本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。
杨树人工林土壤丛枝菌根真菌群落对氮添加的季节性动态响应
doi: 10.11833/j.issn.2095-0756.20220640
Seasonal dynamic responses of soil arbuscular mycorrhizal fungal community to nitrogen additions in a poplar plantation
-
摘要:
目的 探究杨树Populus spp. 人工林土壤丛枝菌根(arbuscular mycorrhizal,AM)真菌群落结构和多样性对氮添加的季节动态响应及其驱动因素。 方法 以江苏省东台林场杨树为对象,研究5种氮添加水平(0、5、10、15和30 g·m−2·a−1)处理6 a后土壤理化性质、AM真菌群落结构和多样性随季节的动态变化,并分析了AM真菌群落特征与土壤环境因子的关系。 结果 ①高通量测序共获得AM真菌有效序列1307513条,196个分类操作单元(OTU)分属于4目8科10属,其中球囊霉属Glomus和多胞囊霉属Diversispora相对丰度之和平均达99.3%;②氮添加处理对AM真菌多样性指数影响不显著,但随着氮添加水平的增加多胞囊霉属的相对丰度逐渐降低,其中高氮(30 g ·m−2·a−1)处理球囊霉属的相对丰度显著( P <0.05)高于低氮处理(5和10 g·m−2·a−1);③季节对AM真菌群落结构(基于OTUs,r=0.695)及Chao指数、Simpson指数均有显著影响,且秋季和春季的AM真菌多样性指数均显著高于夏季(P<0.01);④冗余分析结果表明:土壤pH、总磷和总氮等9个环境因子对AM真菌群落组成变化的解释量为57.6%(P=0.001),其中AM真菌群落组成与土壤温度的相关性最大(R2=0.766),另外群落组成和多样性指数均与pH、总磷、总碳和铵态氮有显著相关关系(P<0.05)。 结论 氮添加下,杨树人工林土壤AM真菌群落具有季节性响应,土壤温度、pH、总磷、总碳和铵态氮是影响AM真菌群落动态变化的主要驱动因素。图2表4参34 Abstract:Objective The study aimed to investigate the effects of nitrogen addition and sampling season on soil arbuscular mycorrhizal (AM) fungal community structure and diversity in a poplar plantation, and clarify the driving factors. Method A field simulating experiment with five nitrogen addition levels (0, 5, 10, 15 and 30 g·m−2·a−1) was conducted in a poplar plantation in Dongtai Forest Farm, Jiangsu. After six years of continuous nitrogen additions, the dynamic changes of soil physicochemical properties, AM fungal community diversity and composition in four seasons (spring, summer, autumn and winter) were examined, and the relationships between the characteristics of AM fungal community and soil environmental factors were also analyzed. Result (1) A total of 1 307 513 high-quality AM fungal sequences were identified by high-throughput sequencing, and they were assigned to 196 OTUs, 4 orders, 8 families, and 10 genera. The dominated genera were Glomus and Diversispora, and the total average relative abundances of them reached to 99.3%. (2) Nitrogen addition had no significant effect on the AM fungal community structure and diversity. However, the relative abundance of Diversispora decreased significantly with the increase of nitrogen addition level, and the relative abundances of Glomus under high nitrogen addition (30 g·m−2·a−1) was significantly higher than under low nitrogen additions (5 and 10 g·m−2·a−1) (P<0.05). (3) Season had significant effects on the AM fungal community Chao index, Simpson index and community structure (based on OTUs, r=0.695), and the AM fungal community diversity indexes in autumn and spring were significantly higher than that in summer (P<0.01). (4) Redundancy analysis showed that nine environmental factors measured in this study explained 57.6% variance in the AM fungal community composition, passing the Monte Carlo test with 999 permutations (P=0.001). Among these factors, temperature had the greatest correlation with the AM fungal community composition (R2=0.766). Moreover, pH, total P, total C and NH4 +-N were significantly correlated with the AM fungal community composition and diversity (P<0.05). Conclusion Nitrogen addition and sampling season had effects on the AM fungal community. Temperature, pH, total P, total C and NH4 +-N of soil were important drivers for the AM fungal community dynamic changes in this poplar plantation. [Ch, 2 fig. 4 tab. 34 ref.] -
表 1 供试土壤理化性质
Table 1. Soil physicochemical properties in the poplar plantations
季节 氮添加 pH 总氮/
(g·kg−1)总磷/
(mg·kg−1)总碳/
(g·kg−1)碳氮比 速效磷/
(mg·kg−1)铵态氮/
(mg·kg−1)硝态氮/
(mg·kg−1)湿度/% 温度/℃ 夏季 N0 8.29±0.07 ab 1.73±0.06 b 923±6 a 18.1±1.4 a 10.5±1.1 a 36.8±11.6 a 5.98±0.56 b 2.48±0.48 d 20.1±0.2 a 20.2±0.1 a N1 8.19±0.02 b 1.83±0.12 b 893±17 a 16.4±1.6 ab 9.0±1.5 ab 37.2±22.7 a 7.45±0.24 a 7.85±0.54 b 20.5±0.5 a 20.2±0.2 a N2 8.31±0.03 a 2.27±0.15 a 878±10 a 17.4±1.3 ab 7.7±0.6 b 28.4±3.9 a 6.20±0.38 b 4.06±0.33 c 21.0±0.6 a 20.2±0.3 a N3 8.20±0.07 ab 1.97±0.40 ab 893±13 a 15.0±1.7 b 7.7±0.8 b 43.3±3.3 a 7.41±0.49 a 3.61±0.21 c 21.0±0.5 a 20.2±0.1 a N4 7.99±0.08 c 1.97±0.06 ab 884±50 a 15.4±0.4 b 7.8±0.4 b 44.5±1.0 a 7.42±0.50 a 25.25±0.41 a 20.6±0.5 a 20.2±0.1 a 秋季 N0 8.65±0.02 a 2.13±0.45 a 778±23 a 17.4±1.2 b 8.5±2.4 a 13.8±5.7 a 5.43±0.42 a 12.38±0.97 b 17.7±0.2 a 17.3±0.2 a N1 8.55±0.03 b 2.40±0.50 a 808±25 a 17.2±0.7 b 7.4±1.4 a 18.4±4.8 a 5.56±0.21 a 2.50±0.49 c 17.7±0.6 a 17.3±0.3 a N2 8.43±0.02 c 2.40±0.46 a 772±64 a 15.2±1.0 c 6.5±1.4 a 13.4±1.5 a 5.28±0.40 a 10.52±1.52 c 17.9±0.7 a 17.3±0.1 a N3 8.55±0.04 b 3.33±1.64 a 806±23 a 17.9±0.4 b 6.2±2.7 a 13.6±6.7 a 3.95±0.30 b 10.80±1.98 c 17.8±0.8 a 17.3±0.2 a N4 8.37±0.03 d 3.63±1.40 a 792±22 a 19.7±1.2 a 5.9±2.0 a 13.9±1.8 a 5.45±0.20 a 58.91±2.09 a 17.6±0.5 a 17.3±0.4 a 冬季 N0 8.46±0.03 bc 1.33±0.21 a 757±8 a 16.5±1.8 a 12.4±0.7 a 19.0±3.6 a 8.86±0.61 a 11.83±0.09 b 33.9±0.2 a 5.5±0.1 a N1 8.51±0.03 ab 1.37±0.25 a 705±6 bc 17.1±1.4 a 12.7±1.5 a 19.2±1.7 a 8.14±0.19 b 11.86±0.41 b 33.9±0.4 a 5.5±0.1 a N2 8.55±0.04 a 1.40±0.10 a 693±22 c 16.4±0.5 a 11.8±0.8 a 19.4±3.6 a 7.46±0.19 c 11.83±0.19 b 33.8±0.2 a 5.5±0.1 a N3 8.42±0.05 c 1.43±0.15 a 727±9 b 15.2±1.0 a 10.6±0.4 a 20.6±4.8 a 7.75±0.05 bc 11.66±0.73 b 34.0±0.2 a 5.5±0.0 a N4 8.46±0.04 bc 1.47±0.21 a 708±9 bc 14.9±0.8 a 10.4±1.9 a 22.1±5.6 a 6.73±0.23 d 14.72±0.19 a 34.0±0.4 a 5.6±0.1 a 春季 N0 8.54±0.06 bc 1.40±0.00 bc 647±10 a 17.1±0.2 b 12.2±0.1 ab 21.8±4.3 a 5.65±0.08 b 1.10±0.24 a 27.9±0.4 a 14.6±0.1 a N1 8.62±0.01 a 1.50±0.20 b 558±147 a 19.6±0.2 a 13.2±1.9 a 25.5±7.9 a 7.47±0.79 a 1.19±0.08 a 27.8±0.6 a 14.6±0.2 a N2 8.57±0.03 ab 1.17±0.06 c 639±12 a 16.9±0.6 b 14.5±0.5 a 22.4±3.2 a 5.17±0.14 b 1.06±0.14 a 27.7±0.6 a 14.6±0.2 a N3 8.50±0.01 c 1.50±0.17 b 668±11 a 18.6±1.2 ab 12.6±2.4 a 21.2±3.5 a 5.51±0.22 b 1.11±0.41 a 27.3±0.5 a 14.6±0.1 a N4 8.60±0.02 ab 1.83±0.15 a 673±1 a 18.1±1.7 ab 9.9±0.2 b 19.8±2.5 a 6.96±0.25 a 1.53±0.07 a 27.9±0.9 a 14.6±0.1 a 氮添加 ** ns ns ns ** ns ** ** ns ns 季节 ** ** ** ** ** ** ** ** ** ** 氮添加×季节 ** ns ns ** ns ns ** ** ns ns 说明:表中数值为3个重复的平均值±标准差。同列不同小写字母表示同一季节下氮添加处理间差异显著(P<0.05)。ns表示差异不显著,*表示差异达5%显著水平,**表示差异达1%显著水平。 表 2 AM真菌群落丰富度和多样性指数
Table 2. Soil AM fungal community richness and diversity index
处理 Chao指数 Shannon指数 夏季 秋季 冬季 春季 夏季 秋季 冬季 春季 N0 90.1±2.6 a 105.0±10.7 a 68.5±2.2 a 94.9±16.2 a 2.58±0.23 a 3.20±0.04 a 2.78±0.36 a 3.12±0.10 a N1 76.0±11.7 a 98.4±14.8 a 78.4±3.9 a 93.8±7.5 a 2.63±0.51 a 3.22±0.08 a 3.00±0.06 a 2.86±0.05 c N2 73.5±11.3 a 89.3±11.4 a 77.2±15.9 a 77.3±5.5 a 2.65±0.58 a 2.84±0.80 a 2.88±0.25 a 2.90±0.15 bc N3 71.5±20.0 a 97.9±3.5 a 68.6±13.4 a 82.2±10.2 a 2.45±0.24 a 3.16±0.05 a 2.70±0.12 a 3.04±0.16 abc N4 74.3±19.6 a 101.4±18.6 a 67.2±2.7 a 91.7±4.9 a 2.24±0.40 a 2.92±0.48 a 2.83±0.21 a 3.10±0.05 ab 氮添加 ns ns 季节 ** ** 氮添加×季节 ns ns 说明:表中数值为3个重复的平均值±标准差。同列不同小写字母表示同一季节下氮添加处理间差异显著(P<0.05)。ns表示差异不显著,*表示差异达5%显著水平,**表示差异达1%显著水平。 表 3 优势AM真菌(相对丰度≥0.05%)的相对丰度
Table 3. Relative abundances of the AM fungal groups (relative abundance ≥0.05%)
季节 氮添加 优势AM真菌相对丰度/% 球囊霉属
Glomus多胞囊霉属
Diversispora盾巨孢囊霉属
Scutellospora球囊菌纲
Glomeromycetes
(未分类)多样孢囊霉科
Diversisporaceae
(未分类)原囊霉属
Archaeospora其他 夏季 N0 89.6±4.9 a 10.0±4.9 b 0.090±0.078 a 0.000±0.000 c 0.027±0.029 a 0.067±0.090 a 0.157±0.271 a N1 76.3±5.7 b 23.3±5.8 a 0.223±0.387 a 0.007±0.012 c 0.133±0.154 a 0.000±0.000 a 0.000±0.000 a N2 85.8±6.3 a 13.5±5.9 b 0.550±0.470 a 0.003±0.006 c 0.043±0.006 a 0.000±0.000 a 0.030±0.052a N3 85.9±2.5 a 13.3±2.9 b 0.643±0.772 a 0.080±0.070 b 0.003±0.006 a 0.040±0.069 a 0.000±0.000 a N4 90.9±2.3 a 8.8±2.3 b 0.000±0.000 a 0.213±0.025 a 0.070±0.082 a 0.053±0.051 a 0.000±0.000 a 秋季 N0 88.9±0.4 a 10.1±1.1 b 0.757±1.25 a 0.060±0.010 a 0.030±0.026 a 0.000±0.000 a 0.123±0.205 a N1 74.7±8.6 b 24.6±8.7 a 0.100±0.173 a 0.340±0.150 a 0.160±0.156 a 0.090±0.123 a 0.090±0.147 a N2 91.1±5.9 a 6.3±2.9 b 1.763±2.470 a 0.790±1.340 a 0.057±0.029 a 0.000±0.000 a 0.000±0.000 a N3 89.1±3.2 a 10.6±3.1 b 0.063±0.110 a 0.027±0.038 a 0.123±0.021 a 0.013±0.023 a 0.007±0.006 a N4 89.9±0.9 a 9.1±1.2 b 0.070±0.113 a 0.730±0.729 a 0.127±0.110 a 0.000±0.000 a 0.033±0.049 a 冬季 N0 91.6±1.7 bc 7.82±1.80 a 0.233±0.404 a 0.060±0.026 b 0.000±0.000 a 0.010±0.017 b 0.317±0.107 a N1 95.7±1.2 ab 4.25±1.21 bc 0.000±0.000 a 0.020±0.020 b 0.007±0.006 a 0.000±0.000 b 0.010±0.017 b N2 93.1±2.7 b 6.79±2.59 ab 0.000±0.000 a 0.077±0.098 b 0.007±0.012 a 0.057±0.049 a 0.013±0.023 b N3 97.3±0.7 a 1.88±0.26 c 0.000±0.000 a 0.793±0.435 a 0.000±0.000 a 0.000±0.000 b 0.000±0.000 b N4 96.7±1.2 a 3.29±1.18 bc 0.000±0.000 a 0.043±0.059 b 0.007±0.012 a 0.003±0.006 b 0.000±0.000 b 春季 N0 83.0±1.5 ab 16.4±1.4 ab 0.127±0.219 a 0.037±0.032 a 0.190±0.329 a 0.020±0.026 a 0.173±0.300 a N1 83.6±5.6 ab 15.7±5.3 ab 0.203±0.352 a 0.263±0.040 a 0.057±0.051 a 0.023±0.032 a 0.137±0.237 a N2 74.0±2.0 b 24.3±2.8 a 0.893±1.030 a 0.357±0.592 a 0.067±0.076 a 0.453±0.777 a 0.000±0.000 a N3 82.6±9.5 ab 16.2±8.5 ab 0.000±0.000 a 0.593±0.370 a 0.537±0.657 a 0.013±0.006 a 0.010±0.017 a N4 88.1±4.6 a 11.2±3.9 b 0.430±0.745 a 0.107±0.032 a 0.060±0.072 a 0.153±0.129 a 0.000±0.000 a 氮添加 ** ** ns ns ns ns ** 季节 ** ** ns ns ns ns ns 氮添加×季节 ** ** ns ns ns ns ns 说明:表中数值为3个重复的平均值±标准差。同列不同小写字母表示同一季节下氮添加处理间差异显著(P<0.05)。ns表示差异不显著,*表示差异达5%显著水平,**表示差异达1%显著水平。 表 4 AM真菌群落Chao指数和Shannon指数与土壤理化性质间的相关分析(n=60)
Table 4. Correlation coefficients between AM fungal community Chao and Shannon indexes and soil physicochemical properties (n=60)
指数 pH 总氮 总磷 总碳 碳氮比 速效磷 铵态氮 硝态氮 湿度 温度 Chao指数 0.344** −0.090 −0.291* 0.505** 0.316* −0.190 −0.511** 0.110 −0.449** 0.325* Shannon指数 0.596** −0.396** −0.548** 0.271* 0.020 0.110 −0.390** −0.096 0.016 −0.149 说明:*P<0.05; **P<0.01。 -
[1] LIU Xuejun, ZHANG Ying, HAN Wenxuan, et al. Enhanced nitrogen deposition over China [J]. Nature, 2013, 494(7438): 459 − 462. [2] LIU Xuejun, DUAN Lei, MO Jiangming, et al. Nitrogen deposition and its ecological impact in China: an overview [J]. Environmental Pollution, 2011, 159(10): 2251 − 2264. [3] BOBBINK R, HICKS K, GALLOWAY J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis [J]. Ecological Applications, 2010, 20(1): 30 − 59. [4] STEVENS C J, DISE N B, MOUNTFORD J O, et al. Impact of nitrogen deposition on the species richness of grasslands [J]. Science, 2004, 303(5665): 1876 − 1879. [5] 李晓林, 冯固. 丛枝菌根生态生理[M]. 北京: 华文出版社, 2001: 1 − 358. LI Xiaolin, FENG Gu. Arbuscular Mycorrhizal Ecology and Physiology[M]. Beijing: Huawen Press, 2001: 1 − 358. [6] SMITH S E, READ D J. Mycorrhizal Symbiosis [M]. 3rd ed. New York: Academic Press, 2008: 1 − 89. [7] COTTON T E A. Arbuscular mycorrhizal fungal communities and global change: an uncertain future[J/OL]. FEMS Microbiology Ecology, 2018, 94(11): fiy179[2022-08-20]. doi: 10.1093/femsec/fiy179. [8] EGERTON-WARBURTON L M, JOHNSON N C, ALLEN E B. Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands [J]. Ecological Monographs, 2007, 77(4): 527 − 544. [9] van DIEPEN L T A, LILLESKOV E A, PREGITZER K S, et al. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests [J]. Ecosystems, 2010, 13(5): 683 − 695. [10] WILLIAMS A, MANOHARAN L, ROSENSTOCK N P, et al. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange [J]. New Phytologist, 2017, 213(2): 874 − 885. [11] MUELLER R C, BOHANNAN B J. Shifts in the phylogenetic structure of arbuscular mycorrhizal fungi in response to experimental nitrogen and carbon dioxide additions [J]. Oecologia, 2015, 179(1): 175 − 185. [12] HAN Yunfeng, FENG Jiguang, HAN Mengguang, et al. Responses of arbuscular mycorrhizal fungi to nitrogen addition: a meta-analysis [J]. Global Change Biology, 2020, 26(12): 7229 − 7241. [13] DUMBRELL A J, ASHTON P D, AZIZ N, et al. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing [J]. New Phytologist, 2011, 190(3): 794 − 804. [14] NEVILLE J, TESSIER J L, MORRISON I, et al. Soil depth distribution of ecto- and arbuscular mycorrhizal fungi associated with Populus tremuloides within a 3-year-old boreal forest clear-cut [J]. Applied Soil Ecology, 2002, 19(3): 209 − 216. [15] 方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报, 2008, 19(10): 2308 − 2316. doi: 10.13287/j.1001-9332.2008.0396 FANG Shengzuo. Silviculture of poplar plantation in China: a review [J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2308 − 2316. doi: 10.13287/j.1001-9332.2008.0396 [16] BIAN Haixue, GENG Qinghong, XIAO Hanran, et al. Fine root biomass mediates soil fauna community in response to nitrogen addition in poplar plantations (Populus deltoids) on the east coast of China[J/OL]. Forests, 2019, 10(2): 1 − 16[2022-08-20]. doi: 10.3390/f10020122. [17] YU Xingye, ZHU Yunjia, WANG Bo, et al. Effects of nitrogen addition on rhizospheric soil microbial communities of poplar plantations at different ages[J/OL]. Forest Ecology and Management, 2021, 494: 119328[2022-08-20]. doi: 10.1016/j.foreco.2021.119328. [18] 葛之葳, 彭塞, 许凯, 等. 短期氮添加对杨树人工林表层土壤可溶性有机碳的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(6): 23 − 27. GE Zhiwei, PENG Sai, XU Kai, et al. Effects of short term nitrogen addition on dissolved organic carbon in topsoil of poplar plantation [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(6): 23 − 27. [19] 郑丹楠, 王雪松, 谢绍东, 等. 2010年中国大气氮沉降特征分析[J]. 中国环境科学, 2014, 34(5): 1089 − 1097. ZHENG Dannan, WANG Xuesong, XIE Shaodong, et al. Simulation of atmospheric nitrogen deposition in China in 2010 [J]. China Environmental Science, 2014, 34(5): 1089 − 1097. [20] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 146 − 185. LU Rukun. Chemical Analyzing Method on Soil Agriculture[M]. Beijing: China Agriculture Science and Technology Press, 2000: 146 − 185. [21] LEE J, LEE S, YOUNG J P W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi [J]. FEMS Microbiology Ecology, 2008, 65(2): 339 − 349. [22] van GEEL M, BUSSCHAERT P, HONNAY O, et al. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing [J]. Journal of Microbiological Methods, 2014, 106: 93 − 100. [23] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology, 2009, 75(23): 7537 − 7541. [24] 王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录[J]. 菌物学报, 2017, 36(7): 820 − 850. doi: 10.13346/j.mycosystema.170078 WANG Youshan, LIU Runjin. A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota [J]. Mycosystema, 2017, 36(7): 820 − 850. doi: 10.13346/j.mycosystema.170078 [25] MAITRA P, ZHENG Yong, WANG Yonglong, et al. Phosphorus fertilization rather than nitrogen fertilization, growing season and plant successional stage structures arbuscular mycorrhizal fungal community in a subtropical forest [J]. Biology and Fertility of Soils, 2021, 57(5): 685 − 697. [26] 朱亮, 郭可馨, 蓝丽英, 等. 亚高山森林类型转换对土壤丛枝菌根真菌多样性的影响[J]. 生态学杂志, 2020, 39(12): 3943 − 3951. doi: 10.13292/j.1000-4890.202012.004 ZHU Liang, GUO Kexin, LAN Liying, et al. Effects of the conversion of forest types on diversity of arbuscular mycorrhizal fungi in subalpine soil [J]. Chinese Journal of Ecology, 2020, 39(12): 3943 − 3951. doi: 10.13292/j.1000-4890.202012.004 [27] TRESEDER K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies [J]. New Phytologist, 2004, 164(2): 347 − 355. [28] 蔺吉祥, 杨雨衡, 王英男, 等. 氮沉降对植物-丛枝菌根共生体影响的研究进展[J]. 草原与草坪, 2015, 35(3): 88 − 94. doi: 10.3969/j.issn.1009-5500.2015.03.018 LIN Jixiang, YANG Yuheng, WANG Yingnan, et al. Research progress on effects of nitrogen deposition on symbiont of plant-arbuscular mycorrhizal [J]. Grassland and Turf, 2015, 35(3): 88 − 94. doi: 10.3969/j.issn.1009-5500.2015.03.018 [29] TRESEDER K K, ALLEN E B, EGERTON-WARBURTON L M, et al. Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: a trait-based predictive framework [J]. Journal of Ecology, 2018, 106(2): 480 − 489. [30] CAMENZIND T, HEMPEL S, HOMEIER J, et al. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest [J]. Global Change Biology, 2014, 20(12): 3646 − 3659. [31] van DIEPEN L T A, LILLESKOV E A, PREGITZER K S. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests [J]. Molecular Ecology, 2011, 20(4): 799 − 811. [32] WEBER S E, DIEZ J M, ANDREWS L V, et al. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers [J]. Fungal Ecology, 2019, 40: 62 − 71. [33] MANDYAM K, JUMPPONEN A. Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment [J]. Mycorrhiza, 2008, 18(3): 145 − 155. [34] XIAO Dan, HE Xunyang, ZHANG Wei, et al. Diazotroph and arbuscular mycorrhizal fungal diversity and community composition responses to karst and non-karst soils [J/OL]. Applied Soil Ecology, 2022, 170: 104227[2022-08-20]. doi: 10.1016/j.apsoil.2021.104227. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220640

计量
- 文章访问数: 29
- 被引次数: 0