科技厅社会发展面上项目(BE2022792);江苏省林业科技创新与推广项目(LYKJ〔2021〕25);国家自然科学基金资助项目(41601254,32271712)
    作者简介:

    彭思利(ORCID: 0000-0001-8118-9287),从事土壤生态学研究,E-mail: pengsili@njfu.edu.cn

    通信作者: 毛岭峰(ORCID: 0000-0002-2884-135X),教授,博士生导师,从事森林生态学研究。E-mail: maolingfeng2008@163.com
  • 中图分类号: S718.5

摘要:   目的  探究杨树Populus spp.人工林土壤丛枝菌根(arbuscular mycorrhizal,AM)真菌群落结构和多样性对氮添加的季节动态响应及其驱动因素。  方法  以江苏省东台林场杨树为对象,研究5种氮添加水平(0、5、10、15和30 g·m−2·a−1)处理6 a后土壤理化性质、AM真菌群落结构和多样性随季节的动态变化,并分析了AM真菌群落特征与土壤环境因子的关系。  结果  ①高通量测序共获得AM真菌有效序列1307513条,196个分类操作单元(OTU)分属于4目8科10属,其中球囊霉属Glomus和多胞囊霉属Diversispora相对丰度之和平均达99.3%;②氮添加处理对AM真菌多样性指数影响不显著,但随着氮添加水平的增加多胞囊霉属的相对丰度逐渐降低,其中高氮(30 g ·m−2·a−1)处理球囊霉属的相对丰度显著( P <0.05)高于低氮处理(5和10 g·m−2·a−1);③季节对AM真菌群落结构(基于OTUs,r=0.695)及Chao指数、Simpson指数均有显著影响,且秋季和春季的AM真菌多样性指数均显著高于夏季(P<0.01);④冗余分析结果表明:土壤pH、总磷和总氮等9个环境因子对AM真菌群落组成变化的解释量为57.6%(P=0.001),其中AM真菌群落组成与土壤温度的相关性最大(R2=0.766),另外群落组成和多样性指数均与pH、总磷、总碳和铵态氮有显著相关关系(P<0.05)。  结论  氮添加下,杨树人工林土壤AM真菌群落具有季节性响应,土壤温度、pH、总磷、总碳和铵态氮是影响AM真菌群落动态变化的主要驱动因素。图2表4参34

English Abstract

彭思利, 张鑫, 武仁杰, 蔡延江, 邢玮, 葛之葳, 毛岭峰. 杨树人工林土壤丛枝菌根真菌群落对氮添加的季节性动态响应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220640
引用本文: 彭思利, 张鑫, 武仁杰, 蔡延江, 邢玮, 葛之葳, 毛岭峰. 杨树人工林土壤丛枝菌根真菌群落对氮添加的季节性动态响应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220640
PENG Sili, ZHANG Xin, WU Renjie, CAI Yanjiang, XING Wei, GE Zhiwei, MAO Lingfeng. Seasonal dynamic responses of soil arbuscular mycorrhizal fungal community to nitrogen additions in a poplar plantation[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220640
Citation: PENG Sili, ZHANG Xin, WU Renjie, CAI Yanjiang, XING Wei, GE Zhiwei, MAO Lingfeng. Seasonal dynamic responses of soil arbuscular mycorrhizal fungal community to nitrogen additions in a poplar plantation[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220640

返回顶部

目录

    /

    返回文章
    返回