留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄河河岸带不同人为干扰的土壤物理性质比较

张岩 张瑞香 刘占欣 冯雪琦 郭二辉

火艳, 招雪晴, 黄厚毅, 等. 观赏石榴表型遗传多样性分析[J]. 浙江农林大学学报, 2020, 37(5): 939-949. DOI: 10.11833/j.issn.2095-0756.20190619
引用本文: 张岩, 张瑞香, 刘占欣, 等. 黄河河岸带不同人为干扰的土壤物理性质比较[J]. 浙江农林大学学报, 2023, 40(5): 1035-1044. DOI: 10.11833/j.issn.2095-0756.20220727
HUO Yan, ZHAO Xueqing, HUANG Houyi, et al. Phenotypic genetic diversity of ornamental pomegranate cultivars[J]. Journal of Zhejiang A&F University, 2020, 37(5): 939-949. DOI: 10.11833/j.issn.2095-0756.20190619
Citation: ZHANG Yan, ZHANG Ruixiang, LIU Zhanxin, et al. Comparison of soil physical properties under different human disturbances in the Yellow River riparian zone[J]. Journal of Zhejiang A&F University, 2023, 40(5): 1035-1044. DOI: 10.11833/j.issn.2095-0756.20220727

黄河河岸带不同人为干扰的土壤物理性质比较

DOI: 10.11833/j.issn.2095-0756.20220727
基金项目: 国家自然科学基金资助项目(41401206);河南省青年人才托举工程项目(2019HTP013)
详细信息
    作者简介: 张岩(ORCID: 0009-0009-9939-0160),工程师,从事生态恢复与水土保持研究。E-mail: zhangyan9235@163.com
    通信作者: 郭二辉(ORCID: 0000-0002-9862-7586),副教授,博士,从事河岸带生态恢复与水土保持研究。E-mail: guoerhui@126.com
  • 中图分类号: S152

Comparison of soil physical properties under different human disturbances in the Yellow River riparian zone

  • 摘要:   目的  研究人为干扰强度对黄河河岸带土壤物理性质的影响,为黄河河岸带生态系统生态恢复与调控提供科学依据。  方法  2021年10月,在黄河洛阳—郑州段选择地形地貌和地表植被覆盖相对一致的河岸带区域,依据人为踩踏程度的不同,选择3种不同干扰强度的样地类型。按照5×3网格化划分近河岸带200 m×200 m样地,共设置15个样点,系统比较分析不同人为干扰强度(轻度、中度和重度)黄河河岸带土壤容重、土壤含水率、土壤毛管持水量、土壤最大持水量、土壤最小持水量、土壤总孔隙度、土壤毛管孔隙度和土壤非毛管孔隙度等土壤物理性质的差异。  结果  ①随人为干扰强度的增加,土壤容重、土壤非毛管孔隙度逐渐增加;土壤含水率先增加后减小;土壤毛管持水量、土壤最大持水量、土壤最小持水量、土壤总孔隙度与土壤毛管孔隙度逐渐减小。②土壤容重与土壤含水率、土壤毛管孔隙度呈负相关,但未达到显著水平;土壤容重与土壤毛管持水量、土壤最大持水量、土壤最小持水量、土壤总孔隙度呈极显著负相关(P<0.01),与土壤非毛管孔隙度呈极显著正相关(P<0.01)。  结论  过度的人为踩踏等干扰增加了河岸带土壤紧实度,导致土壤物理性质退化以及土壤保水和持水能力降低。图2表4参41
  • 石榴Punica granatum是千屈菜科Lythraceae石榴属Punica落叶小乔木或灌木,在中国约2 000 a的栽培史,200余个品种[1-2]。常分为食用石榴和观赏石榴,观赏石榴株型优美,花期长,花色艳,春叶红、秋叶黄,果实奇特,可观性果实宿存树体时间长,是春、夏、秋3季可赏的重要花木,广泛应用于园林绿化、盆栽、盆景等[2-3]。目前国内外的研究主要集中于利用分子标记对石榴种质资源遗传多样性的分析和评价[4-11],以及对食用石榴果实形态及生化指标的测定分析[12-17],对观赏资源的遗传多样性研究较少。MARTINEZ-NICOLAS等[18]对53个西班牙品种的果实、种子、叶、花等性状进行过表型研究,但没有针对树型、枝型、花型、瓣化雄蕊数等观赏性状的综合分析。陈俊愉等[19]根据株型、花、果、叶片大小将国内观赏石榴分为花石榴和果石榴,其中花石榴分为一般种与矮生种,再依据花色和单、重瓣分类。汪小飞[20]将包括观赏石榴在内的全国87个石榴品种分为单瓣、复瓣、重瓣、台阁4个品种群。王庆军等[21]对35份种质资源进行了表型性状的初步调查,但未对表型性状多样性及亲缘关系进行综合评价。表型多样性是遗传多样性与观赏植物评价的重要基础,全面了解石榴种质的优异性状,可为石榴种质资源的鉴定、保存和推广提供参考。C值指生物体单倍体细胞核的DNA总质量,C值的变异对研究物种的亲缘关系以及系统发育具有重要意义,结合倍性水平分析也可用来鉴定杂交物种[22]。目前中国石榴品种‘泰山红’‘Taishanhong’大笨籽’‘Dabenzi’和‘大籽’‘Dazi’被鉴定为二倍体,美国品种‘Nana’为四倍体[23-25]。多倍体植物具有花大、果实大、植株健壮、抗逆性强等优点,是育种的好材料。流式细胞术作为快速准确测定倍性与基因组含量的先进技术,可为石榴种质资源的创新与遗传育种提供理论基础。本研究对24个观赏石榴品种的株型、枝型、花型、1年生小枝颜色、花瓣色、花萼色、花长、花宽、花萼长、花萼宽、花萼瓣数、花瓣数、瓣化雄蕊数等13个观赏性状进行了表型多样性分析、主成分分析与聚类分析,并利用流式细胞仪对24个品种进行了倍性及C值测定,为观赏石榴种质资源的评价、创新与遗传育种提供理论基础。

    供试材料为生长良好且无病虫害的24个观赏石榴品种(表1),其中单瓣品种群(single-flower group)8个、复瓣品种群(semi-double-flower group)4个、重瓣品种群(double-flower group)11个、台阁品种群(proliferation-flower group)1个。

    表 1  24个观赏石榴品种名称及来源
    Table 1  List of 24 ornamental pomegranate cultivars
    序号品种名类型引种地
    1‘泰安红牡丹’‘Taianhongmudan’重瓣中国山东
    2‘榴缘白’‘Double red-white ’台阁美国  
    3‘青皮月季’‘Qingpiyueji’重瓣中国山东
    4‘峄城重瓣红皮酸’‘Yichengchongbanhongpisuan’重瓣中国山东
    5‘峄城粉红牡丹’‘Yichengfenhongmudan’复瓣中国山东
    6‘峄城红花重瓣紫皮酸’‘Yichenghonghuachongbanzipisuan’复瓣中国山东
    7‘榴花雪’‘Hakubatan’重瓣美国  
    8‘峄城粉红重瓣白皮甜’‘Yichengfenhongchongbanbaipitian’重瓣中国山东
    9‘峄城重瓣玛瑙’‘Yichengchongbanmanao’重瓣中国山东
    10‘洛阳白马寺’‘Luoyangbaimasi’重瓣中国河南
    11‘礼泉重瓣红花青皮酸’‘Liquanchongbanhonghuaqingpisuan’重瓣中国陕西
    12‘峄城重瓣白花酸’‘Yichengchongbanbaihuasuan’复瓣中国山东
    13‘峄城单瓣粉红酸’‘Yichengdanbanfenhongsuan’单瓣中国山东
    14‘榴花红’‘Nochi-shibori’重瓣美国  
    15‘紫皮甜’‘Zipitian’单瓣中国山东
    16‘峄城单瓣粉红甜’‘Yichengdanbanfenhongtian’单瓣中国山东
    17‘突尼斯软籽软枝’‘Tunisiruanziruanzhi’单瓣突尼斯 
    18‘墨石榴’‘Moshiliu’单瓣中国山东
    19‘宫灯石榴’‘Gongdengshiliu’单瓣中国山东
    20‘泰山红’‘Taishanhong’单瓣中国山东
    21‘南林重瓣红’‘Nanlinchongbanhong’重瓣中国江苏
    22‘南林单瓣红’‘Nanlindanbanhong’单瓣中国江苏
    23‘南林重瓣白’‘Nanlinchongbanbai’复瓣中国江苏
    24‘南林重瓣玛瑙’‘Nanlinchongbanmanao’重瓣中国江苏
    下载: 导出CSV 
    | 显示表格
    1.2.1   观赏性状测定

    试验于2018年5月在中国石榴种质资源圃(峄城)和南京林业大学进行,每品种随机选择3株生长健壮、无病虫害、长势一致的植株进行各表型性状的调查和统计。其中质量性状6个:株型(plant form,PF)、枝型(brach type,BT)、花型(flower pattern,FP)、1年生小枝颜色(color of branch,BC)、花瓣色(color of petal,PC)、花萼色(color of sepal,SC)。数量性状7个:花长(flower length,FL)、花宽(flower diameter,FD)、花萼长(sepal length,SL)、花萼宽(sepal diameter,SD)、花萼瓣数(number of sepals,NOS)、花瓣数(number of petals,NOP)、瓣化雄蕊数(number of petaloid stamens,NOPS)。用直尺或游标卡尺测量长度,小数点后保留2位有效数;用国际通用的英国皇家园艺学会比色卡(RHSCC)测量颜色,记录数字编码。调查取样标准根据《植物新品种特异性、一致性、稳定性测试指南 石榴属》的操作进行[26]

    1.2.2   C值与倍性鉴定

    以二倍体石榴‘大笨籽’为外标,选用LB01解离液。滤网、荧光染料、鞘液、培养皿、试剂均购自南京博巧生物技术有限公司。分别取各石榴品种嫩叶,用流式细胞仪(Influx,美国BD公司)测定倍性与C值,具体参照林峰等[27]方法进行。

    1.3.1   观赏性状数据处理

    质量性状均以1~6级进行分级和赋值(表2),数量性状根据平均值(X)和标准差(δ)分为10级,1级<X−2δ,10级≥X+2δ,中间每级相差0.5δ[28-29]。各性状的遗传多样性采用Shannon’s信息指数(H')进行评价:H' = −∑(Pi)(lnPi),其中Pi表示第i种变异类型出现的频率[30]。采用Excel进行性状数据(平均值、最大值、最小值、极差和变异系数等)的基本统计。使用SPSS 24.0软件计算表型数据的KMO检验值及Bartlett球形度检验的显著性。种质间距为平方欧式距离,聚类方法采用Ward法。

    表 2  观赏石榴品种质量性状描述分级
    Table 2  Description and grouping of qualitative characters of ornamental pomegranate cultivars
    分级株型枝型花型1年生小枝颜色花瓣色花萼色
    1乔木状直立复瓣粉红白色浅黄 
    2矮生 开张单瓣玫红橙黄黄色 
    3垂枝重瓣紫红橙红浅橙黄
    4台阁浅棕红色橙黄 
    5浅绿粉红橙红 
    6复色红色 
    下载: 导出CSV 
    | 显示表格
    1.3.2   C值及倍性数据处理

    荧光染料PI的激发波长为488 nm,收集通道为FL2(670 nm±30 nm),检测PI的发射荧光强度。使用Influx自带软件FACSTM Sortware进行分析。‘大笨籽’基因组大小为328 Mbp[23]C值为0.33 pg,根据公式[31]:待测样本的细胞核DNA含量或倍性=对照样本细胞核DNA含量或倍性×(待测样本G0/G1峰荧光强度/对照样本G0/G1峰荧光强度)。变异系数(VC)控制在8%以内。

    根据表2对观赏石榴品种的6个主要质量性状进行分级和赋值,统计各性状的频率分布和多样性指数,由表3可知:各性状多样性指数为0.512~1.683,平均为1.148。多样性指数最大的性状为花瓣色,其次为花萼色、花型和1年生小枝颜色,多样性指数均大于1.000;其中,花瓣色以橙黄(25.00%)、橙红(25.00%)为主,花萼色以橙黄(41.67%)为主,花型以重瓣为主(45.83%),1年生小枝颜色以粉红(62.50%)为主。多样性指数最小的性状是株型,其次是枝型;其中,株型主要为乔木型(79.17%),枝型主要为开张型(58.33%)。

    表 3  观赏石榴品种质量性状频率分布及多样性
    Table 3  Frequency distribution and diversity of qualitative characteristics of ornamental pomegranate cultivars
    性状频率/%多样性指数(H')
    1级2级3级4级5级6级
    株型      79.17 20.83 0.512
    枝型      37.50 58.33 4.17 0.815
    花型      33.33 16.67 45.83 4.17 1.155
    1年生小枝颜色 62.50 4.17 8.33 8.33 16.67 1.139
    花瓣色     16.67 25.00 25.00 4.17 16.67 12.50 1.683
    花萼色     8.33 16.67 8.33 41.67 8.33 16.67 1.583
    下载: 导出CSV 
    | 显示表格

    24个观赏石榴的7个数量性状表现了广泛的变异,变异系数为11.76%~117.59%(表4),多样性指数为1.456~1.910,多样性指数平均为1.715,高于质量性状,说明观赏石榴数量性状多样性更丰富。7个性状中瓣化雄蕊数的变异系数最大,达117.59%,花瓣数次之,为78.86%,而花萼瓣数、花长、花萼长的变异系数较小。多样性指数最大的性状是花萼长(1.910),其次是花长(1.906)、花宽(1.802)、花萼宽(1.683)、花瓣数(1.630)、花萼瓣数(1.619)、瓣化雄蕊数(1.456),多样性指数均大于1.600。

    表 4  观赏石榴品种数量性状统计
    Table 4  Morphological diversity of statistics of quantitative of ornamental pomegranate cultivars
    性状 花长/cm 花宽/cm 花萼长/cm 花萼宽/cm 花萼瓣数/片 花瓣数/片 瓣化雄蕊数/片
    平均值 4.43±0.61 4.70±1.25 3.09±0.57 3.60±0.92 6.48±0.76 41.94±33.08 57.11±67.15
    最大值 5.42 6.43 4.11 4.87 8 134 276.67
    最小值 3.03 2.33 1.63 2.00 5 6 0
    变异系数/% 13.85 26.60 18.40 25.64 11.76 78.86 117.59
    下载: 导出CSV 
    | 显示表格

    根据汪小飞[20]方法将观赏石榴品种划分为3个品种群,即单瓣品种群、复瓣品种群、重瓣品种群。由表5可知:3个品种群的表型性状多样性指数分别为0.813、0.600和1.157,其平均多样性指数为0.856,表明不同观赏石榴品种群之间,表型性状的多样性指数均有不同程度的差异。其中,重瓣品种群表型多样性指数最高,除枝型外,其他12个性状均高于所有品种相应性状的平均值,特别是花瓣数、瓣化雄蕊数、花萼宽、花宽和1年生小枝颜色。单瓣品种群的株型、枝型、1年生小枝颜色、花萼色、花长和花萼宽的多样性指数均高于所有品种相应性状的平均值。由此可见:3个品种群中,重瓣品种群的表型性状遗传多样性最丰富,其次是单瓣品种群,复瓣品种群的表型遗传多样性最低。

    表 5  不同观赏石榴品种群形态多样性指数
    Table 5  Morphological diversity index of different ornamental pomegranate cultivars
    性状单瓣品种群复瓣品种群重瓣品种群平均值性状单瓣品种群复瓣品种群重瓣品种群平均值
    株型   0.5620.0000.5860.383枝型     0.9740.5620.6890.742
    花型   0.0000.0000.0000.0001年生小枝颜色0.9000.6931.0300.874
    花瓣色  1.0821.0401.7201.281花萼色    1.3211.0401.2901.217
    花长   1.5601.0401.6661.422花宽     0.9000.5621.2950.919
    花萼长  1.3211.0401.6731.344花萼宽    0.9740.5621.0670.868
    花萼瓣数 0.9740.6931.5941.087花瓣数    0.0000.0001.2640.421
    瓣化雄蕊数0.0000.5621.1620.575平均值    0.8130.6001.1570.856
    下载: 导出CSV 
    | 显示表格

    供试观赏石榴表型性状的KMO检验值为0.622(高于0.600),Bartlett球形度检验显著性为0.000(低于0.050),符合主成分分析条件。以特征值大于1为标准提取主成分,前4个主成分的累计贡献率为80.10%,认为这4个主成分能充分反映13个表型性状(表6)。第1主成分的特征值为4.52,贡献率为34.74%,特征向量绝对值较大的为枝型、1年生小枝颜色、花长、花萼宽,说明第1主成分是枝的形态颜色与花大小的综合反映。第2主成分的特征值为2.62,贡献率为20.17%,特征向量绝对值较大的为花型、株型、瓣化雄蕊数,说明第2主成分是花瓣数及花瓣形成、株型的综合反映。第3主成分的特征值为2.06,贡献率为15.82%,特征向量绝对值较大的为花瓣数、花萼瓣数、花瓣色,说明第3主成分是花瓣数、花大小、花色的综合反映。第4主成分的特征值为1.22,贡献率为9.39%,特征向量绝对值较大的为花萼长,说明第3主成分是花大小的综合反映。由此得出:枝的形态与颜色、花大小、花瓣数及花瓣形成、株型、花色是造成观赏石榴表型差异的主要影响因子。

    表 6  观赏石榴品种多样性的主成分分析
    Table 6  Principle component analysis of morphological diversity of ornamental pomegranate cultivars
    性状主成分性状主成分
    PC1PC2PC3PC4PC1PC2PC3PC4
    株型 0.16 −0.48 0.21 −0.24 枝型 0.43 0.07 −0.14 −0.09
    花型 0.10 −0.53 0.20 −0.13 1年生小枝颜色 0.43 0.00 −0.22 −0.02
    花瓣色 0.25 0.17 0.42 0.02 花萼色 0.39 0.14 −0.23 0.12
    花长 0.41 −0.11 0.13 0.11 花宽 −0.11 0.29 −0.32 −0.36
    花萼长 0.01 0.00 0.09 0.81 花萼宽 0.42 0.08 −0.25 −0.04
    花萼瓣数 −0.10 −0.24 −0.42 0.33 花瓣数 0.14 0.18 0.43 0.03
    瓣化雄蕊数 0.01 0.48 0.27 −0.03 特征值 4.52 2.62 2.06 1.22
    累积贡献率/% 34.74 20.17 15.82 9.39 累积贡献率/% 34.74 54.91 70.73 80.12
    下载: 导出CSV 
    | 显示表格

    根据表型性状和主成分分析结果进行变量筛选,单因素方差分析发现:对聚类贡献较大的变量为花萼长、花萼瓣数、花瓣数、瓣化雄蕊数、株型、枝型、花型、1年生小枝颜色和花瓣色9个指标,构建聚类图(图1)。在遗传距离为11~12时,观赏石榴品种分为3个组群:组群Ⅰ、组群Ⅱ、组群Ⅲ。其中,组群Ⅰ包括6个重瓣品种群和4个复瓣品种群;组群Ⅱ包括8个单瓣品种群和1个重瓣品种群;组群Ⅲ包括4个重瓣品种群和1个台阁品种群。在遗传距离14~15时,组群Ⅰ和组群Ⅱ聚在一起,说明组群Ⅰ和组群Ⅱ遗传关系较近,两者与组群Ⅲ的遗传关系均较远。进一步分析,4个白花类品种(‘峄城重瓣白花酸’‘南林重瓣白’‘洛阳白马寺’‘榴花雪’)聚在一起,1年生小枝颜色为浅绿色的品种也都是白花品种,全部聚在一起,说明白花品种的遗传关系较近。3个复色品种(‘榴缘白’‘峄城重瓣玛瑙’‘南林重瓣玛瑙’)也聚在一起。除了‘青皮月季’以外,4个矮生品种(‘榴花雪’‘榴花红’‘墨石榴’‘宫灯石榴’)聚在一起,表明矮生品种间遗传关系较近。

    图 1  观赏石榴品种表型性状聚类图
    Figure 1  Clustering figure of ornamental pomegranate cultivars based on phenotypic characters

    对各类组群个体的数量性状取平均值,质量性状计算个数,得到各组群的特征(表7)。组群Ⅰ的特征为:花长最大、花萼长最大、花萼瓣数最少,绝大多数为乔木型,主要为开张型,重瓣略多于复瓣,1年生小枝主要为粉红色和浅绿色,花瓣色主要为白色、粉色、橙红,花萼色主要为橙黄、黄色。组群Ⅱ的特征为:花长最小、花宽最小、花萼长最小、花萼宽最小、花瓣数最小、瓣化雄蕊数最小,主要为乔木型,直立型和开张型各占一半,绝大多数为单瓣,1年生小枝颜色主要为粉红色,花瓣色主要为橙黄和橙红,花萼色主要为橙黄。组群Ⅲ的特征为:花宽最大、花萼宽最大、花萼瓣数最大、花瓣数最大、瓣化雄蕊数最大,主要为乔木型、开张型、重瓣,1年生小枝颜色主要为粉红色,花瓣色主要为复色,花萼色主要为橙黄和红色。

    表 7  观赏石榴各组群形态特征
    Table 7  Morphological characteristics of different ornamental pomegranate cultivars groups after cluster
    性状花长/cm花宽/cm花萼长/cm花萼宽/cm花萼瓣数/片花瓣数/片瓣化雄蕊数/片
    组群Ⅰ4.565.153.214.006.0453.62 63.66
    组群Ⅱ4.293.502.972.646.26 9.70 3.15
    组群Ⅲ4.415.953.064.537.7376.60141.13
    下载: 导出CSV 
    | 显示表格
    性状株型枝型花型1年生小枝颜色花瓣色花萼色
    组群Ⅰ1(9),2(1)1(4),2(6)2(4),3(6)1(5),4(1),5(4)1(4),2(1),3(3),5(2)1(2),2(4),4(4)
    组群Ⅱ1(6),2(3)1(4),2(4),3(1)1(8),3(1)1(6),3(2),4(1)2(4),3(3),5(2)3(2),4(4),5(1),6(2)
    组群Ⅲ1(4),2(1)1(1),2(4)3(4),4(1)1(4),2(1)2(1),3(1),6(3)4(2),5(1),6(2)
      说明:括号中数值表示品种数,括号外数值表示类型
    下载: 导出CSV 
    | 显示表格

    流式细胞仪测定结果表明(表8):24个观赏石榴品种均为二倍体,C值范围为0.28~0.39 pg,品种间C值差异较大。其中,单瓣品种群、复瓣品种群、重瓣品种群及台阁品种群的平均C值分别为0.34、0.32、0.34和0.33 pg,可见由花型划分的各品种群之间C值相差不大。白花品种群、粉花品种群、红花品种群及复色花品种群的平均C值分别为0.34、0.32、0.34和0.32 pg,可见由花色划分的各品种群之间C值相差不大。中国品种、美国品种、突尼斯品种的平均C值分别为0.33、0.35和0.34 pg,各地品种C值相差不大。

    表 8  观赏石榴倍性及C
    Table 8  Ploidy level and C-value of 24 ornamental pomegranate cultivars
    序号品种名荧光强度变异系数/%C值/pg倍性序号品种名荧光强度变异系数/%C值/pg倍性
    1 ‘泰安红牡丹’     9 560 6.66 0.32 二倍体 13 ‘峄城单瓣粉红酸’ 9 645 4.54 0.32 二倍体
    2 ‘榴缘白’       9 951 4.61 0.33 二倍体 14 ‘榴花红’     11 142 6.66 0.37 二倍体
    3 ‘青皮月季’      11 614 6.84 0.39 二倍体 15 ‘紫皮甜’     10 368 6.47 0.34 二倍体
    4 ‘峄城重瓣红皮酸’   8 435 5.04 0.28 二倍体 16 ‘峄城单瓣粉红甜’ 9 370 7.42 0.31 二倍体
    5 ‘峄城粉红牡丹’    10 024 6.17 0.33 二倍体 17 ‘突尼斯软籽软枝’ 10 151 5.82 0.34 二倍体
    6 ‘峄城红花重瓣紫皮酸’ 9 437 4.58 0.31 二倍体 18 ‘墨石榴’     9 257 7.10 0.31 二倍体
    7 ‘榴花雪’       10 622 5.67 0.35 二倍体 19 ‘宫灯石榴’    11 138 5.51 0.37 二倍体
    8 ‘峄城粉红重瓣白皮甜’ 9 801 6.56 0.33 二倍体 20 ‘泰山红’     10 331 7.28 0.34 二倍体
    9 ‘峄城重瓣玛瑙’    9 967 5.99 0.33 二倍体 21 ‘南林重瓣红’   9 511 6.57 0.32 二倍体
    10 ‘洛阳白马寺’     11 078 5.94 0.37 二倍体 22 ‘南林单瓣红’   10 580 7.34 0.35 二倍体
    11 ‘礼泉重瓣红花青皮酸’ 10 168 5.71 0.34 二倍体 23 ‘南林重瓣白’   10 329 4.26 0.34 二倍体
    12 ‘峄城重瓣白花酸’   9 160 4.88 0.30 二倍体 24 ‘南林重瓣玛瑙’  9 100 6.80 0.30 二倍体
    下载: 导出CSV 
    | 显示表格

    种质资源的调查和评价是研究品种起源、演化、驯化的基础,对优异资源筛选、品种选育具有重要意义[32]。利用表型性状分析种质资源的遗传多样性直观易行,能快速了解植物的遗传变异水平[33]。本研究发现:24个观赏石榴品种具有丰富的表型多样性,平均形态多样性指数为1.453,数量性状多样性指数(1.715)大于质量性状(1.148),与前人对紫薇Lagerstroemia indica[28]、香瓜Cucumis melo[34-35]等的表型多样性研究观点基本相符。其中,花瓣色、花萼色2个质量性状和花长、花宽、花萼长、花萼宽、花萼瓣数、花瓣色、瓣化雄蕊数7个数量性状变异明显,多样性指数高于1.400。

    值得注意的是,各数量性状的多样性指数与变异系数变化趋势不一致。与其他数量性状相比,瓣化雄蕊数和花瓣数的多样性指数较小,分别为1.456和1.630,小于平均值(1.715);但两者的变异系数最大,分别为117.59%和78.86%,大于平均值41.82%。多样性指数代表变异分布的均匀度,变异系数代表变异的离散程度。不一致的变化趋势说明变异的范围很大,且变异的分布不均匀,与张海平等[36]对睡莲Nymphaea tetragona的表型研究类似,同时符合TILMAN[37]关于多样性指数和变异系数之间关系的观点。另外,变异系数在一定程度上反映了进化的快慢,瓣化雄蕊数和花瓣数的变异系数大说明重瓣和雄蕊瓣化程度高的品种,自然品种形成较晚;人工育种加速了雄蕊瓣化和花瓣数量的增多,这与杜鹃花Rhododendron simsii[38]、矮牵牛Petunia hybrid[39]、日本龙胆花Gentiana scabra[40]等观赏植物品种选育方向一致,说明观赏石榴的选育也是朝着花瓣数增多、雄蕊瓣化的方向进行。

    胡标林等[41]认为:利用株高、芒等表型性状能够明确水稻Oryza sativa核心种质的亲缘关系。本研究聚类结果表明:24个观赏石榴品种可划分为3个组群,其遗传聚类与花型、颜色、株型关系密切。其中,单瓣品种与复瓣品种、部分重瓣品种的亲缘关系较近,另一部分重瓣品种与台阁品种的亲缘关系较近,这与陈俊愉[42]的花卉品种分类体系提出的花型演化观点相同。而依据花瓣色划分,橙色花品种与粉色花品种、白色花品种的亲缘关系较近,与复色花品种的亲缘关系较远,与张启翔[43]对紫薇品种群的划分方法相同。

    MOSLEMI等[44]、JBIR等[45]在对突尼斯和伊朗石榴的研究中认为:石榴品种间亲缘关系与地理环境的相关性不强。本研究聚类结果表明:来源南京的品种并没有聚在一起,分散在3个组群中,该结果同样支持上述观点。王庆军等[21]通过内部简单序列重复(ISSR)将峄城35个观赏石榴分为6个组群,发现依据分子标记划分的大类中有不同的花色和花型,认为基于分子性状的亲缘关系与基于花色、花型等表型性状的亲缘关系不一致。本研究中,基于多个表型性状的聚类结果只有小部分与王庆军等[21]的分子标记划分结果一致;赵丽华等[46]在利用ISSR对47个石榴栽培品种的聚类研究中也发现了同样的矛盾。观赏石榴品种在繁殖栽培过程中大量的地区间引种交流以及长期的自然选择和人工选择下积累了丰富的遗传变异,使得某些品种在遗传信息上可聚为一类,但形态特征和地理来源却有较大差异,因此,对观赏石榴品种的遗传关系的研究时,需进一步选择合适的分子标记开展分子水平的亲缘关系分析,结合本研究的形态聚类结果共同评判与讨论。

    千屈菜科倍性复杂,大多为多倍体物种[47]。该科的紫薇属Lagerstroemia中,桂林紫薇L. guilinensis是四倍体,云南紫薇L.intermedia、大花紫薇L.speciosa和西双紫薇L.venusta是六倍体,毛萼紫薇L. balansae为非整倍体[48]。本研究发现:引种自各地的24个观赏石榴品种均为二倍体,说明从倍性来看,石榴属品种遗传相对稳定,可进一步探究石榴多倍体育种的可能性,比较二倍体石榴与多倍体石榴的表型差异与遗传差异。

    本研究中观赏石榴品种主要是单瓣类、复瓣类、重瓣类,而台阁类品种的数量较少。故还需广泛收集不同类别的品种资源,并结合分子生物学证据,开展更为广泛的观赏石榴遗传多样性、品种分类研究。

    观赏石榴种质资源具有丰富的表型遗传多样性,以花的数量性状最为突出,其中瓣化雄蕊数和花瓣数的变异系数分别为117.59%和78.86%。聚类分析可分为3大组群,组群Ⅰ和组群Ⅱ聚在一起,两者与组群Ⅲ的亲缘关系均较远,其遗传聚类与花型、颜色、株型关系密切,暗示着花色、花型在栽培观赏石榴的驯化育种过程中的重要指示性作用。24个观赏石榴品种均为二倍体,显示出石榴观赏品种较强的遗传稳定性。

  • 图  1  不同人为干扰强度对黄河河岸带0~30 cm土层土壤容重和土壤孔隙度的影响

    Figure  1  Effects of different human disturbance intensity on soil bulk density and porosity of 0−30 cm riparian zone of Yellow River

    图  2  不同人为干扰强度对黄河河岸带0~30 cm土层土壤水分特征的影响

    Figure  2  Effects of different human disturbance intensity on river soil moisture characteristics of 0−30 cm riparian zone of Yellow River

    表  1  研究区样地概况

    Table  1.   Basic condition of study piots

    干扰强度地理位置北纬(N)东经(E)海拔/m优势植被
    轻度 洛阳市偃师市邙岭乡 34.823° 112.785° 91 芦苇、白茅、雀麦、狗牙根、柽柳
    中度 郑州市巩义市S237省道大桥 34.839° 113.060° 87 芦苇、白茅、雀麦、狗牙根
    重度 郑州市黄河湿地公园 34.841° 113.140° 88 白茅、雀麦、狗牙根
    下载: 导出CSV

    表  2  不同人为干扰程度下土壤容重与土壤孔隙度分布特征

    Table  2.   Distribution characteristics of soil density and porosity under different degrees of human disturbance

    干扰强度土层深度/cm土壤容重/(g·cm−3)土壤总孔隙度/%土壤毛管孔隙度/%土壤非毛管孔隙度/%
    轻度0~101.24±0.03 a50.73±0.79 a43.85±0.82 a5.42±1.38 a
    10~201.26±0.02 a49.38±0.88 a42.57±0.59 a8.05±1.18 a
    20~301.32±0.03 a49.45±0.82 a42.86±0.79 a7.69±1.34 a
    中度0~101.40±0.02 a47.46±1.02 a43.70±0.73 a8.83±1.71 b
    10~201.41±0.02 a44.92±0.88 ab41.45±0.87 ab13.63±1.70 ab
    20~301.43±0.02 a43.65±1.13 b40.39±1.00 b15.96±2.09 a
    重度0~101.41±0.02 a44.72±0.68 a41.35±0.61 a13.93±1.27 a
    10~201.41±0.01 a43.81±0.56 a40.41±1.60 a15.78±1.14 a
    20~301.42±0.01 a45.02±0.79 a41.32±0.74 a13.66±1.51 a
      说明:不同小写字母表示不同土层间差异显著(P<0.05)。
    下载: 导出CSV

    表  3  不同人为干扰强度下土壤水分分布特征

    Table  3.   Characteristics of soil moisture distribution under different degrees of human disturbance

    干扰强度土层深度/cm土壤含水率/%土壤毛管持水量/(g·kg−1)土壤最大持水量/(g·kg−1)土壤最小持水量/(g·kg−1)
    轻度0~1018.58±3.19 a195.71±3.48 a227.13±5.87 a175.99±3.87 a
    10~2016.15±2.37 a189.83±2.90 a219.42±5.55 a169.02±2.02 ab
    20~3014.17±2.13 a172.33±2.44 a207.06±6.83 a151.49±1.49 b
    中度0~1025.71±3.64 a186.28±6.18 a199.37±6.50 a166.16±6.18 a
    10~2023.79±3.61 a173.14±5.71 a186.63±5.49 ab153.29±5.93 a
    20~3023.36±3.28 a167.45±5.40 a179.19±5.16 b149.27±5.46 a
    重度0~1013.07±2.67 a170.32±3.03 a184.25±3.26 a150.91±2.59 a
    10~2012.83±2.54 a166.74±2.27 a180.90±2.71 a146.81±2.31 a
    20~3013.09±2.37 a169.35±3.48 a184.55±3.84 a149.26±3.25 a
      说明:不同小写字母表示不同土层间差异显著(P<0.05)。
    下载: 导出CSV

    表  4  黄河河岸带土壤物理性质之间的相关性

    Table  4.   Correlation between soil physical properties in riparian zone

    相关性含水率容重毛管持水量最大持水量最小持水量总孔隙度毛管孔隙度
    容重 −0.067 1
    毛管持水量 0.304** −0.508** 1
    最大持水量 0.170* −0.788** 0.802** 1
    最小持水量 0.366** −0.522** 0.980** 0.775** 1
    总孔隙度 0.119 −0.516** 0.613** 0.879** 0.574** 1
    毛管孔隙度 0.244** −0.058 0.626** 0.545** 0.608** 0.755** 1
    非毛管孔隙度 −0.185* 0.339** −0.659** −0.783** −0.628** −0.953** −0.918**
      说明:*表示P<0.05,**表示P<0.01。
    下载: 导出CSV
  • [1] 赵晓雪, 饶良懿, 申震洲. 砒砂岩区不同地形位置土壤物理性质分异特征[J]. 应用与环境生物学报, 2020, 26(6): 1359 − 1368.

    ZHAO Xiaoxue, RAO Liangyi, SHEN Zhenzhou. Heterogeneous characteristics of soil physical properties of different terrain locations in the Pisha sandstone area [J]. Chinese Journal of Applied Environmental Biology, 2020, 26(6): 1359 − 1368.
    [2] 杜姣姣, 周运超, 白云星, 等. 阔叶树种引入后马尾松人工林土壤水文物理性质研究[J]. 水土保持研究, 2021, 28(4): 105 − 112.

    DU Jiaojiao, ZHOU Yunchao, BAI Yunxing, et al. Research of soil hydrophysical properties of Pinus Massoniana plantation after the introduction of broad-leaved tree species [J]. Research of Soil and Water Conservation, 2021, 28(4): 105 − 112.
    [3] LI Jiangwen, DU Jing, ZHONG Qin, et al. Changes in the profile properties and chemical weathering characteristics of cultivated soils affected by anthropic activities[J/OL]. Scientific Reports, 2021, 11(1): 20822[2022-10-25]. doi: 10.22541/au.162012734.42874138/v1.
    [4] 尤誉杰, 王懿祥, 张华锋, 等. 不同人为干扰措施对天然次生灌丛土壤肥力及蓄水能力的影响[J]. 生态学报, 2018, 38(3): 1097 − 1105.

    YOU Yujie, WANG Yixiang, ZHANG Huafeng, et al. Effects of different human disturbances on soil water conversation and fertility of natural secondary shrub [J]. Acta Ecologica Sinica, 2018, 38(3): 1097 − 1105.
    [5] JIAO Shuying, LI Junran, LI Yongqiang, et al. Variation of soil organic carbon and physical properties in relation to land uses in the Yellow River Delta, China[J/OL]. Scientific Reports, 2020, 10(1): 20317[2022-10-25]. doi: 10.1038/s41598-020-77303-8.
    [6] 郭宝宝. 不同人为干扰程度对森林土壤水分物理性质的影响[J]. 亚热带资源与环境学报, 2014, 9(2): 70 − 74.

    GUO Baobao. Effects of different human interference on forest soil water-physical properties [J]. Journal of Subtropical Resources and Environment, 2014, 9(2): 70 − 74.
    [7] 庞学勇, 刘庆, 刘世全, 等. 人为干扰对川西亚高山针叶林土壤物理性质的影响[J]. 应用与环境生物学报, 2002, 8(6): 583 − 587.

    PANG Xueyong, LIU Qing, LIU Shiquan, et al. Effect of human-induced disturbance on soil physical properties of subalpine coniferous forests in western Sichuan [J]. Chinese Journal of Applied and Environmental Biology, 2002, 8(6): 583 − 587.
    [8] 张希彪, 上官周平. 人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J]. 生态学报, 2006, 26(11): 3685 − 3695.

    ZHANG Xibiao, SHANGGUAN Zhouping. Effect of human-induced disturbance on physical properties of soil in artificial Pinus tabulaeformis Carr. forests of the Loess Plateau [J]. Acta Ecologica Sinica, 2006, 26(11): 3685 − 3695.
    [9] WANG Ting, XU Qing, GAO Deqiang, et al. Effects of thinning and understory removal on the soil water-holding capacity in Pinus massoniana plantations[J/OL]. Scientific Reports, 2021, 11(1): 13029[2022-10-25]. doi: 10.1038/s41598-021-92423-5.
    [10] 宋红丽, 牟晓杰, 刘兴土. 人为干扰活动对黄河三角洲滨海湿地典型植被生长的影响[J]. 生态环境学报, 2019, 28(12): 2307 − 2314.

    SONG Hongli, MOU Xiaojie, LIU Xingtu. Anthropogenic effect on wetland vegetation growth in the Yellow River Delta [J]. Ecology and Environmental Sciences, 2019, 28(12): 2307 − 2314.
    [11] 曾洪, 陈聪琳, 喻静, 等. 人为干扰对雅安苍坪山公园桉树人工林物种多样性和生物量的影响[J]. 浙江农林大学学报, 2021, 38(2): 253 − 261.

    ZENG Hong, CHEN Conglin, YU Jing, et al. Effects of human interference on species diversity and biomass of Eucalyptus grandis plantation in Cangping Mountain Park in Ya’an [J]. Journal of Zhejiang A&F University, 2021, 38(2): 253 − 261.
    [12] 李胜平, 王克林. 人为干扰对桂西北喀斯特山地植被多样性及土壤养分分布的影响[J]. 水土保持研究, 2016, 23(5): 20 − 27.

    LI Shengping, WANG Kelin. Effect of human disturbance on soil nutrient and plant diversity of grassland in karst mountain [J]. Research of Soil and Water Conservation, 2016, 23(5): 20 − 27.
    [13] 魏斌, 张霞, 吴热风. 生态学中的干扰理论与应用实例[J]. 生态学杂志, 1996, 15(6): 50 − 54.

    WEI Bin, ZHANG Xia, WU Refeng. Theoretical analysis of disturbance in ecology and its application [J]. Chinese Journal of Ecology, 1996, 15(6): 50 − 54.
    [14] 丛晓峰, 刘立成, 王宇超, 等. 不同干扰对城市绿化用地土壤物理性质的影响[J]. 中国农学通报, 2015, 31(28): 166 − 172.

    CONG Xiaofeng, LIU Licheng, WANG Yuchao, et al. Influence of different interference on physical properties of urban green space soil [J]. Chinese Agricultural Science Bulletin, 2015, 31(28): 166 − 172.
    [15] 王玲, 冯茂松, 洪志刚, 等. 兴文县香椿人工林土壤物理性质研究[J]. 土壤, 2014, 46(3): 512 − 517.

    WANG Ling, FENG Maosong, HONG Zhigang, et al. Soil physical properties of Toona sinensis plantation in Xingwen County [J]. Soils, 2014, 46(3): 512 − 517.
    [16] 严积有, 徐凯然, 申新山. 放牧干扰对人工林土壤物理性状的影响[J]. 水土保持通报, 2008, 28(6): 138 − 141.

    YAN Jiyou, XU Kairan, SHEN Xinshan. Influences of grazing disturbance on soil physical properties in planted forest [J]. Bulletin of Soil and Water Conservation, 2008, 28(6): 138 − 141.
    [17] 唐明艳, 杨永兴. 不同人为干扰下纳帕海湖滨湿地植被及土壤退化特征[J]. 生态学报, 2013, 33(20): 6681 − 6693.

    TANG Mingyan, YANG Yongxing. Analysis of vegetation and soil degradation characteristics under different human disturbance in lakeside wetland, Napahai [J]. Acta Ecologica Sinica, 2013, 33(20): 6681 − 6693.
    [18] 孙志高, 刘景双, 李彬. 中国湿地资源的现状、问题与可持续利用对策[J]. 干旱区资源与环境, 2006, 20(2): 83 − 88.

    SUN Zhigao, LIU Jingshuang, LI Bin. The actuality, problems and sustainable utilization countermeasures of wetland resources in China [J]. Journal of Arid Land Resources and Environment, 2006, 20(2): 83 − 88.
    [19] 郭二辉, 杨喜田, 陈利顶. 河岸带生态功能认知及河流景观偏好的调查研究[J]. 中国园林, 2017, 33(1): 95 − 99.

    GUO Erhui, YANG Xitian, CHEN Liding. Research of resident’s perceptions to ecological functions of riparian buffers and their preferences for river landscape [J]. Chinese Landscape Architecture, 2017, 33(1): 95 − 99.
    [20] 郭二辉, 方晓, 马丽, 等. 河岸带农田不同恢复年限对土壤碳氮磷生态化学计量特征的影响——以温榆河为例[J]. 生态学报, 2020, 40(11): 3785 − 3794.

    GUO Erhui, FANG Xiao, MA Li, et al. Effects of different recovery years on the ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in riparian farmland: a case study of Wenyu River [J]. Acta Ecologica Sinica, 2020, 40(11): 3785 − 3794.
    [21] LAURANCE S G W, BAIDER C, VINCENT FLORENS F B, et al. Drivers of wetland disturbance and biodiversity impacts on a tropical oceanic island [J]. Biological Conservation, 2012, 149(1): 136 − 142.
    [22] ZHU Xianbin, WANG Lei, ZHANG Xun, et al. Effects of different types of anthropogenic disturbances and natural wetlands on water quality and microbial communities in a typical black-odor river[J/OL]. Ecological Indicators, 2022, 136: 108613[2022-08-25]. doi: 10.1016/j.ecolind.2022.108613.
    [23] BAI Junhong, ZALEWSKI M, ZHOU Demin, et al. Editorial: estuarine wetland ecohydrology and hydrobiology in Yellow River Delta of China, from prospective of intensive human disturbance [J]. Ecohydrology &Hydrobiology, 2020, 20(4): 473 − 474.
    [24] CHI Yuan, SHI Honghua, ZHENG Wei, et al. Spatiotemporal characteristics and ecological effects of the human interference index of the Yellow River Delta in the last 30 years [J]. Ecological Indicators, 2018, 89: 880 − 892.
    [25] 桑凯新, 胡淦林, 黄超, 等. 黄河河岸带5种植物类型根系结构特征对土壤渗透性的影响[J]. 中国水土保持科学, 2020, 18(5): 1 − 8.

    SANG Kaixin, HU Ganlin, HUANG Chao, et al. Effects of root structure characteristics of 5 plant types on soil infiltration in the Yellow River riparian [J]. Science of Soil and Water Conservation, 2020, 18(5): 1 − 8.
    [26] MEITZEN K M, PHILLIPS J N, PERKINS T, et al. Catastrophic flood disturbance and a community’s response to plant resilience in the heart of the Texas Hill Country [J]. Geomorphology, 2018, 305: 20 − 32.
    [27] 杨荣, 塞那, 苏亮, 等. 内蒙古包头黄河湿地土壤碳氮磷含量及其生态化学计量学特征[J]. 生态学报, 2020, 40(7): 2205 − 2214.

    YANG Rong, SAI Na, SU Liang, et al. Ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus of the Yellow River wetland in Baotou, Inner Mongolia [J]. Acta Ecologica Sinica, 2020, 40(7): 2205 − 2214.
    [28] 刘冬, 张剑, 包雅兰, 等. 水分对敦煌阳关湿地芦苇叶片与土壤C、N、P生态化学计量特征的影响[J]. 生态学报, 2020, 40(11): 3804 − 3812.

    LIU Dong, ZHANG Jian, BAO Yalan, et al. Effects of soil moisture on Phragmites australis leaves and soil C, N and P ecological stoichiometric characteristics in Yangguan wetland, Dunhuang [J]. Acta Ecologica Sinica, 2020, 40(11): 3804 − 3812.
    [29] 张潇月, 齐锦秋, 张柳桦, 等. 人为干扰对金马河温江段护岸林物种多样性和土壤理化性质的影响[J]. 植物研究, 2019, 39(1): 78 − 86.

    ZHANG Xiaoyue, QI Jinqiu ZHANG Liuhua, et al. Effects of human disturbance on species diversity and soil physical and chemical properties of revetment forest in Wenjiang Section of the Jinma River [J]. Bulletin of Botanical Research, 2019, 39(1): 78 − 86.
    [30] 何其华, 何永华, 包维楷. 岷江上游干旱河谷典型阳坡海拔梯度上土壤水分动态[J]. 应用与环境生物学报, 2004, 10(1): 68 − 74.

    HE Qihua, HE Yonghua, BAO Weikai. Dynamics of soil water contents on south-facing slope of dry valley area in the upper reaches of the Minjiang River [J]. Chinese Journal of Applied and Environmental Biology, 2004, 10(1): 68 − 74.
    [31] 姚俊宇, 齐锦秋, 张柳桦, 等. 人为干扰对碧峰峡山矾次生林群落物种多样性和土壤理化性质的影响[J]. 生态学杂志, 2018, 37(10): 2942 − 2950.

    YAO Junyu, QI Jinqiu, ZHANG Liuhua, et al. Effects of anthropogenic disturbance on species diversity and soil physicochemical properties of Symplocos sumuntia secondary forest in Bifengxia [J]. Chinese Journal of Ecology, 2018, 37(10): 2942 − 2950.
    [32] 张荣, 李婷婷, 金锁, 等. 人为干扰对蒙顶山木荷次生林物种多样性及土壤理化性质的影响[J]. 浙江农林大学学报, 2020, 37(5): 867 − 875.

    ZHANG Rong, LI Tingting, JIN Suo, et al. Effects of human disturbance on species diversity and soil physiochemical properties of Schima superba community in Mengding Mountain [J]. Journal of Zhejiang A&F University, 2020, 37(5): 867 − 875.
    [33] GUITET S, SABATIER D, BRUNAUX O, et al. Disturbance regimes drive the diversity of regional floristic pools across Guianan Rainforest Landscapes[J/OL]. Scientific Reports, 2018, 8(1): 3872[2022-10-25]. doi: 10.1038/s41598-018-22209-9.
    [34] 吴昊, 马昕昕, 肖楠楠, 等. 土壤物理性质对秦岭松栎林建群种形态及物种多样性的影响[J]. 土壤, 2020, 52(5): 1068 − 1075.

    WU Hao, MA Xinxin, XIAO Nannan, et al. Effects of soil physical properties on morphological traits of constructive trees and species diversity of pine-oak mixed forest in Qinling Mountains [J]. Soils, 2020, 52(5): 1068 − 1075.
    [35] 李茜. 旅游干扰对长白山景区土壤性质及植被群落的影响[J]. 山东农业大学学报(自然科学版), 2015, 46(1): 74 − 77.

    LI Qian. Impacts of tourist disturbance on soil properties and plant communities in the natural reservation area of Changbai Mountain [J]. Journal of Shandong Agricultural University (Natural Science Edition), 2015, 46(1): 74 − 77.
    [36] 杨大新, 巩合德, 潘洋, 等. 人为干扰对轿子山自然保护区典型植物群落及土壤理化性质的影响[J]. 科学技术与工程, 2016, 16(32): 8 − 14.

    YANG Daxin, GONG Hede, PAN Yang, et al. Effects of human disturbance on plant communities and physicochemical soil properties in the natural reservation area of Jiaozi mountain [J]. Science Technology and Engineering, 2016, 16(32): 8 − 14.
    [37] 杨益帆, 胡宗达, 李亚非, 等. 川西亚高山川滇高山栎灌丛地被物与土壤持水性能[J]. 应用与环境生物学报, 2020, 26(4): 951 − 960.

    YANG Yifan, HU Zongda, LI Yafei, et al. Water conservation capacity of ground cover and soils in the subalpine Quercus aquifolioides shrubs in of western Sichuan, China [J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(4): 951 − 960.
    [38] 李松阳, 余杭, 罗清虎, 等. 灾害干扰受损区自然恢复初期土壤物理性质的变化特征[J]. 水土保持学报, 2020, 34(5): 162 − 168.

    LI Songyang, YU Hang, LUO Qinghu, et al. Change characteristics of soil physical properties at the initial natural recovery stage in disaster disturbed and damaged areas [J]. Journal of Soil and Water Conservation, 2020, 34(5): 162 − 168.
    [39] 李静鹏, 徐明锋, 苏志尧, 等. 不同植被恢复类型的土壤肥力质量评价[J]. 生态学报, 2014, 34(9): 2297 − 2307.

    LI Jingpeng, XU Mingfeng, SU Zhiyao, et al. Soil fertility quality assessment under different vegetation restoration patterns [J]. Acta Ecologica Sinica, 2014, 34(9): 2297 − 2307.
    [40] 李裕元, 邵明安, 陈洪松, 等. 水蚀风蚀交错带植被恢复对土壤物理性质的影响[J]. 生态学报, 2010, 30(16): 4306 − 4316.

    LI Yuyuan, SHAO Min’an, CHEN Hongsong, et al. Impacts of vegetation recovery on soil physical properties in the cross area of wind-water erosion [J]. Acta Ecologica Sinica, 2010, 30(16): 4306 − 4316.
    [41] 雷斯越, 郭晋伟, 何亮, 等. 黄土丘陵区退耕坡面草地恢复与土壤物理性质空间分异特征[J]. 水土保持学报, 2021, 35(1): 251 − 258.

    LEI Siyue, GUO Jinwei, HE Liang, et al. Spatial differentiation characteristics of grassland restoration and soil physical properties of slope in hilly-gully region of Loss Plateau [J]. Journal of Soil and Water Conservation, 2021, 35(1): 251 − 258.
  • [1] 曾洪, 陈聪琳, 喻静, 向琳, 孙一淼, 胡明玥, 郝建锋.  人为干扰对雅安苍坪山公园桉树人工林物种多样性和生物量的影响 . 浙江农林大学学报, 2021, 38(2): 253-261. doi: 10.11833/j.issn.20950756.20200312
    [2] 査晶晶, 吴永波, 茆安敏, 朱颖, 李文霞, 杨静.  河岸人工林缓冲带对径流水磷素的截留效果 . 浙江农林大学学报, 2020, 37(4): 639-645. doi: 10.11833/j.issn.2095-0756.20190509
    [3] 张荣, 李婷婷, 金锁, 鱼舜尧, 王宇, 李禹江, 齐锦秋, 郝建锋.  人为干扰对蒙顶山木荷次生林物种多样性及土壤理化性质的影响 . 浙江农林大学学报, 2020, 37(5): 867-875. doi: 10.11833/j.issn.2095-0756.20190554
    [4] 朱晓成, 吴永波, 余昱莹, 李文霞.  太湖乔木林河岸植被缓冲带截留氮素效率 . 浙江农林大学学报, 2019, 36(3): 565-572. doi: 10.11833/j.issn.2095-0756.2019.03.018
    [5] 闫烨琛, 赵廷宁, 张艳, 王美琪, 胡平, 杨凝, 陈童.  不同植物恢复措施对采石矿废弃地土壤物理性质的改良效果及评价 . 浙江农林大学学报, 2019, 36(6): 1062-1068. doi: 10.11833/j.issn.2095-0756.2019.06.002
    [6] 于红卫, 刘志坤, 吕荣金, 罗从军, 吕泽军, 李光耀.  高含水率木竹集成材刨切薄木(竹)表面粗糙度的测定与分析 . 浙江农林大学学报, 2017, 34(4): 711-720. doi: 10.11833/j.issn.2095-0756.2017.04.018
    [7] 李凤, 齐锦秋, 肖辉, 陈玉竹, 谢九龙, 黄兴彦.  基于硬头黄竹材质变异分析的伐竹年龄判定 . 浙江农林大学学报, 2017, 34(5): 849-855. doi: 10.11833/j.issn.2095-0756.2017.05.011
    [8] 伍海兵, 李爱平, 方海兰, 郝冠军.  绿地土壤孔隙度检测方法及其对土壤肥力评价的重要性 . 浙江农林大学学报, 2015, 32(1): 98-103. doi: 10.11833/j.issn.2095-0756.2015.01.014
    [9] 吴胡强, 邵永昌, 庄义琳, 张金池, 韩诚, 刘鑫, 庄家尧.  南京城郊麻栎林坡面土壤体积含水率与侧向流对降雨响应 . 浙江农林大学学报, 2014, 31(5): 683-689. doi: 10.11833/j.issn.2095-0756.2014.05.004
    [10] 梁晶, 方海兰, 郝冠军, 孙倩.  上海城市绿地不同植物群落土壤呼吸及因子分析 . 浙江农林大学学报, 2013, 30(1): 22-31. doi: 10.11833/j.issn.2095-0756.2013.01.004
    [11] 唐晓莉, 马灵飞.  大麻秆芯的物理性质和化学组分 . 浙江农林大学学报, 2010, 27(5): 794-798. doi: 10.11833/j.issn.2095-0756.2010.05.026
    [12] 艾训儒, 易咏梅, 姚兰, 王柏泉, 熊彪.  旅游区人为干扰对森林群落物种多样性的影响 . 浙江农林大学学报, 2010, 27(2): 178-184. doi: 10.11833/j.issn.2095-0756.2010.02.003
    [13] 许慧敏, 张劲峰, 向红梅, 郭华.  不同强度人为干扰对香格里拉亚高山森林树种结构的影响 . 浙江农林大学学报, 2008, 25(5): 591-596.
    [14] 李冬林, 金雅琴, 张纪林, 阮宏华.  秦淮河河岸带典型区域土壤重金属污染分析与评价 . 浙江农林大学学报, 2008, 25(2): 228-234.
    [15] 侯本栋, 马风云, 邢尚军, 宋玉民, 刘艳.  黄河三角洲不同演替阶段湿地群落的土壤和植被特征 . 浙江农林大学学报, 2007, 24(3): 313-318.
    [16] 於琼花, 俞友明, 金永明, 马灵飞.  雷竹人工林竹材物理力学性质 . 浙江农林大学学报, 2004, 21(2): 130-133.
    [17] 关惠元, 西野吉彦, 田中千秋.  纤维饱和点以上含水率木材纵向振动特性 . 浙江农林大学学报, 2002, 19(4): 376-381.
    [18] 李建民, 谢芳, 张思玉, 陈东华, 吴奇仁.  不同干扰强度下光皮桦群落树木物种多样性比较 . 浙江农林大学学报, 2001, 18(4): 359-361.
    [19] 林元泰.  武夷山栲树林恢复生态学研究 Ⅰ. 不同人为干扰尺度对栲树林乔木层区系组成的影响 . 浙江农林大学学报, 2001, 18(3): 252-256.
    [20] 徐凤兰, 魏坦, 刘爱琴.  杉木泡桐混交幼林地土壤的物理性质 . 浙江农林大学学报, 2000, 17(3): 285-288.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220727

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/5/1035

图(2) / 表(4)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  67
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 修回日期:  2023-04-26
  • 录用日期:  2023-04-28
  • 网络出版日期:  2023-09-26
  • 刊出日期:  2023-09-26

黄河河岸带不同人为干扰的土壤物理性质比较

doi: 10.11833/j.issn.2095-0756.20220727
    基金项目:  国家自然科学基金资助项目(41401206);河南省青年人才托举工程项目(2019HTP013)
    作者简介:

    张岩(ORCID: 0009-0009-9939-0160),工程师,从事生态恢复与水土保持研究。E-mail: zhangyan9235@163.com

    通信作者: 郭二辉(ORCID: 0000-0002-9862-7586),副教授,博士,从事河岸带生态恢复与水土保持研究。E-mail: guoerhui@126.com
  • 中图分类号: S152

摘要:   目的  研究人为干扰强度对黄河河岸带土壤物理性质的影响,为黄河河岸带生态系统生态恢复与调控提供科学依据。  方法  2021年10月,在黄河洛阳—郑州段选择地形地貌和地表植被覆盖相对一致的河岸带区域,依据人为踩踏程度的不同,选择3种不同干扰强度的样地类型。按照5×3网格化划分近河岸带200 m×200 m样地,共设置15个样点,系统比较分析不同人为干扰强度(轻度、中度和重度)黄河河岸带土壤容重、土壤含水率、土壤毛管持水量、土壤最大持水量、土壤最小持水量、土壤总孔隙度、土壤毛管孔隙度和土壤非毛管孔隙度等土壤物理性质的差异。  结果  ①随人为干扰强度的增加,土壤容重、土壤非毛管孔隙度逐渐增加;土壤含水率先增加后减小;土壤毛管持水量、土壤最大持水量、土壤最小持水量、土壤总孔隙度与土壤毛管孔隙度逐渐减小。②土壤容重与土壤含水率、土壤毛管孔隙度呈负相关,但未达到显著水平;土壤容重与土壤毛管持水量、土壤最大持水量、土壤最小持水量、土壤总孔隙度呈极显著负相关(P<0.01),与土壤非毛管孔隙度呈极显著正相关(P<0.01)。  结论  过度的人为踩踏等干扰增加了河岸带土壤紧实度,导致土壤物理性质退化以及土壤保水和持水能力降低。图2表4参41

English Abstract

火艳, 招雪晴, 黄厚毅, 等. 观赏石榴表型遗传多样性分析[J]. 浙江农林大学学报, 2020, 37(5): 939-949. DOI: 10.11833/j.issn.2095-0756.20190619
引用本文: 张岩, 张瑞香, 刘占欣, 等. 黄河河岸带不同人为干扰的土壤物理性质比较[J]. 浙江农林大学学报, 2023, 40(5): 1035-1044. DOI: 10.11833/j.issn.2095-0756.20220727
HUO Yan, ZHAO Xueqing, HUANG Houyi, et al. Phenotypic genetic diversity of ornamental pomegranate cultivars[J]. Journal of Zhejiang A&F University, 2020, 37(5): 939-949. DOI: 10.11833/j.issn.2095-0756.20190619
Citation: ZHANG Yan, ZHANG Ruixiang, LIU Zhanxin, et al. Comparison of soil physical properties under different human disturbances in the Yellow River riparian zone[J]. Journal of Zhejiang A&F University, 2023, 40(5): 1035-1044. DOI: 10.11833/j.issn.2095-0756.20220727
  • 土壤物理性质反映土壤结构的稳定性,在一定程度上可以表征土壤的质量与退化状况[1]。除地形地貌、土壤特征、降雨差异和植被类型等外[2],人类活动也是影响土壤性质和土壤形成过程的重要因素[34]。适度的干扰会对物种多样性和生物量以及种群、群落、生态系统甚至整体景观格局有正向促进作用,而长期的人为干扰会造成土壤压实,降低土壤团聚体稳定性、持水能力和微生物活性等[5]。郭宝宝[6]通过研究不同人为干扰强度对森林土壤水分物理性质的影响发现:土壤容重随人为干扰强度的增加呈明显增加的趋势。庞学勇等[7]通过研究人为干扰对川西亚高山针叶林土壤物理性质的影响发现:随人为干扰强度的增加,土壤粉粒、黏粒含量和大团聚体数量减少,土壤表层孔隙度减小,土壤有效水降低。张希彪等[8]通过研究人为干扰对黄土高原子午岭油松Pinus tabuliformis人工林土壤物理性质的影响发现:随人为干扰强度的增加,0~50 cm土层土壤砂粒含量均增加,粉粒含量与黏粒含量均下降,土壤容重增加了0.11~0.41 g·cm−3,土壤总孔隙度、毛管孔隙度、非毛管孔隙度、毛管持水量、自然含水量、饱和持水量、田间持水量和土壤有效水含量均下降。人为干扰通过影响土壤物理性质会改变地表径流和土壤侵蚀程度[9],进而影响植物群落分布[10]、物种多样性和生物量[11]、土壤养分含量[12]以及生态系统稳定性[13]。目前,不同程度人为干扰对土壤物理性质的影响多集中在城市绿化用地[14]、山地和森林[1516]、湖滨湿地[17]等方面,而针对河岸带湿地的研究相对较少。

    河岸带是一种生态交错带类型,是水陆交互影响下形成的特殊生境和生态系统,具有防止河岸侵蚀与水土流失、调节洪水、净化水质、维持生物多样性等生态功能[1819]。河岸带生态系统是一个脆弱的、易受水文、人类活动等干扰而退化的生态区域,具有明显的边缘效应和独特的生态过程[20],且其退化和破坏速度显著快于其他陆地生态系统[21]。农业开垦、城市开发、水利工程、道路和桥梁的修建等人为干扰影响植被类型演替[2223],造成河岸带退化,加剧水土流失,危害河岸带景观的连续性,破坏了河岸带生态服务功能,严重威胁河岸带生态系统安全与健康[2426]

    本研究以黄河中下游河岸带为例,根据实地调研结果,对不同干扰强度(轻度干扰、中度干扰、重度干扰)河岸带的土壤物理性质进行调查,分析河岸带土壤物理性质随土层深度的变化规律,对比不同干扰强度河岸带土壤物理性质的差异,探索不同干扰强度河岸带土壤物理性质的相互关系,为河岸带的生态修复和管理提供理论依据。

    • 以黄河流域中下游洛阳—郑州段河岸带湿地作为研究对象,地理位置为34.823°~34.980°N,112.777°~113.665°E。研究区春季干旱少雨,夏季炎热多雨,秋季凉爽,冬季气候干燥雨雪稀少。年平均气温为15.0 ℃,最冷月平均气温为0 ℃;最热月平均气温为27.0 ℃,年均降水量为610.0 mm。主要植被类型有芦苇Phragmites australis、白茅Imperata cylindrica、狗牙根Cynodon dactylon、雀麦Bromus japonicus、柽柳Tamarix chinensis等。

    • 在黄河洛阳—郑州段选择地形地貌和地表植被覆盖相对一致的河岸带区域,依据人为踩踏程度的不同,选择3种不同干扰强度的样地类型,分别为洛阳市偃师市邙岭乡轻度干扰河岸带、郑州市巩义市S237省道大桥中度干扰河岸带、郑州市黄河湿地公园重度干扰河岸带。样地具体情况如表1所示。其中,洛阳市偃师市邙岭乡河岸带位于黄河保护区内,周围采用栅栏圈围,受人为干扰程度较小,人流量20人·周−1;郑州市巩义市S237省道大桥下河岸带人流量50人·周−1;郑州市黄河湿地公园河岸带人类活动较多,人流量120人·周−1

      表 1  研究区样地概况

      Table 1.  Basic condition of study piots

      干扰强度地理位置北纬(N)东经(E)海拔/m优势植被
      轻度 洛阳市偃师市邙岭乡 34.823° 112.785° 91 芦苇、白茅、雀麦、狗牙根、柽柳
      中度 郑州市巩义市S237省道大桥 34.839° 113.060° 87 芦苇、白茅、雀麦、狗牙根
      重度 郑州市黄河湿地公园 34.841° 113.140° 88 白茅、雀麦、狗牙根

      2021年10月,在3种不同干扰强度的区域内选择近河岸带200 m×200 m样地,进行5×3网格化划分,共设置15个样点,记录每个样点的经纬度。以每个网格划分点为中心采样点设置5 m×5 m大样方,在每个大样方内随机设置3个1 m×1 m的小样方,用环刀法与土钻法分层采集0~10、10~20、20~30 cm土层样品,分别装入带编号的密封袋内。

    • 土壤容重采用环刀法测定,土壤含水率采用烘干法测定,土壤毛管持水量、土壤最大持水量、土壤最小持水量、土壤总孔隙度、土壤毛管孔隙度和土壤非毛管孔隙度采用浸水法测定[1]

      采用Excel 2016和SPSS 25.0软件进行数据处理和分析。采用单因方差分析(one-way ANVOA)检验不同干扰程度土壤物理性质的差异显著性;采用 Pearson 相关分析法分析土壤物理性质之间的相关性;采用Origin 2019绘图。

    • 图1可见:河岸带土壤总孔隙度、土壤毛管孔隙度随人为干扰程度的增加而减小;土壤容重、土壤非毛管孔隙度随人为干扰强度的增加而增加。河岸带0~30 cm土层土壤容重为1.28~1.41 g·cm−3,均值为1.37 g·cm−3,中度、重度干扰土壤容重显著(P<0.05)高于轻度干扰。河岸带0~30 cm土层土壤总孔隙度为44.5%~49.8%,均值为46.6%,中度和重度干扰土壤总孔隙度显著(P<0.05)低于轻度干扰;河岸带0~30 cm土层土壤毛管孔隙度为41.0%~43.1%,均值为42.0%,轻度干扰土壤毛管孔隙度显著(P<0.05)高于重度干扰;河岸带0~30 cm土层土壤非毛管孔隙度为7.1%~14.5%,均值为11.4%,中度、重度干扰土壤非毛管孔隙度显著(P<0.05)高于轻度干扰。

      图  1  不同人为干扰强度对黄河河岸带0~30 cm土层土壤容重和土壤孔隙度的影响

      Figure 1.  Effects of different human disturbance intensity on soil bulk density and porosity of 0−30 cm riparian zone of Yellow River

      表2可见:3种不同人为干扰强度河岸带土壤容重均随土层深度增加而增加,但均无显著差异。轻度、重度干扰的土壤总孔隙度、土壤毛管孔隙度和土壤非毛管孔隙度在3个土层间均无显著差异。中度干扰下,0~10 cm土层土壤总孔隙度、土壤毛管孔隙度显著高于20~30 cm土层,而中度干扰下20~30 cm土层土壤非毛管孔隙度显著(P<0.05)高于0~10 cm土层。

      表 2  不同人为干扰程度下土壤容重与土壤孔隙度分布特征

      Table 2.  Distribution characteristics of soil density and porosity under different degrees of human disturbance

      干扰强度土层深度/cm土壤容重/(g·cm−3)土壤总孔隙度/%土壤毛管孔隙度/%土壤非毛管孔隙度/%
      轻度0~101.24±0.03 a50.73±0.79 a43.85±0.82 a5.42±1.38 a
      10~201.26±0.02 a49.38±0.88 a42.57±0.59 a8.05±1.18 a
      20~301.32±0.03 a49.45±0.82 a42.86±0.79 a7.69±1.34 a
      中度0~101.40±0.02 a47.46±1.02 a43.70±0.73 a8.83±1.71 b
      10~201.41±0.02 a44.92±0.88 ab41.45±0.87 ab13.63±1.70 ab
      20~301.43±0.02 a43.65±1.13 b40.39±1.00 b15.96±2.09 a
      重度0~101.41±0.02 a44.72±0.68 a41.35±0.61 a13.93±1.27 a
      10~201.41±0.01 a43.81±0.56 a40.41±1.60 a15.78±1.14 a
      20~301.42±0.01 a45.02±0.79 a41.32±0.74 a13.66±1.51 a
        说明:不同小写字母表示不同土层间差异显著(P<0.05)。
    • 图2可见:河岸带0~30 cm土层土壤含水率为13.00%~24.29%,均值为17.86%,中度干扰土壤含水率显著(P<0.05)高于轻度、重度干扰。与轻度干扰相比,中度干扰土壤含水率显著增加了32.9%,重度干扰土壤含水率减少了25.43%。河岸带土壤毛管持水量、土壤最大持水量与土壤最小持水量随人为干扰强度的增加而减小。河岸带0~30 cm土层土壤毛管持水量为168.80~185.96 g·kg−1,均值为176.79 g·kg−1,轻度干扰土壤毛管持水量显著(P<0.05)高于重度干扰。河岸带0~30 cm土层土壤最大持水量为182.23~217.87 g·kg−1,均值为196.50 g·kg−1,轻度干扰土壤最大持水量显著(P<0.05)高于中度和重度干扰。河岸带0~30 cm土层土壤最小持水量为148.99~165.50 g·kg−1,均值为156.91 g·kg−1,轻度干扰土壤最小持水量显著(P<0.05)高于重度干扰。

      图  2  不同人为干扰强度对黄河河岸带0~30 cm土层土壤水分特征的影响

      Figure 2.  Effects of different human disturbance intensity on river soil moisture characteristics of 0−30 cm riparian zone of Yellow River

      表3可见:轻度干扰河岸带0~10 cm土层土壤最小持水量显著(P<0.05)高于20~30 cm土层。中度干扰河岸带0~10 cm土层土壤最大持水量显著(P<0.05)高于20~30 cm土层。其他不同土层间土壤含水率、土壤毛管持水量、土壤最大持水量与土壤最小值持水量均无显著差异。

      表 3  不同人为干扰强度下土壤水分分布特征

      Table 3.  Characteristics of soil moisture distribution under different degrees of human disturbance

      干扰强度土层深度/cm土壤含水率/%土壤毛管持水量/(g·kg−1)土壤最大持水量/(g·kg−1)土壤最小持水量/(g·kg−1)
      轻度0~1018.58±3.19 a195.71±3.48 a227.13±5.87 a175.99±3.87 a
      10~2016.15±2.37 a189.83±2.90 a219.42±5.55 a169.02±2.02 ab
      20~3014.17±2.13 a172.33±2.44 a207.06±6.83 a151.49±1.49 b
      中度0~1025.71±3.64 a186.28±6.18 a199.37±6.50 a166.16±6.18 a
      10~2023.79±3.61 a173.14±5.71 a186.63±5.49 ab153.29±5.93 a
      20~3023.36±3.28 a167.45±5.40 a179.19±5.16 b149.27±5.46 a
      重度0~1013.07±2.67 a170.32±3.03 a184.25±3.26 a150.91±2.59 a
      10~2012.83±2.54 a166.74±2.27 a180.90±2.71 a146.81±2.31 a
      20~3013.09±2.37 a169.35±3.48 a184.55±3.84 a149.26±3.25 a
        说明:不同小写字母表示不同土层间差异显著(P<0.05)。
    • 相关性分析表明(表4):土壤含水率与土壤毛管孔隙度、土壤最小持水量、土壤毛管孔隙度呈极显著(P<0.01)正相关,与土壤最大持水量呈显著(P<0.05)正相关,与土壤非毛管孔隙度呈显著(P<0.05)负相关;土壤容重与土壤毛管孔隙度、土壤最大持水量、土壤最小持水量、土壤总孔隙度呈极显著(P<0.01)负相关,与土壤非毛管孔隙度呈极显著(P<0.01)正相关。

      表 4  黄河河岸带土壤物理性质之间的相关性

      Table 4.  Correlation between soil physical properties in riparian zone

      相关性含水率容重毛管持水量最大持水量最小持水量总孔隙度毛管孔隙度
      容重 −0.067 1
      毛管持水量 0.304** −0.508** 1
      最大持水量 0.170* −0.788** 0.802** 1
      最小持水量 0.366** −0.522** 0.980** 0.775** 1
      总孔隙度 0.119 −0.516** 0.613** 0.879** 0.574** 1
      毛管孔隙度 0.244** −0.058 0.626** 0.545** 0.608** 0.755** 1
      非毛管孔隙度 −0.185* 0.339** −0.659** −0.783** −0.628** −0.953** −0.918**
        说明:*表示P<0.05,**表示P<0.01。
    • 土壤水分是植被生长的物质基础,影响着植被群落的演替和土壤养分的变化[10]。研究区黄河河岸带的土壤容重(1.28~1.41 g·cm−3)高于纳帕海湖滨湿地(1.00~1.30 g·cm−3)[17]和包头黄河湿地(1.01~1.49 g·cm−3)[27],低于敦煌阳关湿地(1.37~1.50 g·cm−3)[28]。研究区土壤含水率(13.00%~24.29%)低于金马河温江段护岸林地(21.46%~28.02%)[29]、包头黄河湿地(23.63%~57.32%)[27]、敦煌阳关湿地(8.82%~32.54%)[28],表明研究区黄河河岸带湿地的土壤含水量相对较低。

      本研究发现:在0~30 cm各土层土壤含水率从高到低均为中度干扰、轻度干扰、重度干扰。张潇月等[29]研究发现:土壤含水量随着干扰强度的增加而减小,这与本研究结果不一致。中度干扰河岸带土壤含水率比轻度干扰显著增加了32.88%,可能是因为中度干扰对河岸带属于增益性干扰,可见适度人为干扰可以提高土壤蓄水保水能力,在土壤肥力和固碳增汇等方面起到更好的作用[3031]。尤誉杰等[4]研究不同人为干扰措施对天然次生灌丛土壤肥力及蓄水能力的影响发现:适度人为干扰可以提高土壤蓄水保水能力,但人为干扰越强对河岸带土壤水分的负向影响就越大[32]。人为干扰强度增加超过河岸带生态系统承受范围,会导致地表的裸露程度增大,植物对土壤的保水能力下降,地表蒸发随之增加,土壤水分不易保持[9],从而导致重度干扰河岸带土壤含水率比轻度干扰减少了25.4%。土壤含水率对土壤有机质的分解和氮的转化及有效性有积极影响[14],重度人为干扰导致土壤含水率下降,影响植物生长发育,进而可能导致群落逐渐向逆向演替的方向发展,湿生的植被逐渐被中生和旱生的植被所替代。GUITET等[33]通过研究雨林发现:干扰是自然生态系统功能中多样性维持的重要驱动力,零星的强烈干扰及持续性的中等干扰会显著增加景观植物多样性;但当干扰更加频繁或更强烈时,景观植物多样性会略微减少。

      土壤水分的蓄持能力和供给状况是限制植物生存的主要条件。土壤容重反映了土壤的紧实度,并直接影响土壤孔隙状况。土壤最大持水量、土壤毛管孔隙度分别反映了土壤的蓄水和供水能力[34],土壤非毛管孔隙直接影响着土壤透气与渗水能力。本研究发现:与轻度干扰相比,中度、重度干扰河岸带土壤容重分别显著增加了9.63%和9.75%;土壤总孔隙度、土壤毛管孔隙度分别显著减少了9.93%和11.98%、2.98%和5.05%,这与李茜[35]、杨大新等[36]的研究结果一致。土壤非毛管孔隙度是指孔隙直径大于0.1 mm的土壤孔隙所占土壤体积的百分比。本研究表明:土壤非毛管孔隙度随人为干扰强度增加而增加,这与张希彪等[8]的研究结果一致。中度和重度干扰河岸带土壤毛管持水量比轻度干扰分别减少了15.64%和18.90%,中度和重度干扰河岸带土壤最大持水量比轻度干扰分别减少了5.88%和10.16%,中度和重度干扰河岸带土壤最小持水量比轻度干扰分别显著减少了5.93%和11.08%,也证明人为干扰强度增加显著降低了河岸带土壤的蓄水和供水能力。这可能是因为随着人为踩踏等干扰强度的增加,河岸带土壤紧实度增加,直接或间接影响了土壤的颗粒组成以及团聚体数量和大小,从而导致土壤保水和持水能力下降,并导致土壤入渗能力降低,土壤的抗蚀能力下降,最终导致土壤退化[8]

    • 相关性分析表明:土壤容重与土壤毛管持水量、土壤最大持水量、土壤最小持水量、土壤总孔隙度呈极显著负相关,与土壤非毛管孔隙度呈极显著正相关。郭宝宝[6]在研究格氏栲Castanopsis kawakamii自然保护区时发现:土壤容重分别与土壤总孔隙度、土壤毛管孔隙度、土壤毛管持水量、土壤最大持水量、土壤最小持水量呈极显著负相关。丛晓峰等[14]在陕西省植物园的研究发现:土壤容重与土壤总孔隙度、土壤通气孔隙度、土壤田间持水量、土壤自然含水量、土壤饱和导水率之间呈极显著负相关。这表明土壤容重与土壤持水量呈负相关。土壤容重随土壤总孔隙度、土壤毛管孔隙度、土壤持水量的减小而显著增加,土壤中储存的有效水就越少,河岸带土壤持水能力就越差[37]。这说明土壤容重可以作为衡量土壤物理性质变化的重要指标之一。

      长期和过度的人为干扰会显著影响河岸带土壤的含水量和容重等物理性质,进而对黄河河岸带滩涂湿地生态系统造成不可逆的胁迫和退化。研究表明:植被自然恢复过程能改善土壤的通气透水能力等物理性质[38],从而在一定程度上可以有效改善脆弱和退化生态系统环境[39]。李裕元等[40]在黄土高原北部的交错带研究表明:植被恢复可以降低土壤容重,增加土壤孔隙度,但是短期内(<30 a)植被恢复对土壤颗粒组成并无显著影响,需要长期的植被恢复过程才能有所改善[39]。因此,需要继续加强对不同人为干扰强度下河岸带滩涂湿地土壤特征的监测和研究,并进行合理的生态管理以维持河岸带生态系统的健康[41]

    • 本研究表明:黄河下游河岸带3种不同干扰强度的土壤含水率为13.0%~24.3%,均值为17.9%,中度干扰可以提高土壤含水率。土壤容重为1.28~1.41 g·cm−3,中度、重度干扰土壤容重显著高于轻度干扰。土壤的总孔隙度、毛管孔隙度、毛管持水量、最大持水量和最小持水量均随人为干扰强度的增加而减小。土壤容重、非毛管孔隙度随人为干扰强度的增加而增加。人为干扰对土壤物理性质的影响主要集中在0~10 cm表层土壤。

      土壤含水率与土壤毛管孔隙度、土壤最小持水量、土壤毛管孔隙度呈极显著正相关,与土壤最大持水量呈显著正相关,与土壤非毛管孔隙度呈显著负相关。河岸带区域过度的人为干扰会显著影响河岸带土壤的水分含量和容重等物理性质变化,进而造成河岸带滩涂湿地土壤质量的退化。

参考文献 (41)

目录

/

返回文章
返回