留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

香榧种实充实期叶面施肥对种实品质的影响

郝琪淳 谢吉全 戴文圣 李柯豫 俞晨良 喻卫武

柯星星, 刘亚坤, 徐雪珍, 等. 功能丧失突变透示ATS1对拟南芥种子发育的非必需作用[J]. 浙江农林大学学报, 2023, 40(4): 707-713. DOI: 10.11833/j.issn.2095-0756.20220738
引用本文: 郝琪淳, 谢吉全, 戴文圣, 等. 香榧种实充实期叶面施肥对种实品质的影响[J]. 浙江农林大学学报, 2024, 41(3): 457-466. DOI: 10.11833/j.issn.2095-0756.20230194
KE Xingxing, LIU Yakun, XU Xuezhen, et al. Loss-of-function mutations in ATS1 reveal its dispensable role in normal seed development of Arabidopsis thaliana[J]. Journal of Zhejiang A&F University, 2023, 40(4): 707-713. DOI: 10.11833/j.issn.2095-0756.20220738
Citation: HAO Qichun, XIE Jiquan, DAI Wensheng, et al. Effect of foliar fertilization on seed quality of Torreya grandis ‘Merrillii’ during seed filling period[J]. Journal of Zhejiang A&F University, 2024, 41(3): 457-466. DOI: 10.11833/j.issn.2095-0756.20230194

香榧种实充实期叶面施肥对种实品质的影响

DOI: 10.11833/j.issn.2095-0756.20230194
基金项目: 浙江省“尖兵”“领雁”研发攻关计划项目(2022C02061);浙江省重大科技专项(2021C02066-11);浙江省省院合作林业科技项目(2021SY11,2022SY14)
详细信息
    作者简介: 郝琪淳(ORCID: 0009-0005-0796-3293),从事经济林培育研究。E-mail: ZAFUhqc@163.com
    通信作者: 喻卫武(ORCID: 0000-0003-4246-4287),高级实验师,从事经济林栽培与产品分析研究。E-mail: yww888@zafu.edu.cn
  • 中图分类号: S725.5;Q945.1

Effect of foliar fertilization on seed quality of Torreya grandis ‘Merrillii’ during seed filling period

  • 摘要:   目的  以香榧Torreya grandis ‘Merrillii’种实充实期补肥作为切入点,研究香榧种实的外观性状、营养品质、元素质量分数、花芽分化、膨大坐果等,以期为补充树体营养及提高种实品质提供理论依据。  方法  在6—8月香榧种实充实期,施用清水作为对照,并喷施7种商品叶面肥进行处理(氨基酸水溶肥、黄腐酸水溶肥、活力钾水溶肥、高力钙水溶肥、液体硼水溶肥、微量元素水溶肥、大量元素水溶肥),测定香榧种实外形、含油率及脂肪酸组分、粗蛋白质量分数、淀粉质量分数、可溶性糖质量分数、成花强度等指标,分析施肥对香榧种实品质的影响。  结果  喷施氨基酸水溶肥和大量元素水溶肥能显著(P<0.05)增加香榧种实的核形指数、单核质量、出核率、仁型指数、单仁质量,显著(P<0.05)降低淀粉质量分数,明显提高油脂质量分数、可溶性糖质量分数及成花强度,其中氨基酸水溶肥处理的香榧种实单核质量较对照提高9.8%,淀粉质量分数较对照减少1.9%;大量元素水溶肥处理的香榧种实单仁质量、油脂质量分数、可溶性糖质量分数较对照分别增加9.5%、11.9%、15.9%。同时,喷施氨基酸水溶肥对香榧种实金松酸相对含量起到显著(P<0.05)的促进作用,较对照增加15.9%;喷施大量元素水溶肥香榧种实不饱和脂肪酸相对含量较对照显著(P<0.05)增加4.2%。此外,高力钙水溶肥对香榧种实出仁率、成花强度和坐果率具有促进作用,较对照分别提高3.3%、17.1%和10.9%;活力钾水溶肥较对照显著(P<0.05)提高香榧种实蛋白质质量分数13.6%。通过主成分分析发现:氨基酸水溶肥处理的香榧种实品质综合评分最高。  结论  喷施不同叶面肥对香榧种实品质的作用存在差异,氨基酸水溶肥处理的效果最佳,高力钙水溶肥、大量元素水溶肥次之。图3表5参29
  • 甘油脂包括甘油磷脂和甘油糖脂,是细胞膜及信号分子的重要组成部分,参与广泛的生理生化过程,在植物生长发育过程中发挥重要作用[15]。在高等植物中,甘油脂的合成涉及2条途径,即在质体外进行真核合成途径和质体中进行原核合成途径[67]。在原核合成途径中,由ATS1基因编码的3-磷酸甘油酰基转移酶(glycerol-3-phosphate acyltransferases,GPAT)催化甘油脂生物合成途径的第一步酰化反应,该反应被认为是关键的限速步骤[810]

    有关质体中ATS1基因的克隆与功能已有较多研究[1113]。随着现代分子生物学的发展,人们已从南瓜Cucurbita moschata、红花Carthamus tinctorius、向日葵Helianthus annuus和油菜Brassica napus等植物中分离鉴定了多个与拟南芥Arabidopsis thaliana ATS1同源的基因[1417]。这些ATS1基因表现出多种生理功能,在植物生长发育和抗逆性中发挥着重要作用。如YAN 等[18]研究发现:在烟草Nicotiana tabacum中异源表达甜椒Caspsicum frutescens质体ATS1基因可增强转基因烟草对高温胁迫的耐受性。KANG等[17]报道甘蓝型油菜BnATS1的过表达增加了细胞膜中多不饱和脂肪酸的积累,从而促进了甘蓝型油菜在低温条件下的生长。另有研究表明:ATS1在植物高盐和低磷等非生物胁迫中具有重要作用[1920]

    然而,ATS1在植物正常生长发育中的功能并不完全清楚。KUNST等[21]利用EMS诱变创制了多个拟南芥ats1突变体,尽管这些突变体叶片的质体中脂肪酸组分发生了急剧变化,但是ATS1基因上的点突变并未对种子发育产生明显影响。相反,在高于28 ℃的温度条件下,突变体的生长速度比野生型略快。与上述ats1表型不一致的是,ATS1基因的T-DNA插入纯合突变体呈现败育现象, 并且发现运用RNAi干扰技术下调ATS1基因的表达会导致植株变小、胚胎发育受阻、种子结实率下降[9]。目前,尚不清楚造成这种不一致性的真正原因,但一种可能原因是,转基因植株中的T-DNA可能会干扰其插入位点或上下游基因的功能,从而对表型产生某种影响。

    为了进一步明确ATS1在拟南芥正常生长发育中的功能,本研究利用现代基因编辑技术,采用优化后的CRISPR/Cas9基因编辑载体对ATS1基因进行定点编辑,创建功能丧失型突变体,并分析 ATS1基因功能的丧失对拟南芥生长发育的影响,有助于进一步了解高等植物中甘油脂原核合成途径在植物生长发育过程中的作用。

    野生型拟南芥为哥伦比亚生态型(Col-0),购自美国索尔克生物研究所(Salk Institute for Biological Studies),编号为SALK_063776。

    1.2.1   ats1突变体的构建

    参照 WANG 等[22]和朱丽颖等[23]的方法进行CRISPR/Cas9靶序列的设计和目的基因载体的构建。运用CRISPR在线设计软件(http://www.genome.arizona.edu/crispr/CRISPRsearch.html)筛选目标基因的靶序列。并对选择的靶序列进行分析,最终从拟南芥ATS1基因中分别选取了GC含量较高、基因特异性较强的2个关键片段ATS1 target sequence 1 (5′- CGAAGAGTCGACGAAGCGAG-3′)和 ATS1 target sequence 2 (5′-TAGTCATTCCCGTACTTTCT-3′)作为靶序列。之后,以1 mg·L−1的pCBC-DT1T2 为模板进行四接头引物(5′-GGAAGAGTCGACGAAGCGA-3′,5′-AGAAAGTACGGGAATGACT-3′,5′-GGAAGAGTCGTCGACGAAGCGAG-3′和 5′-AGAAAGTACGGGAATGACTC-3′) PCR 扩增并纯化回收PCR产物。 同时用BsaI酶切回收的PCR产物和骨架载体pHEE401,经T4连接酶连接,获得具有2个靶序列的CRISPR/Cas9基因编辑载体。

    1.2.2   拟南芥的遗传转化

    所用植物材料为拟南芥Col-0,植物生长的昼夜温度为22 ℃/18 ℃,湿度为40%,光照/黑暗时长分别为14 h/10 h。参考李丹丹等[24]的方法使用农杆菌Agrobacterium tumefaciens转化法将基因编辑载体转化至拟南芥。

    1.2.3   拟南芥突变体的筛选与分子鉴定

    以种子专一表达的At2S3基因启动子驱动荧光蛋白报告基因 mCherry 的表达,将这一筛选标记克隆至CRISPR/Cas9编辑载体中[23]。由于mCherry荧光蛋白在蓝光激发下会发出红光,因此可将获得的成熟转基因拟南芥T1代种子置于荧光显微镜下,筛选蓝色激发光下发出红光的种子,即为转基因阳性种子。

    种植筛选获得的T1代转基因阳性种子,30 d后,提取植株叶片的DNA,作为模板进行PCR扩增。根据拟南芥参考基因组,分别在靶序列上下游约100 bp设计PCR引物(ATS1-FP:5′-TCACCAAACACGCTTTAATGAC-3′和ATS1-RP:5′-AGACATGGCTCTCACACTAACG-3′)。将PCR产物经质量浓度为8%的非变性聚丙烯酰胺凝胶电泳(PAGE),筛选出与对照电泳条带不同的株系,即为发生了基因编辑的株系。将这些株系的PCR产物进行测序验证,并收获T2代种子。

    每个株系挑选16粒不含红色荧光的T2代种子进行种植。1个月后提取叶片基因组DNA进行PCR扩增。综合PCR产物的PAGE和测序结果,挑选靶序列发生纯合突变的植株,即获得了不含转基因的ATS1基因突变株系。将这些株系重新编号,并收获T3代种子,进行扩繁,用于后续实验。

    脂质提取步骤参考徐雪珍等[25]的方法。取播种4周的拟南芥叶片至研钵中,加入液氮充分研磨成粉末,称取100 mg样本转入12 mL离心管。经过6 mL氯仿-甲醇-甲酸溶液(体积比为10∶10∶1)和 2 mL氯仿-甲醇-水溶液(体积比为5∶5∶1)提取液的2次抽提,并合并2次上清液,加入3 mL含0.2 mol·L−1磷酸和1.0 mol·L−1氯化钾的混合溶液,提取下层氯仿相。 萃取液用氮气吹干,加入200 μL氯仿溶解萃取物,再加入2 mL 体积分数为1%硫酸-甲醇溶液,80 ℃加热2 h,对油脂的脂键进行充分的水解。之后置于冰上,加入2 mL 正己烷及1 mL质量浓度为 0.9%的生理盐水,对脂肪酸甲酯进行萃取,取上层相转至新的12 mL离心管中,萃取2次,合并萃取液,萃取液通过氮吹法浓缩至100 μL。最后,利用气相色谱仪分析叶片脂肪酸组分。每个株系设置3 个生物学重复。

    取播种后30 d的植株整个地上部,放入12 mL玻璃管中,加入3 mL 体积分数为80%的丙酮溶液, 4 ℃下避光保存 14 h后,测定叶绿素。 每个株系设置5个生物学重复。

    选取播种后28 d的拟南芥植株整个地上部分,称取鲜质量。 每个株系设置 10 个生物学重复。

    选取播种后60 d的植株果荚,测量每个果荚的种子数量,并通过体视显微镜进行拍照。 每个株系设置5 个生物学重复。

    数据以平均值±标准差表示,并通过GraphPad Prism 6 软件进行统计分析。通过t检验或单因素方差分析进行组间差异比较,显著性水平为0.05。

    运用农杆菌介导法将含ATS1靶序列的CRISPR/Cas9基因编辑载体(含mCherry报告基因)转到拟南芥中,并筛选带荧光的T1代转基因种子(图1A)。随后,采用聚丙烯酰胺凝胶电泳法鉴定转基因阳性植株中 ATS1 基因编辑产物的PCR扩增片段特性(图1B)。经连续多代筛选,从不同转基因株系的后代分离群体中获得 3个纯合且稳定遗传的突变体,分别命名为ats1-1、ats1-2、ats1-3。同时,对这些突变体的自交后代进行连续多代的PCR检测与荧光观察,获得不含任何外源T-DNA插入片段的突变体,这些突变体中既不含Cas9基因,也不带荧光蛋白报告基因(mCherry)。

    图 1  转基因拟南芥的mCherry荧光蛋白鉴定与ATS1编辑产物的聚丙烯酰胺凝胶电泳鉴定
    Figure 1  Screening of transgenic plants carrying the mCherry fluorescent protein and those with CRISPR/Cas9-edited ATS1 gene product

    进而,对这些突变体的靶位点附近序列进行测序分析,结果显示这些突变体的突变位点均位于第 1 个外显子上(图2)。在ats1-1突变体中,ATS1基因的92~314 bp (相对起始密码子ATG的位置)处发生215 bp 碱基缺失和8 bp 碱基替换。在ats1-2中,ATS1基因在2个位置发生1 bp 碱基插入,分别位于91 和293 bp 处。在ats1-3中,ATS1基因的91~92 bp之间存在7 bp 碱基插入,而在275~289 bp 间发生11 bp 碱基缺失和4 bp 碱基替换(表1)。上述这些突变大多位于 PAM 序列(NGG)的切割位点附近,其特点是ATS1基因的第1个外显子的碱基数呈非3的倍数的插入或缺失,从而导致移码突变或翻译提前终止,且由之产生的蛋白不含酰基转移酶保守结构域。这些结果表明,上述3个ATS1基因突变体均属功能丧失型突变体。这些突变体可成为ATS1基因功能研究的理想遗传材料。

    图 2  不同ats1突变体中ATS1基因的突变位点序列
    Figure 2  Sequences of mutational sites in ATS1 gene in different ats1 mutants
    表 1  不同ats1突变体名称及其相应突变位点序列信息
    Table 1  Designation of different ats1 mutants and the sequences of corresponding mutational sites
    突变体突变位点
    ats1-1 92~314 bp:215 bp缺失;8 bp替换
    ats1-2 91~92 bp:插入1 bp;293~294 bp:插入1 bp
    ats1-3 91~92 bp:7 bp插入;275~289 bp:11 bp缺失,
     4 bp替换
    下载: 导出CSV 
    | 显示表格

    ATS1是甘油脂原核合成途径中参与第一步酰化反应的关键酶,过去的研究表明,ATS1基因突变会改变膜脂组分及脂肪酸组分,特别是质体中的C16:3含量急剧下降[6]。对生长 4周的拟南芥植株叶片进行脂肪酸组分分析显示:与野生型相比,3个突变体(ats1-1、ats1-2和ats1-3)中不饱和脂肪酸C16:3的含量急剧下降,而不饱和脂肪酸C18:3的含量显著增加(表2),这与过去基于EMS诱变产生的ATS1突变体的脂肪酸组分变化完全一致[6]。因为质体外的甘油脂不含C16:3,其通常存在于质体中的单半乳糖基二酰基甘油 (monogalactosyldiacylglycerol,MGDG)骨架的sn-2位置[6, 21],因此,ats1-1、ats1-2和ats1-3中C16:3的大幅降低,印证了这些突变体中参与甘油脂原核合成途径中第一步酰化反应的ATS1基因的功能丧失。

    表 2  野生型拟南芥与ats1突变体叶片的脂肪酸组分
    Table 2  Leaf fatty acid composition of ats1 mutants and wild-type A. thaliana
    脂肪酸 脂肪酸组分含量/%
    C16:0 C16:1 C16:3 C18:0 C18:1 C18:2 C18:3
    WT  14.91±0.73 a 7.35±0.53 a 11.56±0.38 a 6.17±1.55 a 4.37±0.59 b 14.89±1.30 b 38.50±3.04 b
    ats1-1 11.91±0.65 b 5.55±0.69 b 0.70±0.15 b 3.89±0.87 a 8.65±0.75 a 18.61±0.54 a 49.14±2.24 a
    ats1-2 11.20±0.18 b 5.93±0.89 ab 0.65±0.15 b 4.67±0.32 a 8.89±1.06 a 18.67±0.98 a 48.31±1.68 a
    ats1-3 12.29±0.81 b 6.00±0.93 ab 0.57±0.18 b 6.02±1.62 a 9.08±1.02 a 18.28±0.88 a 46.04±1.45 a
      说明:WT为野生型对照,n=3,不同小写字母表示不同株系间显著差异(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    图3 A所示:在营养生长期,与野生型相比,突变体(ats1-1、ats1-2和ats1-3)有时会出现叶片略微变黄的现象,但植株叶片发育与野生型相比无明显差异。对植株地上部生物量检测结果显示:与野生型相比,突变体植株地上部生物量无显著差异(图3 B)。对植株叶片叶绿素检测结果显示:与野生型相比,突变体植株叶绿素a/b约上升29.5%(图3 C)。拟南芥果荚生长分析显示:与野生型一样,突变体株系的种子发育正常,无败育现象出现(图3 D和E),这一结果不支持XU等[9]的研究结果。本研究结果表明在正常生长条件下ATS1 基因的功能丧失对拟南芥种子发育并不产生可见影响。

    图 3  营养生长与生殖生长阶段野生型拟南芥与ats1突变体的表型比较
    Figure 3  Phenotypic comparison of the wild type and ats1 mutants during the vegetative and reproductive stages

    之前,研究者利用EMS诱变获得的ats1突变体和T-DNA插入突变体,对ATS1基因的功能进行了大量研究,然而基于不同突变体的研究得出的结论不一致[6, 9]。这可能存在2个原因,一是,EMS诱变产生的点突变可能不会使基因产物完全丧失活性,因而在某些特定条件下,突变体的表型变得不明显;二是,T-DNA插入虽然可以导致目标基因的功能完全丧失[9],但T-DNA插入可能会干扰插入位点附近基因的表达,从而对突变体的表型产生额外的影响。为了排除上述因素对ATS1基因功能研究产生的干扰,本研究运用现代基因编辑技术创制了不含外源T-DNA插入片段的ATS1功能丧失型突变体。

    对其中的3个突变体(ats1-1、ats1-2和ats1-3)进行了分子与生化鉴定,发现这些突变体在ATS1第1个外显子上发生了插入、缺失、替换等几种不同类型的突变,这些突变导致非3的倍数的碱基插入或缺失,使阅读框发生移码及翻译提前终止,最终使得ATS1基因丧失功能。与此一致,脂肪酸组分分析显示:所有突变体的叶片中不饱和脂肪酸C16:3 (来源于叶绿体中的甘油糖脂)的含量大幅降低,而C18:3的含量显著升高。这一结果与基于EMS诱变产生的ats1突变体的分析结果相吻合[6]。总之,分子与生化鉴定的结果表明本研究获得的突变体为ATS1功能丧失型突变体。

    目前,对ATS1基因在植物生长发育中的作用存在某些争议。由EMS诱变产生的ats1突变体呈正常的种子发育过程[21],而当用RNAi干扰技术下调ATS1基因的表达,拟南芥的种子发育异常,结实率下降[9]。为了完善人们对ATS1基因功能的认知,本研究利用不含外源DNA插入片段的多个ATS1功能丧失型突变体分析其在正常生长发育过程中的作用。表型分析显示:在正常生长条件下,这些突变体植株生长良好,除了其叶片有时会略显黄色,种子生长发育正常、无败育现象,这一表型与源于EMS诱变的ats1突变体分析结果一致[21],因此有充足理由推断拟南芥ATS1并非种子发育所必需的。

    ATS1对种子发育的非必需性,需要重新评估甘油脂原核合成途径对植物正常生长发育的贡献,并调查植物细胞的质体中是否存在其他酰基转移酶参与甘油脂合成的第1步酰化反应。另外,期望本研究获得的功能丧失型突变体,能够更好地剖析植物细胞中真核合成途径与原核合成途径产生的不同甘油脂分子之间的交换机制。

  • 图  1  不同叶面肥处理对香榧种实品质的多重比较

    Figure  1  Multiple comparison of seed quality of T. grandis‘Merrillii’with different foliar fertilizer treatments

    图  2  香榧种实翌年成花强度

    Figure  2  Flowering intensity of T. grandis‘Merrillii’seeds in the next year

    图  3  不同叶面肥处理下香榧种实膨大率和坐果率

    Figure  3  Expansion and fruit-setting rates under different foliar fertilizer treatments of seeds in T. grandis‘Merrillii’

    表  1  不同叶面肥处理下香榧种实形态指标的比较

    Table  1.   Comparison of morphological indexes under different foliar fertilizer treatments of seeds in T. grandis‘Merrillii’

    处理核形指数单核质量/g出核率/%仁形指数单仁质量/g出仁率/%
    ck 1.844±0.071 b 1.833±0.257 b 20.027±0.647 ab 2.228±0.086 ab 1.209±0.071 b 66.009±0.345 c
    A2.001±0.093 a2.013±0.207 a21.720±0.944 a2.233±0.144 a1.357±0.099 a67.742±0.651 b
    F1.979±0.042 a1.993±0.105 a18.923±0.211 bc2.225±0.053 ab1.333±0.056 a66.864±0.993 bc
    K1.927±0.040 ab1.904±0.107 ab19.386±0.828 bc2.179±0.056 ab1.296±0.074 ab67.184±0.804 b
    B1.961±0.105 ab1.952±0.277 ab18.059±0.724 c2.192±0.125 ab1.291±0.198 ab66.947±0.947 bc
    CA1.962±0.072 ab1.939±0.083 ab19.520±0.864 b2.231±0.088 a1.321±0.057 ab68.197±0.218 a
    W1.936±0.083 ab1.906±0.152 ab21.403±0.455 a2.070±0.093 b1.276±0.104 ab66.981±0.645 bc
    D1.944±0.035 ab1.970±0.065 ab19.952±0.614 b2.190±0.038 ab1.324±0.047 a67.230±0.932 b
      说明:数据为均值±标准差。同一列的不同小写字母表示不同处理间差异显著(P<0.05)。
    下载: 导出CSV

    表  2  不同叶面肥处理下香榧种实脂肪酸组成和相对含量

    Table  2.   Composition and contents and fatty acid under different foliar fertilizer treatments of seeds in T. grandis‘Merrillii’

    处理相对含量/%
    棕榈酸硬脂酸油酸亚油酸亚麻酸
    ck 8.985±0.106 g 3.528±0.107 e 38.172±3.327 a 39.512±2.915 d 0.279±0.008 d
    A8.451±0.115 e2.927±0.127 d35.254±2.426 e42.364±2.700 b0.291±0.013 cd
    F7.965±0.222 d2.297±0.019 ab36.658±2.457 bc42.412±2.858 b0.287±0.009 d
    K8.627±0.323 f3.147±0.237 d37.246±2.431 b40.570±3.552 c0.330±0.016 a
    B6.822±0.413 b2.505±0.214 bc36.848±1.673 bc42.973±2.907 b0.301±0.014 bc
    CA7.045±0.375 c2.622±0.327 c36.910±1.781 bc42.606±3.682 b0.301±0.017 bc
    W6.897±0.408 b2.397±0.112 bc35.862±1.535 de43.950±3.648 a0.303±0.022 bc
    D6.706±0.636 a2.158±0.313 a36.479±2.298 cd43.974±3.358 a0.307±0.025 b
    处理相对含量/%
    花生一烯酸花生二烯酸金松酸饱和脂肪酸不饱和脂肪酸
    ck0.452±0.021 b1.480±0.130 b7.591±0.868 e12.513±2.303 g87.487±5.826 g
    A0.472±0.057 b1.446±0.110 b8.797±0.334 a11.377±2.341 e88.623±6.141 e
    F0.476±0.043 b1.462±0.115 b8.442±0.503 bc10.262±2.309 d89.738±7.509 d
    K0.543±0.045 a1.478±0.186 b8.060±1.046 d11.774±2.558 f88.226±6.007 f
    B0.496±0.044 ab1.543±0.093 b8.513±1.034 bc9.327±1.628 b90.673±7.933 b
    CA0.453±0.062 b1.721±0.080 a8.342±0.987 c9.666±1.703 c90.334±8.103 c
    W0.444±0.012 b1.528±0.096 b8.619±0.923 ab9.294±1.522 b90.706±7.841 b
    D0.457±0.030 b1.592±0.142 ab8.328±0.720 c8.864±0.950 a91.136±8.058 a
      说明:数据为均值±标准差。同列的不同小写字母表示不同处理间差异显著(P<0.05)。
    下载: 导出CSV

    表  3  不同叶面肥处理下香榧种仁营养元素质量分数

    Table  3.   The element contents of kernel under different foliar fertilizer treatments in T. grandis‘Merrillii’

    处理氮/(g·kg−1)磷/(g·kg−1)钾/(g·kg−1)钙/(g·kg−1)镁/(g·kg−1)铜/(mg·kg−1)
    ck 51.108±3.197 d 6.139±0.084 f 12.118±0.523 bcd 0.771±0.083 cd 4.649±0.123 bc 22.055±2.148 b
    A54.645±2.105 a6.463±0.370 c11.704±1.638 cd0.849±0.089 ab5.188±0.319 a19.630±1.800 c
    F52.135±2.729 c6.393±0.251 d12.078±1.442 cd0.706±0.096 e4.886±0.324 abc22.911±0.469 a
    K53.531±1.831 b6.437±0.281 c11.631±1.354 d0.799±0.032 cd4.937±0.528 ab19.363±1.644 c
    B52.328±2.384 c6.454±0.121 c13.006±0.295 a0.755±0.107 d4.595±0.381 c22.114±1.521 b
    CA53.362±1.259 b6.728±0.287 a12.677±0.556 ab0.879±0.074 a5.047±0.276 a18.645±1.501 d
    W51.050±0.650 d6.231±0.269 e12.215±1.537 bc0.814±0.053 bc4.662±0.327 bc17.874±2.282 e
    D52.044±3.550 c6.647±0.225 b12.102±0.511 bcd0.846±0.092 ab5.037±0.255 a22.053±2.801 b
    下载: 导出CSV
    处理锌/(mg·kg−1)铁/(mg·kg−1)锰/(mg·kg−1)大量元素/(g·kg−1)微量元素/(mg·kg−1)
    ck 66.105±5.100 e 64.822±6.952 a 27.502±4.345 f 74.894±4.101 d 181.484±9.545 a
    A68.349±6.403 b68.594±6.443 a30.355±5.294 cd78.854±4.521 a186.803±11.940 a
    F66.848±6.474 d57.447±2.518 bc35.295±5.500 a76.198±4.941 c182.501±8.961 b
    K69.018±2.521 ab48.187±4.199 de32.720±1.890 b77.328±4.126 b169.288±9.254d
    B63.794±5.787 f61.254±6.337 b30.903±4.788 c77.138±3.287 b178.065±10.432 c
    CA67.500±4.953 c45.718±1.005 e30.140±2.407 d78.586±2.460 a162.003±8.865 f
    W66.510±5.612 de52.337±6.876 cd27.497±1.880 f74.973±2.936 d164.218±9.650 f
    D70.271±5.607 a58.194±2.229 bc29.113±3.293 e76.675±4.634 c179.412±7.930 c
      说明:数据为均值±标准差。同一列的不同小写字母表示不同处理间差异显著(P<0.05)。
    下载: 导出CSV

    表  4  主成分因子载荷矩阵

    Table  4.   Load matrix of principal component factor

    指标主成分指标主成分
    F1F2F3F4F5F1F2F3F4F5
    核形指数 0.911 −0.235 −0.182 0.111 −0.231 可溶性糖质量分数 −0.141 0.204 0.847 0.310 −0.101
    单核质量 0.871 −0.109 −0.196 0.358 −0.236 不饱和脂肪酸相对含量 0.364 −0.729 −0.217 0.074 0.298
    出核率 0.084 −0.156 0.736 0.409 0.082 金松酸相对含量 0.744 −0.482 0.029 0.218 −0.203
    仁形指数 0.292 0.851 −0.367 0.133 0.142 大量元素质量分数 0.893 0.352 0.065 −0.260 0.063
    单仁质量 0.947 −0.119 −0.083 0.154 −0.163 微量元素质量分数 −0.174 0.623 −0.059 0.685 −0.284
    出仁率 0.894 −0.105 0.114 −0.265 0.284 成花强度 0.844 0.442 −0.152 0.085 0.182
    油脂质量分数 0.661 0.093 0.618 −0.090 0.094 坐果率 0.314 0.561 0.356 −0.039 0.429
    蛋白质质量分数 0.234 0.014 0.403 −0.671 −0.556 特征值 6.227 3.494 2.256 1.640 1.055
    淀粉质量分数 −0.125 −0.904 0.148 0.257 0.228 累计贡献率 38.918 60.753 74.855 85.104 91.701
    下载: 导出CSV

    表  5  喷施叶面肥后香榧种实的综合评分

    Table  5.   Comprehensive evaluation of T. grandis‘Merrillii’seeds after spraying foliar fertilizer

    处理F1F2F3F4F5F排名
    ck −4.803 2.456 0.201 0.604 0.601 −1.203 7
    A8.5321.6611.5991.234−0.5843.9971
    F0.614−0.514−2.8291.056−0.914−0.2245
    K−0.9090.6241.029−2.176−1.250−0.3786
    B0.5010.089−1.156−0.694−0.455−0.0504
    CA5.5310.188−0.857−1.3461.8952.0602
    W−4.334−3.8061.1520.1300.008−2.3418
    D2.052−0.6980.8621.1910.6990.9363
    下载: 导出CSV
  • [1] 黎章矩, 程晓建, 戴文圣, 等. 香榧品种起源考证[J]. 浙江林学院学报, 2005, 22(4): 443 − 448.

    LI Zhangju, CHEN Xiaojian, DAI Wensheng, et al. Origin of Torreya grandis‘Merrillii’ [J]. Journal of Zhejiang Forestry College, 2005, 22(4): 443 − 448.
    [2] 叶淑媛, 曾燕如, 胡渊渊, 等. 香榧初结果母枝性状变化规律与结实能力的关系[J]. 浙江农林大学学报, 2022, 39(1): 41 − 49.

    YE Shuyuan, ZENG Yanru, HU Yuanyuan, et al. Relationship between character changing and seed-bearing capacity of initial seed-bearing mother shoots in Torreya grandis ‘Merrillii’ [J]. Journal of Zhejiang A&F University, 2022, 39(1): 41 − 49.
    [3] 何祯, 王宗星, 张骏, 等. 浙江省香榧产业发展现状与对策[J]. 浙江农业科学, 2020, 61(7): 1345 − 1347.

    HE Zhen, WANG Zongxing, ZHANG Jun, et al. Present situation and countermeasures of Torreya grandis ‘Merrillii’ industry development in Zhejiang [J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(7): 1345 − 1347.
    [4] 徐翠霞. 浙江省香榧产业发展及其对策研究[D]. 杭州: 浙江农林大学, 2018.

    XU Cuixia. Study on Torreya grandis ‘Merrillii’ Production Development and Its Suggestions in Zhejiang Province [D]. Hangzhou: Zhejiang A&F University, 2018.
    [5] 曹永庆, 任华东, 王开良, 等. 不同类型土壤栽培香榧种仁品质综合评价和分析[J]. 果树学报, 2022, 39(5): 836 − 845.

    CAO Yongqing, REN Huadong, WANG Kailiang, et al. Comprehensive evaluation and analysis of kernel quality of Torreya grandis ‘Merrillii’ from different soil types [J]. Journal of Fruit Science, 2022, 39(5): 836 − 845.
    [6] 赵燕, 刘千玲, 陈田甜, 等. 施肥对香榧枝梢生长和结实量的影响[J]. 东北林业大学学报, 2015, 43(3): 26 − 29, 61.

    ZHAO Yan, LIU Qianling, CHEN Tiantian, et al. Effects of fertilization on shoot growth and fruit yield of Torreya grandis [J]. Journal of Northeast Forestry University, 2015, 43(3): 26 − 29, 61.
    [7] 周智峰, 黄文斌, 钟子龙, 等. 不同施肥措施对初果期香榧林生长的影响[J]. 浙江林业科技, 2015, 35(3): 83 − 86.

    ZHOU Zhifeng, HUANG Wenbin, ZHONG Zilong, et al. Effect of fertilization on growth of Torreya grandis cv. Merrillii during first-fruiting stage [J]. Journal of Zhejiang Forestry Science and Technology, 2015, 35(3): 83 − 86.
    [8] 孙小红, 周瑾, 胡春霞, 等. 不同海拔对香榧种子外观性状及营养品质的影响[J]. 果树学报, 2019, 36(4): 476 − 485.

    SUN Xiaohong, ZHOU Jin, HU Chunxia, et al. Effects of different altitudes on seed morphology and nutritional composition of Torreya grandis ‘Merrilli’ [J]. Journal of Fruit Science, 2019, 36(4): 476 − 485.
    [9] 陈红星, 周先尧, 张龙满, 等. 磐安长榧种实特性初步研究[J]. 浙江林业科技, 2019, 39(5): 24 − 31.

    CHEN Hongxing, ZHOU Xianyao, ZHANG Longman, et al. Preliminary study on seed traits of Torreya grandis ‘Merrillii’ in Pan’an [J]. Journal of Zhejiang Forestry Science and Technology, 2019, 39(5): 24 − 31.
    [10] 李书玲. 叶面施肥技术在果树上的应用分析[J]. 现代农业科技, 2020(9): 89 − 90.

    LI Shuling. Application analysis of foliar fertilization technology on fruit trees [J]. Modern Agricultural Science and Technology, 2020(9): 89 − 90.
    [11] 唐岩, 宋来庆, 孙燕霞, 等. 叶面喷施硅酸钾对富士苹果品质的影响[J]. 落叶果树, 2014, 46(4): 11 − 13.

    TANG Yan, SONG Laiqin, SUN Yanxia, et al. Effect of foliar spraying potassium silicate on the quality of fuji apple [J]. Deciduous Fruits, 2014, 46(4): 11 − 13.
    [12] 李秋利, 杨文佳, 高登涛, 等. 山梨醇和蔗糖对桃果实、叶片可溶性糖含量及果实品质的影响[J]. 河南农业科学, 2019, 48(8): 110 − 116.

    LI Qiuli, YANG Wenjia, GAO Dengtao, et al. Effects of sorbitol and sucrose on soluble sugar content of peach fruits and leaves and fruits quality [J]. Journal of Henan Agricultural Sciences, 2019, 48(8): 110 − 116.
    [13] 刘松忠, 刘军, 朱青青, 等. 肥料种类对不同采收期‘黄金梨’糖酸含量和风味的影响[J]. 果树学报, 2012, 29(5): 804 − 808.

    LIU Songzhong, LIU Jun, ZHU Qingqing, et al. Effects of manure types on sugar and acid contents and flavor of pear (Pyrus pyrifolia‘Hwangkumbae’) at different mature stages [J]. Journal of Fruit Science, 2012, 29(5): 804 − 808.
    [14] 方明慧, 郑思静, 王思凡, 等. 不同香榧单株种实表型性状变异[J]. 凯里学院学报, 2021, 39(3): 47 − 54.

    FANG Minghui, ZHEN Sijing, WANG Sifan, et al. Phenotypic traits variation of seed among different Torreya grandis individuals [J]. Journal of Kaili University, 2021, 39(3): 47 − 54.
    [15] 王学君, 董晓霞, 董亮, 等. 含氨基酸水溶肥对盐碱地小麦产量和经济效益的影响[J]. 山东农业科学, 2016, 48(6): 78 − 80.

    WANG Xuejun, DONG Xiaoxia, DONG Liang, et al. Effects of water-soluble fertilizer containing amino acids on wheat yield and economic benefits in saline field [J]. Shandong Agricultural Sciences, 2016, 48(6): 78 − 80.
    [16] 张木, 胡承孝, 孙学成, 等. 叶面喷施微量元素和氨基酸对小白菜产量及品质的影响[J]. 华中农业大学学报, 2011, 30(5): 613 − 617.

    ZHANG Mu, HU Chengxiao, SUN Xuecheng, et al. Effects of spraying micronutrient and amino acids into surface of leaves on yield and quality of Chinese cabbage [J]. Journal of Huazhong Agricultural University, 2011, 30(5): 613 − 617.
    [17] 张姿, 于海燕, 李威, 等. 绿色植物生长调节剂GGR对玉米生长发育及产量的影响[J]. 黑龙江农业科学, 2023(2): 44 − 50.

    ZHANG Zi, YU Haiyan, LI Wei, et al. Effects of green plant growth regulator GGR on growth and yield of maize [J]. Heilongjiang Agricultural Sciences, 2023(2): 44 − 50.
    [18] 王红梅, 廖玲玲, 瞿洁, 等. 氨基酸水溶肥在小白菜上的应用效果初探[J]. 上海农业科技, 2021(5): 100 − 101.

    WANG Hongmei, LIAO Linlin, ZHAI Jie, et al. Preliminary study on the application effect of amino acid water-soluble fertilizer on Chinese cabbage [J]. Shanghai Agricultural Science and Technology, 2021(5): 100 − 101.
    [19] 张洪浩, 常巧真. 氨基酸微量元素水溶肥对棉花产量的影响[J]. 中国棉花, 2017, 44(4): 19 − 20.

    ZHANG Honghao, CHANG Qiaozhen. Effects of a water-soluble fertilizer containing amino acids and trace elements on yield of cotton [J]. China Cotton, 2017, 44(4): 19 − 20.
    [20] 刘丽莉, 冯涛, 向言词. 外源钙对镉胁迫下芥菜型油菜幼苗生长和生理特性的影响[J]. 农业环境科学学报, 2009, 28(5): 978 − 983.

    LIU Lili, FENG Tao, XIANG Yanci. Effect of exogenous calcium on seedling growth and physiological characteristics of Brassica juncea under cadmium stress [J]. Journal of Agro-Environment Science, 2009, 28(5): 978 − 983.
    [21] 廖霏霏, 刘兴贵, 王克秀, 等. 赤霉素和叶面肥对马铃薯原原种雾化生产的影响[J]. 农学学报, 2022, 12(4): 18 − 23, 53.

    LIAO Feifei, LIU Xinggui, WANG Kexiu, et al. Gibberellin and foliar fertilizer: effects on pre-basic seeds of potato production by aeroponics [J]. Journal of Agriculture, 2022, 12(4): 18 − 23, 53.
    [22] YAMANET. Foliar calcium applications for controlling fruit disorders and storage life in deciduous fruit trees [J]. Japan Agricultural Research, 2014, 48(1): 29 − 33.
    [23] 唐宽强, 刘守伟, 吴凤芝, 等. 外源喷施CaCl2对低温逆境下番茄抗冷性及开花结果的影响[J]. 北方园艺, 2013(11): 10 − 14.

    TANG Kuanqiang, LIU Shouwei, WU Fengzhi, et al. Effect of exgenous CaCl2 on the cold resistance and blossom and yield of tomato under cold stress [J]. Northern Horticulture, 2013(11): 10 − 14.
    [24] 李石开, 陶婧, 桂敏, 等. 氯化钙和多效唑浸种对干制辣椒种子发芽及幼苗抗旱性的影响[J]. 西南农业学报, 2012, 25(5): 1786 − 1789.

    LI Shikai, TAO Jing, GUI Min, et al. Effects of seed soaking with CaCl2 and PP333 on germination and seedling drought resistance in dry chili [J]. Southwest China Journal of Agricultural Sciences, 2012, 25(5): 1786 − 1789.
    [25] 丘智晃, 冯紫荟, 陈煜林, 等. 叶面喷施不同钙源对辣椒生长及其果实品质的影响[J]. 福建农业学报, 2022, 37(12): 1562 − 1570.

    QIU Zhihuang, FENG Zihui, CHEN Yulin, et al. Agronomic effects of foliar calcium sprays on chili peppers [J]. Fujian Journal of Agricultural Sciences, 2022, 37(12): 1562 − 1570.
    [26] 廖海枝, 林晓凯, 杨成坤, 等. 叶面喷施钙镁肥对'妃子笑'荔枝果肉苹果酸积累的影响[J]. 广西植物, 2022, 42(12): 2138 − 2146.

    LIAO Haizhi, LIN Xiaokai, YANG Chengkun, et al. Effects of foliar spraying of calcium and magnesium fertilizers on malic acid accumulation of ‘Feizixiao’ litchi fruit [J]. Guihaia, 2022, 42(12): 2138 − 2146.
    [27] 裴健翔. 外源钙对‘寒富’苹果果实钙代谢及果实品质影响的研究[D]. 北京: 中国农业科学院, 2019.

    PEI Jianxiang. Effects of Exogenous Calcium on Calciummetabolism and Fruit Quality ofHanfuApple [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
    [28] 张景全, 周同永. 叶面喷施硼肥对蓝莓产量及品质的影响[J]. 云南农业大学学报(自然科学), 2021, 36(3): 553 − 557.

    ZHANG Jingquan, ZHOU Tongyong. Effect of foliar application of boron fertilizer on the yield and quality of blueberry [J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(3): 553 − 557.
    [29] MAHDIEH M, SANGI M R, BAMDAD F, et al. Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars [J]. Journal of Plant Nutrition, 2018, 41(18): 2401 − 2412.
  • [1] 程佳洁, 陈荣, 喻卫武, 陈文超, 胡渊渊, 张祖瑛, 宋丽丽.  ‘细榧’和‘象牙榧’种实后熟过程中游离氨基酸差异分析 . 浙江农林大学学报, 2025, 42(2): 239-248. doi: 10.11833/j.issn.2095-0756.20250169
    [2] 马爽, 索金伟, 成豪, 胡渊渊, 喻卫武, 宋丽丽, 吴家胜.  树形调整对香榧树冠光照强度和种实品质的影响 . 浙江农林大学学报, 2024, 41(3): 467-477. doi: 10.11833/j.issn.2095-0756.20240178
    [3] 叶淑媛, 曾燕如, 曹永庆, 田苏奎, 喻卫武.  香榧种实生长早期枝叶和种实矿质元素质量分数及积累量动态分析 . 浙江农林大学学报, 2024, 41(5): 1047-1055. doi: 10.11833/j.issn.2095-0756.20230583
    [4] 何慈颖, 娄和强, 吴家胜.  香榧油脂及其合成调控机制研究进展 . 浙江农林大学学报, 2023, 40(4): 714-722. doi: 10.11833/j.issn.2095-0756.20230224
    [5] 王桂芳, 索金伟, 王哲, 成豪, 胡渊渊, 张可伟, 吴家胜.  香榧种实膨大过程中蔗糖代谢及其基因表达 . 浙江农林大学学报, 2022, 39(1): 1-12. doi: 10.11833/j.issn.2095-0756.20210593
    [6] 钱宇汀, 薛晓峰, 曾燕如, 陈文充, 叶晓明, 喻卫武, 戴文圣.  香榧瘿螨为害对香榧叶片结构及叶绿素质量分数的影响 . 浙江农林大学学报, 2020, 37(2): 296-302. doi: 10.11833/j.issn.2095-0756.2020.02.014
    [7] 谷红霞, 叶雯, 钱宇汀, 叶晓明, 戴文圣.  香榧不同微型嫁接方法初探 . 浙江农林大学学报, 2018, 35(1): 183-188. doi: 10.11833/j.issn.2095-0756.2018.01.025
    [8] 金侯定, 喻卫武, 曾燕如, 项美云, 戴文圣, 党婉誉.  香榧Torreya grandis ‘Merrillii’的扦插繁殖 . 浙江农林大学学报, 2017, 34(1): 185-191. doi: 10.11833/j.issn.2095-0756.2017.01.025
    [9] 曾松伟, 喻卫武, 姬长英, 叶邦宣, 肖庆来.  香榧去皮机研制与应用 . 浙江农林大学学报, 2015, 32(1): 133-139. doi: 10.11833/j.issn.2095-0756.2015.01.020
    [10] 姚进, 黄坚钦, 胡恒康, 裘林艳, 朱旻华, 张启香.  香榧体细胞胚发生的初步研究 . 浙江农林大学学报, 2013, 30(1): 129-135. doi: 10.11833/j.issn.2095-0756.2013.01.019
    [11] 吴连海, 吴黎明, 倪荣新, 颜福花.  香榧栽培经济效益分析 . 浙江农林大学学报, 2013, 30(2): 299-303. doi: 10.11833/j.issn.2095-0756.2013.02.023
    [12] 王小明, 王珂, 秦遂初, 蒋玉根.  香榧适生环境研究进展 . 浙江农林大学学报, 2008, 25(3): 382-386.
    [13] 戴文圣, 黎章矩, 程晓建, 喻卫武, 符庆功.  香榧林地土壤养分状况的调查分析 . 浙江农林大学学报, 2006, 23(2): 140-144.
    [14] 戴文圣, 黎章矩, 程晓建, 喻卫武, 符庆功.  香榧林地土壤养分、重金属及对香榧子成分的影响 . 浙江农林大学学报, 2006, 23(4): 393-399.
    [15] 戴文圣, 黎章矩, 程晓建, 喻卫武, 符庆功, 陈勤娟.  杭州市香榧生产的发展前景与对策 . 浙江农林大学学报, 2006, 23(3): 334-337.
    [16] 黎章矩, 骆成方, 程晓建, 冯肖军, 喻卫武.  香榧种子成分分析及营养评价 . 浙江农林大学学报, 2005, 22(5): 540-544.
    [17] 黎章矩, 程晓建, 戴文圣, 金保华, 王安国.  浙江香榧生产历史、现状与发展 . 浙江农林大学学报, 2004, 21(4): 471-474.
    [18] 孟鸿飞, 金国龙, 翁仲源.  诸暨市香榧古树资源调查 . 浙江农林大学学报, 2003, 20(2): 134-136.
    [19] 郭维华.  香榧落果机理与保果技术研究 . 浙江农林大学学报, 2002, 19(4): 395-398.
    [20] 倪德良, 徐建平, 欧阳钟, 邹育林, 任钦良.  野生香榧幼树开发利用研究初报 . 浙江农林大学学报, 1994, 11(2): 206-210.
  • 期刊类型引用(2)

    1. 蔡霖,肖正康,孙锦山,曹建杰,刘蔚漪,辉朝茂. 云南沧源竹资源空间分布现状分析. 世界竹藤通讯. 2025(01): 28-35 . 百度学术
    2. 叶鹏,叶昌民,周彤悦,卢禹君,杨帆,汤孟平. 浙江省近自然毛竹林空间结构特征. 浙江农林大学学报. 2020(02): 228-234 . 本站查看

    其他类型引用(6)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230194

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/3/457

图(3) / 表(6)
计量
  • 文章访问数:  540
  • HTML全文浏览量:  134
  • PDF下载量:  70
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-03-04
  • 修回日期:  2023-07-30
  • 录用日期:  2023-08-07
  • 网络出版日期:  2024-05-22
  • 刊出日期:  2024-05-22

香榧种实充实期叶面施肥对种实品质的影响

doi: 10.11833/j.issn.2095-0756.20230194
    基金项目:  浙江省“尖兵”“领雁”研发攻关计划项目(2022C02061);浙江省重大科技专项(2021C02066-11);浙江省省院合作林业科技项目(2021SY11,2022SY14)
    作者简介:

    郝琪淳(ORCID: 0009-0005-0796-3293),从事经济林培育研究。E-mail: ZAFUhqc@163.com

    通信作者: 喻卫武(ORCID: 0000-0003-4246-4287),高级实验师,从事经济林栽培与产品分析研究。E-mail: yww888@zafu.edu.cn
  • 中图分类号: S725.5;Q945.1

摘要:   目的  以香榧Torreya grandis ‘Merrillii’种实充实期补肥作为切入点,研究香榧种实的外观性状、营养品质、元素质量分数、花芽分化、膨大坐果等,以期为补充树体营养及提高种实品质提供理论依据。  方法  在6—8月香榧种实充实期,施用清水作为对照,并喷施7种商品叶面肥进行处理(氨基酸水溶肥、黄腐酸水溶肥、活力钾水溶肥、高力钙水溶肥、液体硼水溶肥、微量元素水溶肥、大量元素水溶肥),测定香榧种实外形、含油率及脂肪酸组分、粗蛋白质量分数、淀粉质量分数、可溶性糖质量分数、成花强度等指标,分析施肥对香榧种实品质的影响。  结果  喷施氨基酸水溶肥和大量元素水溶肥能显著(P<0.05)增加香榧种实的核形指数、单核质量、出核率、仁型指数、单仁质量,显著(P<0.05)降低淀粉质量分数,明显提高油脂质量分数、可溶性糖质量分数及成花强度,其中氨基酸水溶肥处理的香榧种实单核质量较对照提高9.8%,淀粉质量分数较对照减少1.9%;大量元素水溶肥处理的香榧种实单仁质量、油脂质量分数、可溶性糖质量分数较对照分别增加9.5%、11.9%、15.9%。同时,喷施氨基酸水溶肥对香榧种实金松酸相对含量起到显著(P<0.05)的促进作用,较对照增加15.9%;喷施大量元素水溶肥香榧种实不饱和脂肪酸相对含量较对照显著(P<0.05)增加4.2%。此外,高力钙水溶肥对香榧种实出仁率、成花强度和坐果率具有促进作用,较对照分别提高3.3%、17.1%和10.9%;活力钾水溶肥较对照显著(P<0.05)提高香榧种实蛋白质质量分数13.6%。通过主成分分析发现:氨基酸水溶肥处理的香榧种实品质综合评分最高。  结论  喷施不同叶面肥对香榧种实品质的作用存在差异,氨基酸水溶肥处理的效果最佳,高力钙水溶肥、大量元素水溶肥次之。图3表5参29

English Abstract

柯星星, 刘亚坤, 徐雪珍, 等. 功能丧失突变透示ATS1对拟南芥种子发育的非必需作用[J]. 浙江农林大学学报, 2023, 40(4): 707-713. DOI: 10.11833/j.issn.2095-0756.20220738
引用本文: 郝琪淳, 谢吉全, 戴文圣, 等. 香榧种实充实期叶面施肥对种实品质的影响[J]. 浙江农林大学学报, 2024, 41(3): 457-466. DOI: 10.11833/j.issn.2095-0756.20230194
KE Xingxing, LIU Yakun, XU Xuezhen, et al. Loss-of-function mutations in ATS1 reveal its dispensable role in normal seed development of Arabidopsis thaliana[J]. Journal of Zhejiang A&F University, 2023, 40(4): 707-713. DOI: 10.11833/j.issn.2095-0756.20220738
Citation: HAO Qichun, XIE Jiquan, DAI Wensheng, et al. Effect of foliar fertilization on seed quality of Torreya grandis ‘Merrillii’ during seed filling period[J]. Journal of Zhejiang A&F University, 2024, 41(3): 457-466. DOI: 10.11833/j.issn.2095-0756.20230194
  • 香榧Torreya grandis ‘Merrillii’是榧树Torreya grandis中的优良变异经人工选育的优良品种[1],是中国特有的珍贵经济干果树种[2]。随着人们生活水平的提高,以香榧为代表的健康休闲类坚果消费需求不断增加,市场不断扩大[3]。近年来,浙江省香榧产业发展迅速,平均每年增长面积达3 127 hm2,10余年来种植面积增长了140%[4]。但当前的香榧林地种植模式较为粗犷,在长期的栽培、繁育过程中,存在较多问题。如为了提高产量,大量施肥,施肥结构不合理,导致环境受到污染[5];林区土壤养分受人为活动影响明显,人工成本高,香榧吸收土壤养分所需时间长[6];通过栽培措施,香榧产量有所增多,但种实品质下降,树体的生长也受到影响[7]。每年6—9月是香榧的种实充实期,种实体积无明显变化,光合作用的产物主要用于种仁发育和内部物质积累[8]。生产上为了避免引起“反青”现象,在香榧种实充实期不施用肥料,但是,在实践中发现不及时补充营养元素会对香榧树体后期生长以及香榧种实的品质产生影响。为提高香榧种实品质,在保证相对一致的生产管理条件下,本研究以香榧种实充实期补肥作为切入点,对香榧种实的外观性状以及营养品质开展研究。研究结果可为筛选优良商品叶面肥,提高香榧种实品质提供理论和生产依据。

    • 试验区位于浙江省杭州市临安区畈龙村香榧基地(31°19′46′′N,120°43′27′′E),亚热带季风气候,气候总体特征为四季分明,空气湿润,雨量丰沛,光照充足。年平均气温为17.1 ℃,极端最高气温为39.4 ℃,极端最低气温为−10.4 ℃,年平均降水量为1706.5 mm,年平均相对湿度为80%,年平均风速为1.6 m·s−1。试验样地0~20 cm土壤中全氮、全磷和全钾的质量分数分别为1.96、0.96、9.95 g·kg−1。样地香榧年产量约为350 kg,每年施肥以复合肥和猪粪为主。

    • 选取香榧基地内立地条件、株高、结实量基本一致的40株15年生香榧为研究对象,在香榧种实充实期(2021年6—8月)喷施叶面肥。设置清水对照 (ck),氨基酸水溶肥 (处理A,活性氨基酸100.0 g·L−1、有机质130.0 g·L−1、锌15.0 g·L−1、硼5.0 g·L−1),黄腐酸水溶肥 (处理F,黄腐酸 500.0 g·kg−1、腐殖酸700.0 g·kg−1、有机质750.0 g·kg−1、氧化钾120.0 g·kg−1),活力钾水溶肥 (处理K,钾400.0 g·kg−1、氮110.0 g·kg−1、磷 40.0 g·kg−1、镁20.0 g·kg−1、硼2.5 g·kg−1、锌1.5 g·kg−1),高力钙水溶肥 (处理CA,钙195.0 g·L−1、硼+锌+铁10.0 g·L−1、镁5.0 g·L−1),液体硼水溶肥 (处理B,硼150.0 g·L−1、锌1.0 g·L−1),微量元素水溶肥 (处理W,铁75.0 g·kg−1、锌30.0 g·kg−1、硼20.0 g·kg−1、镁12.0 g·kg−1、锰12.0 g·kg−1、铜2.0 g·kg−1、钼+钴1.0 g·kg−1),大量元素水溶肥 (处理D,氮250.0 g·kg−1、磷80.0 g·kg−1、钾200.0 g·kg−1、硼+锌4.0 g·kg−1) 8个处理,稀释1 000倍施用,隔20 d喷1次,连续喷施3次,每个处理喷施5株;选择天气晴朗的10:00前或17:00后完成喷施,以叶片和果面滴水为度。叶面肥购于深圳市杜高生物新技术有限公司。

    • 于2021年9月中上旬香榧种实开裂后,分别在每株样树的东西南北4个方向随机采集成熟香榧鲜种实60颗,置于干冰中带回实验室,置于−40 ℃冰箱保存。测完种实表型后将其置于阴凉通风处,等待假种皮自然开裂,用于后续研究。测定内容包括种核纵径、种核横径、核形指数(种核纵径/种核横径)、单核质量、出核率、种仁纵径、种仁横径、仁形指数(种仁纵径/种仁横径)、单仁质量、出仁率及种仁油脂质量分数、蛋白质质量分数、淀粉质量分数、可溶性糖质量分数、脂肪酸组成、矿质元素质量分数共16个种实性状指标[9]。翌年3—5月统计成花强度、膨大率和坐果率。

    • 用精度为0.01 cm的电子游标卡尺测量种核和种仁的纵横径;用万分之一电子天平测量单核质量和单仁质量。

    • 油脂质量分数参照GB/T 14772—2008《食品中粗脂肪的测定》测定;蛋白质质量分数用凯氏定氮法测定;淀粉和可溶性糖质量分数参照蒽酮比色法测定;脂肪酸组分根据GB 5009.168—2016《食品中脂肪酸的测定》测定,将提出的油进行甲酯化,采用峰面积归一化法测定脂肪酸相对含量。

    • 用硫酸-过氧化氢(H2SO4-H2O2)联合消煮法消煮待测样品,氮和磷质量分数采用凯氏定氮法和钼锑抗比色法测定;用硝酸-过氧化氢(HNO3-H2O2)联合消煮法消煮待测样品,钾、铜、锌、铁、锰、钙、镁的质量分数采用ICPA-PRO电感耦合等离子体质谱仪测定。

    • 于2022年5月统计每株样树上部、中部、下部共20根1年生枝的花芽及叶芽的数量,并计算成花强度=(花芽数量/总芽数量)×100%。

    • 于2022年3月统计每株样树上10根枝条的第2代果实数量,从5月开始隔5~10 d统计1次种实数量,直到7月初共统计6次。膨大率=(每次膨大种实数量/ 3月种实数量)×100%,坐果率=(每次种实数量/ 3月种实数量)×100%。

    • 所有数据均测定3个以上生物学重复,取平均值。利用Excel 2022和SPSS 25.0进行数据整理与统计分析,利用单因素方差分析比较不同叶面肥处理下香榧种实之间存在的差异,运用最小显著性差异法进行多重比较,使用主成分分析法对香榧种实品质进行综合评价,采用Graph Pad Prism制图。

    • 表1可知:处理A和处理F对于香榧种实的核形指数、单核质量、单仁质量较对照均有显著(P<0.05)提高;处理D的单仁质量较对照显著(P<0.05)增加了9.5%;处理CA对于香榧种实出仁率的影响比其他叶面肥显示出更大的优势,比对照增加了3.3%。

      表 1  不同叶面肥处理下香榧种实形态指标的比较

      Table 1.  Comparison of morphological indexes under different foliar fertilizer treatments of seeds in T. grandis‘Merrillii’

      处理核形指数单核质量/g出核率/%仁形指数单仁质量/g出仁率/%
      ck 1.844±0.071 b 1.833±0.257 b 20.027±0.647 ab 2.228±0.086 ab 1.209±0.071 b 66.009±0.345 c
      A2.001±0.093 a2.013±0.207 a21.720±0.944 a2.233±0.144 a1.357±0.099 a67.742±0.651 b
      F1.979±0.042 a1.993±0.105 a18.923±0.211 bc2.225±0.053 ab1.333±0.056 a66.864±0.993 bc
      K1.927±0.040 ab1.904±0.107 ab19.386±0.828 bc2.179±0.056 ab1.296±0.074 ab67.184±0.804 b
      B1.961±0.105 ab1.952±0.277 ab18.059±0.724 c2.192±0.125 ab1.291±0.198 ab66.947±0.947 bc
      CA1.962±0.072 ab1.939±0.083 ab19.520±0.864 b2.231±0.088 a1.321±0.057 ab68.197±0.218 a
      W1.936±0.083 ab1.906±0.152 ab21.403±0.455 a2.070±0.093 b1.276±0.104 ab66.981±0.645 bc
      D1.944±0.035 ab1.970±0.065 ab19.952±0.614 b2.190±0.038 ab1.324±0.047 a67.230±0.932 b
        说明:数据为均值±标准差。同一列的不同小写字母表示不同处理间差异显著(P<0.05)。
    • 图1可知:处理D、处理A、处理K的香榧种实油脂质量分数分别为53.202%、53.003%和52.151%,比对照分别增加了12.3%、11.9%和10.1%;处理K的香榧种实的蛋白质质量分数为24.937%,比对照增加了13.6%,同时处理B和处理A的香榧种实蛋白质质量分数分别为23.615%和23.362%,较对照分别显著(P<0.05)增加了7.6%和6.4%;处理A、处理K和对照间的香榧种实淀粉质量分数无显著差异,但显著(P<0.05)低于其他处理,最低的是处理A ,为5.467%,低于对照1.9%;处理A和处理D对香榧种实可溶性糖质量分数产生显著(P<0.05)促进作用,分别为4.257%和4.530%,与对照相比分别增加8.9%和15.9%。

      图  1  不同叶面肥处理对香榧种实品质的多重比较

      Figure 1.  Multiple comparison of seed quality of T. grandis‘Merrillii’with different foliar fertilizer treatments

    • 表2可知:香榧种实中所含脂肪酸多为硬脂酸、棕榈酸、油酸、亚油酸、亚麻酸、花生一烯酸、花生二烯酸、金松酸这8种脂肪酸,其中不饱和脂肪酸(油酸、亚油酸、亚麻酸、花生一烯酸、花生二烯酸、金松酸)的相对含量远远高于饱和脂肪酸(硬脂酸、棕榈酸)。脂肪酸中亚油酸的相对含量最高(39.512%~43.900%),其次是油酸(35.254%~38.172%)、金松酸(7.591%~8.797%)、棕榈酸(6.706%~8.985%),亚麻酸相对含量最低,为0.279%~0.330%,可见香榧种实中的不饱和脂肪酸主要是亚油酸和油酸。

      表 2  不同叶面肥处理下香榧种实脂肪酸组成和相对含量

      Table 2.  Composition and contents and fatty acid under different foliar fertilizer treatments of seeds in T. grandis‘Merrillii’

      处理相对含量/%
      棕榈酸硬脂酸油酸亚油酸亚麻酸
      ck 8.985±0.106 g 3.528±0.107 e 38.172±3.327 a 39.512±2.915 d 0.279±0.008 d
      A8.451±0.115 e2.927±0.127 d35.254±2.426 e42.364±2.700 b0.291±0.013 cd
      F7.965±0.222 d2.297±0.019 ab36.658±2.457 bc42.412±2.858 b0.287±0.009 d
      K8.627±0.323 f3.147±0.237 d37.246±2.431 b40.570±3.552 c0.330±0.016 a
      B6.822±0.413 b2.505±0.214 bc36.848±1.673 bc42.973±2.907 b0.301±0.014 bc
      CA7.045±0.375 c2.622±0.327 c36.910±1.781 bc42.606±3.682 b0.301±0.017 bc
      W6.897±0.408 b2.397±0.112 bc35.862±1.535 de43.950±3.648 a0.303±0.022 bc
      D6.706±0.636 a2.158±0.313 a36.479±2.298 cd43.974±3.358 a0.307±0.025 b
      处理相对含量/%
      花生一烯酸花生二烯酸金松酸饱和脂肪酸不饱和脂肪酸
      ck0.452±0.021 b1.480±0.130 b7.591±0.868 e12.513±2.303 g87.487±5.826 g
      A0.472±0.057 b1.446±0.110 b8.797±0.334 a11.377±2.341 e88.623±6.141 e
      F0.476±0.043 b1.462±0.115 b8.442±0.503 bc10.262±2.309 d89.738±7.509 d
      K0.543±0.045 a1.478±0.186 b8.060±1.046 d11.774±2.558 f88.226±6.007 f
      B0.496±0.044 ab1.543±0.093 b8.513±1.034 bc9.327±1.628 b90.673±7.933 b
      CA0.453±0.062 b1.721±0.080 a8.342±0.987 c9.666±1.703 c90.334±8.103 c
      W0.444±0.012 b1.528±0.096 b8.619±0.923 ab9.294±1.522 b90.706±7.841 b
      D0.457±0.030 b1.592±0.142 ab8.328±0.720 c8.864±0.950 a91.136±8.058 a
        说明:数据为均值±标准差。同列的不同小写字母表示不同处理间差异显著(P<0.05)。

      棕榈酸、硬脂酸和油酸相对含量在对照中最高。棕榈酸和硬脂酸相对含量在处理B和处理W间无显著差异,但它们与其他处理间差异显著(P<0.05),处理D相对含量最低;油酸相对含量在处理F、处理B、处理CA处理间无显著差异,但它们与其他处理间差异显著(P<0.05),处理A相对含量最低;亚油酸相对含量在处理W、处理D间无显著差异,但显著(P<0.05)高于其他处理;亚麻酸和花生一烯酸相对含量在处理K中显著(P<0.05)高于其他处理,其他处理之间无显著差异;处理A的亚麻酸相对含量显著(P<0.05)高于其他处理,其他处理之间无显著差异;金松酸相对含量最高的是处理A,最低的是对照处理。饱和脂肪酸相对含量最低,不饱和脂肪酸相对含量最高的是处理D。从不饱和脂肪酸相对含量来讲,处理D、处理W、处理B、处理CA处理优于其他处理,尽管各脂肪酸成分不同。

    • 香榧种仁中含有丰富的营养元素。从表3可以看出:氮元素质量分数为51.050~54.645 g·kg−1,镁元素质量分数为4.595~5.188 g·kg−1,铁元素质量分数为45.718~68.594 mg·kg−1。氮、镁、铁元素质量分数最高的均为处理A的香榧种仁,比对照分别增加了6.9%、11.6%、5.8%。铜元素质量分数为17.874~22.911 mg·kg−1,锰元素质量分数为27.497~35.295 mg·kg−1,铜、锰质量分数最高的均为处理F的香榧种仁,比对照分别增加了3.9%、28.3%。磷元素质量分数为6.139~6.728 g·kg−1,钙元素质量分数0.706~0.879 g·kg−1,磷和钙质量分数最高的均为处理CA的香榧种仁,比对照分别增加了9.6%和14.0%。

      表 3  不同叶面肥处理下香榧种仁营养元素质量分数

      Table 3.  The element contents of kernel under different foliar fertilizer treatments in T. grandis‘Merrillii’

      处理氮/(g·kg−1)磷/(g·kg−1)钾/(g·kg−1)钙/(g·kg−1)镁/(g·kg−1)铜/(mg·kg−1)
      ck 51.108±3.197 d 6.139±0.084 f 12.118±0.523 bcd 0.771±0.083 cd 4.649±0.123 bc 22.055±2.148 b
      A54.645±2.105 a6.463±0.370 c11.704±1.638 cd0.849±0.089 ab5.188±0.319 a19.630±1.800 c
      F52.135±2.729 c6.393±0.251 d12.078±1.442 cd0.706±0.096 e4.886±0.324 abc22.911±0.469 a
      K53.531±1.831 b6.437±0.281 c11.631±1.354 d0.799±0.032 cd4.937±0.528 ab19.363±1.644 c
      B52.328±2.384 c6.454±0.121 c13.006±0.295 a0.755±0.107 d4.595±0.381 c22.114±1.521 b
      CA53.362±1.259 b6.728±0.287 a12.677±0.556 ab0.879±0.074 a5.047±0.276 a18.645±1.501 d
      W51.050±0.650 d6.231±0.269 e12.215±1.537 bc0.814±0.053 bc4.662±0.327 bc17.874±2.282 e
      D52.044±3.550 c6.647±0.225 b12.102±0.511 bcd0.846±0.092 ab5.037±0.255 a22.053±2.801 b
      处理锌/(mg·kg−1)铁/(mg·kg−1)锰/(mg·kg−1)大量元素/(g·kg−1)微量元素/(mg·kg−1)
      ck 66.105±5.100 e 64.822±6.952 a 27.502±4.345 f 74.894±4.101 d 181.484±9.545 a
      A68.349±6.403 b68.594±6.443 a30.355±5.294 cd78.854±4.521 a186.803±11.940 a
      F66.848±6.474 d57.447±2.518 bc35.295±5.500 a76.198±4.941 c182.501±8.961 b
      K69.018±2.521 ab48.187±4.199 de32.720±1.890 b77.328±4.126 b169.288±9.254d
      B63.794±5.787 f61.254±6.337 b30.903±4.788 c77.138±3.287 b178.065±10.432 c
      CA67.500±4.953 c45.718±1.005 e30.140±2.407 d78.586±2.460 a162.003±8.865 f
      W66.510±5.612 de52.337±6.876 cd27.497±1.880 f74.973±2.936 d164.218±9.650 f
      D70.271±5.607 a58.194±2.229 bc29.113±3.293 e76.675±4.634 c179.412±7.930 c
        说明:数据为均值±标准差。同一列的不同小写字母表示不同处理间差异显著(P<0.05)。
    • 图2所示:处理A、处理F、处理CA、处理D对于花芽比例的提升均有一定作用,且差异显著(P<0.05),其中处理A的成花强度(47.415%)和处理CA的成花强度(47.058%)显著(P<0.05)高于其他处理,较对照分别提高了18.0%和17.1%;次之为处理D的成花强度(44.805%±3.549%)和处理F的成花强度(44.258%±1.375%),较对照分别提高11.5%和10.1%;处理W的成花强度(37.680%±2.332%)最低,比对照减少6.2%。

      图  2  香榧种实翌年成花强度

      Figure 2.  Flowering intensity of T. grandis‘Merrillii’seeds in the next year

    • 图3可以看出:5月13—19日香榧种实的膨大率在波动中呈上升趋势,5月19—23日处理B膨大率仍在继续上升,而其他处理则开始下降;5月23日至6月13日对照和处理K的膨大率先上升后下降,而其他处理则持续下降,在7月1日左右趋于平稳,其中处理CA的下降趋势较其他处理较为平缓。

      图  3  不同叶面肥处理下香榧种实膨大率和坐果率

      Figure 3.  Expansion and fruit-setting rates under different foliar fertilizer treatments of seeds in T. grandis‘Merrillii’

      对香榧种实7月坐果率进行多重比较分析发现:处理A 的坐果率(15.625%)显著(P<0.05)高于其他处理,比对照增加了23.4%,其次是处理CA(14.037%)和处理B (13.507%),比对照分别提高了10.9%和6.7%;最低的是处理F(4.831%),低于对照61.8%。

    • 表4可知:15项指标经主成分分析后提取出5个主成分,特征值均大于1.000,累计方差贡献率为91.701%,说明前5个主成分所含有原本15项指标91.701%的信息。根据主成分分析结果对影响香榧种实品质的各方面因素进行综合评价,利用公式计算综合得分(F):F=0.3892F1+0.2184F2+ 0.1410F3+0.1025F4+0.0660F5,综合主成分F值越高,综合品质表现越好。由表5可见:处理A的综合评分最高,说明喷施氨基酸肥可有效改善香榧种实的品质。此外,处理CA、处理D的香榧种实品质的也受到显著影响,说明钙肥和大量元素肥也可有效改善香榧种实的品质。

      表 4  主成分因子载荷矩阵

      Table 4.  Load matrix of principal component factor

      指标主成分指标主成分
      F1F2F3F4F5F1F2F3F4F5
      核形指数 0.911 −0.235 −0.182 0.111 −0.231 可溶性糖质量分数 −0.141 0.204 0.847 0.310 −0.101
      单核质量 0.871 −0.109 −0.196 0.358 −0.236 不饱和脂肪酸相对含量 0.364 −0.729 −0.217 0.074 0.298
      出核率 0.084 −0.156 0.736 0.409 0.082 金松酸相对含量 0.744 −0.482 0.029 0.218 −0.203
      仁形指数 0.292 0.851 −0.367 0.133 0.142 大量元素质量分数 0.893 0.352 0.065 −0.260 0.063
      单仁质量 0.947 −0.119 −0.083 0.154 −0.163 微量元素质量分数 −0.174 0.623 −0.059 0.685 −0.284
      出仁率 0.894 −0.105 0.114 −0.265 0.284 成花强度 0.844 0.442 −0.152 0.085 0.182
      油脂质量分数 0.661 0.093 0.618 −0.090 0.094 坐果率 0.314 0.561 0.356 −0.039 0.429
      蛋白质质量分数 0.234 0.014 0.403 −0.671 −0.556 特征值 6.227 3.494 2.256 1.640 1.055
      淀粉质量分数 −0.125 −0.904 0.148 0.257 0.228 累计贡献率 38.918 60.753 74.855 85.104 91.701

      表 5  喷施叶面肥后香榧种实的综合评分

      Table 5.  Comprehensive evaluation of T. grandis‘Merrillii’seeds after spraying foliar fertilizer

      处理F1F2F3F4F5F排名
      ck −4.803 2.456 0.201 0.604 0.601 −1.203 7
      A8.5321.6611.5991.234−0.5843.9971
      F0.614−0.514−2.8291.056−0.914−0.2245
      K−0.9090.6241.029−2.176−1.250−0.3786
      B0.5010.089−1.156−0.694−0.455−0.0504
      CA5.5310.188−0.857−1.3461.8952.0602
      W−4.334−3.8061.1520.1300.008−2.3418
      D2.052−0.6980.8621.1910.6990.9363
    • 叶面施肥在现代农业中发挥着重要作用,可以改善植物因土壤肥吸收不足而缺乏营养的状况,从而提高肥料的利用效率,但叶面施肥对果实品质的影响存在差异[10]。唐岩等[11]对苹果Malus pumila的研究发现:喷施叶面肥能显著增加苹果果实可溶性固形物和挥发性物质的种类和质量分数,降低可滴定酸。李秋利等[12]研究发现:叶面喷施山梨醇和蔗糖促进了桃Prunus persica果实着色,增加果实可溶性固形物,有利于整体提升桃果实品质。刘松忠等[13]研究发现:对叶片喷施氨基酸肥可显著提高黄金梨Pyrus pyrifolia ‘Hwangkumbae’果实的总糖、蔗糖、果糖和葡萄糖质量分数,降低总酸及苹果酸、酒石酸质量分数。

      香榧种实油脂、蛋白质、淀粉、可溶性糖质量分数以及脂肪酸组成是影响香榧种实品质的重要指标。香榧中蛋白质、油脂质量分数越高,淀粉质量分数越低,香榧种实的口感就会越细腻香脆[14]。叶面喷施适量的氨基酸肥对香榧种实的核形指数、单核质量等有显著的促进效果,且在7种处理中效果最为显著;对于油脂、蛋白质、可溶性糖质量分数的增加和淀粉质量分数的减少也有显著作用。这可能是叶面肥的喷施使得枝叶角质层所含的羟基与氨基酸产生强亲和性[15],将叶片角质层软化渗入营养元素,补充香榧种实在充实期生长发育所需要的营养成分,改善种实品质,促进树体生长发育[16]。同样,叶面追肥时施用氨基酸水溶肥也有效提高了玉米Zea mays[17]、小白菜Brassica campestris[18]、棉花Gossypium hirsutum[19]等的生长指标,增强叶片的光合作用和养分转化,从而实现增产增收。

      钙是细胞壁的重要组成部分,同时也是细胞膜的保护剂,可以增强膜结构的稳定性[20]。此外,钙离子作为植物细胞内的第二信使具有调节细胞内部多种生理活动的功能[21]。有研究表明:叶面喷施钙肥可以快速为植物补充钙素,能有效提高作物坐果率、产量与品质,防止裂果并延长果实的储藏期[2223]。叶面喷施糖醇螯合钙肥不仅显著增加了香榧种实的仁形指数和出仁率,增加花生二烯酸的合成,提高香榧种实内磷元素和镁元素的质量分数,还能促进翌年树体的花芽分化,为开花结实提供更多养分,显著增加膨大率和坐果率,促进香榧幼果的快速膨大,减少僵果、落果,增加产量。该结果与叶面施钙在辣椒Capsicum annuum[2425]、荔枝Litchi chinensis[26]和苹果[27]等水果中的应用效果一致。

      大量元素水溶肥能明显提高香榧种实的单仁质量、油脂质量分数和可溶性糖质量分数,对其他特性也有显著影响。可能是由于本研究使用的大量元素水溶肥除基本的氮、磷、钾元素外还含有硼、锌元素,具备比较均衡全面的养分,这些元素具有不同的生理功能并进行相互作用,促进树体生长发育。其中硼元素促进植物体内碳水化合物的合成、运输和代谢,显著增加果实的单果质量,有效减少果实机械损伤[28];锌元素作为各种酶类(超氧化物歧化酶、乙醇脱氢酶、碳酸酐酶、RNA 聚合酶等)的成分或活化剂,可激活光合作用中与碳代谢有关的多种酶,使之向蔗糖合成途径转移[29]

    • 从本研究结果可知:氨基酸水溶肥处理的综合评分最高,说明喷施氨基酸肥可有效改善香榧种实的品质;此外,大量元素水溶肥对于香榧种实品质的提升有显著的影响,钙肥可以显著影响香榧树体花芽分化、膨大坐果。在生产实践中应根据果树的生长状况进行复合施肥,将叶面肥混合使用,效果可能更佳。

参考文献 (29)

目录

/

返回文章
返回